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Ground-State Theorem for Free Polarons
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A ground-state theorem for the Frohlich polaron is derived. We show that the zeroth moment of the
current-current correlation function is proportional to the kinetic energy of the polaron. While the
electron-phonon interaction does not depend on the electron mass, the coupling constant a does; this
allows us to relate the kinetic energy with the ground-state energy using the Feynman-Helmann
theorem. As an example we compare the polaron ground-state energy on variational grounds with the
ground-state energy obtained from the function y(ao) calculated by Feynman, Hellwarth, Iddings, and
Platzman. For a & 5 both ground-state energies turn out to be identical, as can be concluded from
numerical calculations.

INTRODUCTION

It is well known that the nth moment of a re-
sponse function (for T= 0) can be written as the
average of an operator over the ground state. In
some cases the average can be calculated directly
and one obtains a sum rule, in other cases the
average can be correlated with the ground-state
energy. For instance: In the degenerate electron
gas, the first moment of the electronic polariz-
ability is proportional. to the interaction energy.
With the use of the Feynman-Hellman theorem,
this energy can be converted into the ground-state
energy by considering the el,ectron charge as a
parameter. One then obtains a method to com-
pare an approximative calculation of the polariz-
ability with an energy that can be calculated on
variational grounds.

We derive here a ground-state theorem valid for
the self-field of a particle, relying only on the
long-wavelength behavior of the current-current
correlation function. Using the scale properties
of the polaron system, we were able to relate the
ground-state and the kinetic energy by a differential
equation with an appropriate initial. condition; it
was al.so possible to show that the absolute value
of the interaction energy equals four times the
kinetic energy and that a simple relation between
the number of virtual phonons in the polaron cloud
and the ground-state energy could be established.

As an exampl. e, we have compared the ground-
state energy derived from the function X(te) calcu-
lated by Feynman, Iddings, Hellwarth, and
Piatzman (henceforth denoted by FHIP)~' and the
ground-state energy calculated by Feynman. ' It
turns out that for the range of the coupling constant
that we have investigated (o & 5) there is no deviation
between both values for the ground-state energy.

DERIVATION OF A SUM RULE

Let us consider the current-current correlation
function for a free-charge carrier in interaction

with a phonon field. This function is given in the
linear-response theory by the following expres-
sion':

x»(~) = f „dtxt, (t)e'"',
where

Xtt (t) is an average over the ground state
for low temperature:

x„(t)= (t/@)e(t)(t j„(t),i, (0)]) . (2)

j„(t) is the current operator in the Heisenberg pic-
ture and is given by the momentum of the charge
carrier multiplied by the ratio of the charge and

mass of the carrier, at least in the Frohlich mod-
elv' where a parabolic energy-momentum re-
lation is considered for the charge carrier. The
mass is the band mass of the carrier. e(t) is the
Heaviside step function:

~

(t) eii /h &Ht (e/m)p e- ii lh wt

where H is the Frohlich Hamiltonian:

pH= +P Std ttt-, gati, +Z V, at-, e'"'+ V, tti;e
'"' .

(4)

The component V, of the electron-phonon interac-
tion matrix is given by

V, =- (t/t)l(2 ~, /V)e'(I/e I/e, )j"-', (5)

where &„and Eo are, respectively, the dynamic
and static dielectric constant. The electron-phonon
interaction is independent of the electron mass;
this is a consequence of the electrostatic nature of
the interaction.

Writing down the spectral representation of the
current-current correlation function, one shows
that the integral over the positive frequencies of
this function is proportional to the kinetic energy.
To obtain the spectral representation one intro-
duces the complete set of eigenfunctions of the
Frohlich Hamiltonian and integrates over the time
explicitly:
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1 = s'(I/x) —io 5(x),
X+ iE

(7)

where 4' stands for principal value and 5(x) is the
Dirac 6 function:

J do&lmyis(o&) = (v/@ ~ I &4'ol X I
(8)

After summation over the complete set one obtains

do&lm}(, ~(o&) =
&

&4&ol g/2m I4o) =
8

27t e 21K e

~&0

(9)

x,~(~) =~ „—I &4oli. I4.}I'

(x -', ' (8)
f~+ tf —CO«(0+ $6+ CO«

where

~.,= (I/a)(E„- E,) .
An integration over all the positive frequencies of
the imaginary part of the current-current correla-
tion function can be done easily considering that

The dimensionl. ess Hamiltonian is then given by

z'& s& =(- v' ~ &' tow+ &' tymp"

&)~e&, &&6&

where

r. = - (f/ )(4.~/F}'" (17)

and n is the well-known polaron coupling constant

o= o (e /ff o&r)(1/ e 1—/eo)(2mo&r, /ff) ~ . (18)

This shows that F is a function of a only. It
should be stressed that the scale transformation
is not a scale symmetry for the Hamiltonian, but
only an elegant way to indicate the dependence of
the ground-state energy on the coupling constant.
Based on this property of the ground-state energy,
one obtains some useful relations for this energy.
Using the mass dependence of the coupling constant
one can express the kinetic energy as a function of
the derivative of the ground-state energy with re-
spect to e:

For symmetry reasons the x component of the
kinetic energy is one-third of the total kinetic en-
ergy. because

dE dE ddo. , dE
(19)

GROUND-STATE THEOREM AND SCALE
TRANSFORMATION dn 1 e

dX 2
(2o)

The ground-state energy of the polaron is given

by

E' = &@o I
ff

I @o} i (io}

if this energy depends on a parameter, than the
Feynman-HeBmann theorem states that

dE dH

If one takes the inverse of the mass X=I/m as a
parameter, one obtains

Although one now obtains a differential equation that
relates the kinetic energy with the ground-state
energy, the integral of this equation is difficult to
solve due to the lack of an appropriate initial con-
dition. Now, one changes the Hamiltonian to di-
mensionless units by the following scale transfor-
mation: As the unit of energy one uses the energy
of the longitudinal-optical phonons

Eo-F Ro&1,

and as the unit of length one uses

In the same way, the interaction energy can be de-
rived from the ground-state energy

dZ0
+int 2 + ~

dQ
(2i)

From Eqs. (19) and (21) it follows that the ratio of
the interaction energy to the kinetic energy is a
constant for all values of the coupling constant:

Ei.t /Eu. = —4 . (22)

N(a)=F (a) —ono dF (o)
dQ

(23)

Equation (19) allows for solving the differential
equations formally with the initial condition that
the ground-state energy is equal to E (0}for n
zero:

This is a generalization for the whole range of the
coupling constant of the 1:4 relation of a theorem
derived by Pekar' for free polarons in a classical
dielectric (strong-coupling limit). Combining Eqs.
(19) and (21) one finds the number of virtual pho-
nons in the polaron cloud, i, e. , the energy of
those phonons divided by the energy of one phonon,

r -u(2m o&„/8)

the wave vector then becomes

k-v(2mo&„/5)' ' .

(i4) (24)
Q

E'(o') —E'(0) = —2 ~ Egg. (o') .
0

Using the sum rule for the kinetic energy, we ob-
tain the ground-state theorem for the current-
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As an example, one obtains the ground-state en-
ergy in the weak-coupling limit (n small) using the
expression of Gurevich, Lang, and Firsov for
the current-current correlation function

I ao

—3 ~
—

Img&& (a&, a ) = —n, (26)
dQ I d(d gF

4 p 4 p

where

Im)P~~ = —,
' o.v(o '((u —I)'~~ (&o & I)

(27)
=0 (~&I) .

The units are m=+1, =k= e=1.
In order to obtain an expression for the ground-

state energy, which is valid for a wider range of
the coupling constant, we have used the function
}{(&o)as defined in FHIP. Therefore, it is useful
to indicate the relation between the current-cur-
rent correlation function and the function y(~).
The current-current correlation function is de-
fined as the linear coefficient that relates the
change of the current in the system with the vec-
tor potential applied to the system:

current correlation function

Eo(a) —E (0) =—,—Imp~~((o, n'}p 3m+ ~ dG I d('d

(25}

DISSIPATION AND GROUND-STATE THEOREM
lim Im)p~((o) = —,

' v(o. /&o ) (&o)' ~

g A tO

(33}

The first part is treated by an adaptive integration
technique' and the second by Gaussian quadra-
ture. '

After the integrating over the frequency, one ob-
tains the kinetic energy: It is a monotonic in-
creasing function of the coupling constant, and the
numerical integration is done using standard meth-
ods. As a result, one obtains a ground-state en-
ergy which is equal to the Feynman ground-state
energy. The two energies are compared in Fig.
1, and in Table I, the ground-state energy result-
ing from the calculation is given for a set of cou-
pling constants.

DISCUSSION

We have derived this ground-state theorem for
free polarons. It can be generalized without any
difficulty for a whole class of particle-field inter-
actions, which do not depend on the mass of the
particle as long as the energy-momentum relation
of the particle is parabolic the last restriction is

than the characteristic frequencies of the system
which are the one-phonon relaxed-excited-state and
the Franck-Condon frequency; the second part
handles the asymptotic behavior, the current-cur-
rent correlation function:

= x»(&)& (23)

In FHIP, the impedance function Z(&u) is defined
as the coefficient between the current and the ap-
plied electric field:

d.j„=[I/Z((o)1E„ (»)
Using the relation between the electric fieM and
the vector potential one obtains

Xqq ((o) = —f(u/Z((o) . (30)

Combining relation (30) with the equation for }{(&o},
which happens to be an auxiliary correlation func-
tion in the FHIP approach, we obtain

i(oZ((o) = (u' —}t(&o) .
One obtains

EO
tl EalL

( )
sP Im}{((u)

(u' —2(a~Rey((o)+ I y((o) I~ ' (32)

An expression equivalent to (32) was first consid-
ered in the earlier work of the present authors4'~;
using the expression for Rey(&o) obtained in Ref. 4,
we were able to perform numerically the two in-
tegrations on the IBM 1130 computer of the Univer-
sity of Antwerp. The range for the integration
over the frequency is divided in two parts; the first
part contains the basic physical information, i. e. ,
one integrates until a frequency, which is greater

-10

FIG. 1. Feynman ground-state energy is indicated by
a solid line, while the dots are the energies calculated
using the ground-state theorem.
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TABLE I. Ground-state energy.

0. 5
1.0
1.5
2. 0
2. 5
3.0
3. 5
4. 0
4. 5
5, 0

E theorem

—0. 503
—1.014
—l. 533
-2.059
—2. 593
—3.135
—3.687
—4. 251
-4.831
—5.430

necessary, otherwise the expectation value of the
square of the velocity is not directly proportional
to the kinetic energy, and there is an additional
term in the current-current correlation function
arising from the nonparabolicity. '

The analysis we made, concerning the relations
between the ground-state energy and other expecta-
tion values over the ground state, can also be gen-
eralized for the same class of particle-field in-
teractions.

From the Gurevich-Lang-Firsov expression for
the current-current correlation function we obtain
the same ground-state energy as the second-per-
turbation ground-state energy~ or the Lee-Low-
Pines ground-state energy; there is no way to

make a distinction between both with the use of the
ground-state theorem, because the current-cur-
rent correlation function happens to be identical
for both approximations as far as the weak-cou-
pling limit is concerned.

From the function )((ur) of FHIP we obtained the
Feynman ground-state energy. Although both cal-
culations are evaluated in the framework of the
path-integral formulation of quantum mechanics,
there is a a priori reason why they should be
equivalently accurate. The accuracy of the
Feynman variational approach was tested on a ex-
actly soluble model. Obtaining the same result
for the ground state using FHIP y(&o) function, we
may claim that this function treats the excited
states of the polaron with relatively great accuracy.
The asymptotic expansion of the )((&u) function turns
out to be the asymptotic expansion obtained from
the Gurevich-Lang-Firsov expression of the cur-
rent-current correlation function. This is not so
surprising because the expansion is the tail of the
one-phonon contribution to the current-current cor-
relation function. This contribution does not
strongly depend on the range of the coupling con-
stant, at least for a & 5. Since for this range of
the coupling constant al, l the basic phenomena are
incorporated in the spectrum of the current-cur-
rent correlation function, we felt it not opportune
to extend the numerical calculations for greater
coupling.
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