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Magnetic Field E»ftncement of Self-Focusing of I~acr Beams in Semiconductors
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A theory of self-focusing of laser beams in semiconductors in a homogeneous magnetic field is
presented. The focal length and beam profile are calculated as a function of the magnetic field strength
and the laser intensity. We find that a much smaller light intensity is needed for self-focusing when the
cyclotron frequency approaches the laser frequency.

I. INTRODUCTION

As a consequence of the invention of powerful
lasers, a host of nonlinear optical effects have
been discovered. One of the most interesting ef-
fects is the self-focusing of light beams in matter,
an effect which received much attention both the-
oretically and experimentally. Several mecha-
nisms for self-focusing have been discussed, such
as the Kerr effect, electrostriction, thermal per-
turbation of the sample, nonlinear electronic polar-
ization, and forward stimulated Brillouin scatter-
ing. Recently two new mechanisms which exist in
semiconductors have been proposed. The first one
results from the large nonparabolicity of the con-
duction electrons for narrow-gap semiconductors.
Here the nonlinearity arises from the velocity-de-
pendent mass. The second one makes use of the
energy-dependent collision time for the conduction
electrons in semiconductors, 3 due to their inter-
action with longitudinal-optic phonons.

In this paper we discuss the self-focusing phe-
nomenon in a narrow-gap semiconductor embedded
in a uniform magnetic field. We take the velocity-
dependent mass to be the dominant contributor to
the nonlinear dielectric response of the medium.
The effect of the magnetic field on the nonlinearity
becomes enormous when the laser frequency and
the cyclotron frequency &, are of the same magni-
tude. Then the electrons and the electric field
vector of the circularly polarized light are rotating
in space almost coherently and the light accelerates
the electrons to a much higher velocity than in the
absence of the magnetic field. This results in a
large increase in the nonlinear properties of the
semiconductors. The main limitation on the elec-
tron acceleration is the collision time 7. Here we
are limited to the case when ~, ~„and ~ —~, are
much larger than v . Moreover, the photon mean
free path decreases with increasing magnetic field,
which we overcome, in part, by decreasing the
electron densities. It is the effects on self-focus-
ing resulting from (i) the increase of the nonlin-
earity and (ii) the decrease of the mean free path,
as a function of the magnetic field strength and

II. CALCULATION OF THE NONLINEAR DIELECTRIC
FUNCTION

Consider a semiconductor with electron density
n in the conduction band. It is assumed that n is
sufficiently small that collective effects may be
neglected. The single-particle Hamiltonian for
narrow-gap semoconductors formally resembles
that of a relativistic electron and is given by

e, = [m*'c*'+c 'P']"',
where p is the electron's momentum and c*= (E /
2m*) ~~. Here c* plays the same role in the dy-
namics that the speed of light c plays in relativistic
mechanics. The energy gap has been denoted by
E~ and the effective mass near the bottom of the
conduction band by m*, It should be noted that for
realistic situations c*/c « l.

We now consider the electron dynamics when the
semiconductor is embedded in a uniform magnetic
field Bo taken to point along the -z direction. In
addition, we irradiate the sample with circularly
polarized light whose direction of propagation is
directed along the magnetic field. The Hamiltonian
then becomes

ff=(m+'c" +c*'[p+ (e/c) A]')'~',

where the vector potential is given by

A = &Box r+A~ [g cos((- g)+Jsin($ —g)],

(2)

where $ = kz —&t and y is a constant phase angle.
Hamilton's equation then leads to the following equa-
tion of motion for the electrons:

laser intensity, to which we address ourselves in
this paper. We find, however, that for realistic
situations, self-focusing in the presence of a mag-
netic field can be achieved with laser powers one
to two orders of magnitude smaller than without the
magnetic field.

In Sec. II we derive an expression for the nonlin-
ear dielectric function in the presence of a mag-
netic field. Section III concerns itself with the
self-focusing of a radiation beam and in Sec. IV nu-
merical results and a discussion of these results
are presented.
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d m*v

( / „)2]4/2 = —e[E+(v/c)xB], (4)

where E = —(I/c)sA/st and B=VxA. In order to
to account for the effects of electron collisions we
introduce a phenomonological relaxation term into
Eq. (4). Thus we obtain

+ — m*vl' = —e [E+ (vjc)x B],t T
(5)

where I = [1 —(v/c*) ]
' '. This is a realistic

model for the carrier densities and field intensities
considered in this paper.

Equation (5) will be solved in the following ap-
proximation. We note that the ac magnetic field
induces currents which are typically a factor v/c
smaller than the currents induced by the ac elec-
tric field. Thus we neglect the ac magnetic force
and simply replace B by B2 in Eq. (5). In principle
we can go to very large values of 80 and thus the
static field should not be neglected. Hence we ob-
tain the following set of equations:

d 1 ea)Ag e—+ — m~v„l'= sin($ -X)+ —B2v„,dt T c c

d 1 —g(g)Ag e—+ — m*v I'= cos($ X) IIOvx ~dt T " C c

(Ga)

(
d 1—+ — m*vg I'=0 .
dt

(Gb)

(Gc)

y = tan-'[I/(~ —(g,)q.],
v2 = &@ac*9,/ur, &,

(Sa)

(Sb)

where we have introduced a dimensionless parame-
ter (a= eA4/m"c*c) describing the strength of the
field, a term describing the detuning from reso-
nance

In the absence of any perturbation the electrons
form a cold plasma so that v=0. We now investi-
gate the steady-state solution to Eqs. (Ga)-(6c).
Let v„= v2cos($ —

X
—p) and v„= v2sin($ —

X —p).
From Eq. (6c) it immediately follows that v, = 0.
The values of y and vo follow directly upon insert-
ing the above forms into Eqs. (6). They are de-
termined by equating the real and imaginary parts
of

i eAq cue
4 f9

Q) ~ +
m*c1vo '

We note that I'= (1 —vz/c* ) / and is independent
of time. In the above expression we have intro-
duced the zero-field cyclotron frequency &o,=—eB2/
m*c. Thus we find

(P —k + &2+ /c ) +4P k = (42nev2/cA2)

2Pk
p2 k2+ g 2/C2

= tan

(11a)

(11b)

Solving the above two equations simultaneously for
p gives

2c co j b wc

'm
C C~

If we work within the restrictions outlined above so
that y will be small we can neglect the effect of
attenuation. Then we introduce the dielectric con-
stant z = k c /~ and find

where the plasma frequency is defined by

~, = (4me2/m+~, )"' . (13)

It is instructive to make a power-series expansion
of Eq. (18) in powers of the nonlinear parameter
Q. . One obtains

Note that Eqs. (Sb)-(Sd) must be solved self-con-
sistently to obtain vo. In the work that follows we
will always work with parameters such that (~
—&o,)r»1 and &r»1. From Eq. (Sd) it also fol-
lows that (& —g,)~» 1. Consequently, the phase
shift of Eq. (Sa) will be small.

The current density associated with the elec-
tronic motion is given by

X= —nev= ne-v2[i cos($ —
X —~p)+j sin($ —X —y)] .

(9)
One notes that from Eqs. (Sa)-(8d), v2 depends on
the field strength n in a highly nonlinear way. Thus
Eq. (9) describes the nonlinear response of the
electrons to the external field. This current acts
as the source term in the wave equation

2
2 qL, 8A 4m-vA-~c 8t c

where &~ is the lattice dielectric constant. Let us
now examine the plane-wave solution to Eq. (10).
Since the current lags behind the vector potential
by a phase angle p, there will be attenuation of the
wave as it propagates through the medium. As a
first approximation one can regard Az as being at-
tenuated exponentially with damping constant P.
Thus, upon inserting Eq. (3) into Eq. (10) we ob-
tain the following for P and k:

& = [(~ —&.)'+ I/r']"',
and a renormalized cyclotron frequency

GJ = R (I —V2gc42)1/2

(Sc)

(Sd)

2/ 2 2 2 I 4

+ —Q + 0(a')1-(o,/(u 2 (o I —(u, /(o

We note the dramatic enhancement of the quadratic
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term as the magnetic field is made large enough so
that &, approaches ~.

To understand the origin of this enhancement we

go back to the case of zero magnetic field. Here
the nonlinearity results in the modulation of the
mass, i. e. , m~m(1+-,'a ). Since &g~ is propor-
tional to m we obtain (z/el, ) = 1 —(re~/~ )(1 —za ),
as it should be. For finite magnetic fields we ob-
tain

m~m[1+ —,'a'(1 —(o,/(o) '] .
Thus our model of the mass modulation results in
the following dielectric function:

x[1+~a (1 —(o,/(o) z] . (14')

Rewrite Eq. (14') as

—=r —rr'r~ rP(r — )

1 —(g~ cg 1 —~~

where the amplitude A and the eikonal s are taken
to be slowly varying functions of z. Since in self-
focusing one finds rather narrow necks in the re-
gion of the focal length, we allow A and s to vary
rapidly in the radial direction. Furthermore azi-
muthal symmetry is assumed. The effect of the
magnetic field is completely buried in the dielec-
tric constant &. We will work in the domain where
the focal length is much smaller than the attenu-
ation length 1/P. Then the Ohmic losses may be
ignored to a first approximation and attenuation
may be disregarded. The theory is therefore lim-
ited to the short-distance propagation of the beam
through the medium.

The analysis proceeds in much the same way as
in Ref. 1, where the case of linearly polarized
light was considered. We start with a variational
principle involving the electromagnetic Lagrangian
density and make an adiabatic elimination of the
time variable. We assume azimuthal symmetry
and take A and s to be slowly varying in the z di-
rection, but not necessarily in the radial direction
R. Upon expressing the amplitude and eikonal as

E = (E /f)e tslrrf( ~&&

1

x [1+—,'a'(1 —(o,/(u) ']
i (14")

and expand Eq. (14") to first order in a; thus we
recover our results of Eq. (14}.

III. SELF-FOCUSING EQUATIONS

The nonlinearity of the dielectric constant has a
profound effect on the propagation of electromag-
netic radiation through the semiconductor. In a
laser beam, in general, the intensity is not uniform
along the profile of the beam, being maximum at
the center and tapering off to zero along the edges.
Therefore the nonlinearity of q results in present-
ing different dielectric constants to different parts
of the beam, thereby causing self-refraction. As
long as the dielectric constant increases with in-
creasing field the result will be a refraction of the
beam into the region where the intensity is great-
est —thus giving the self-focusing effect.

In general there will be a competition between
diffraction effects due to the confinement of the
beam to a finite width, and a focusing effect due to
the nonlinearity of the medium. The latter effect
must dominate for self-focusing to occur. This
will happen when the power exceeds some critical
power.

We now apply the variational approach developed
in Ref. 1 to derive the self-focusing equations for
the case of a monochromatic circularity polarized
wave. Thus we assume that A is of the form

A=A[icos(kz —&ot —ks)+ jsin(kz —&ot —ks)],
(16)

(16)

As mentioned in Ref. 1 a simple analog exists be-
tween self-focusing and the motion of a particle in
a central force field, as is obvious from the form
of Eq. (16). The effective potential for motion in
the f direction can thus be written

2 2 1 2 2ezE&a
32 afk (d 6 (dr,

where we have employed Eq. (12}. We note that
V, and 4 depends on n2, which is taken to be

2 1 eE,
m*c*&of j~

(16)

as in Ref. 1. Inspection of the expression for V,«
shows that as f decreases the first term increases
while the second term decreases. Eventually, at
small f, the first term completely dominates. This
is the region where diffraction effects are very im-

s = p(z) + -',ft'P(z),

we are able to carry out the integration over the
radial and azimuthal directions. Here ED is the
electric field strength, a is the initial beam radius,
E, is the central field strength, and y, P, and f are
dependent on z. The resulting variational principle
formally resembles Hamilton's principle and we
find that the evolution of f, the dimensionless beam
radius, with the variable z is governed by a Hamil-
tonian
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~2 m*c + 1 ~cd

cake~ co
(20)

We therefore expect a marked deviation of the cri-
tical power from what it would be in the absence of
a magnetic field, varying roughly as the fourth
power of (&o —~,)/v. Consequently, we expect to
find that the critical power can be depressed by
several orders of magnitude without much diffi-
culty.

portant. At larger f refraction effects, repre-
sented by the second term in Eq. (17) are more
important. The beam starts out initially with beam
radius f= 1 at z = 0. If a minimum in V,«exists in
the region 0 &f& 1, then focusing will occur. The
condition that there exist a minimum will corre-
spond to the existence of a critical power P for
self-focusing to occur. It is clear from Eq. (17)
that the critical power will now be dependent on the
magnetic field in some nontrivial fashion.

Before going on to discuss the numerical com-
putation of the various quantities it will be helpful
to derive analytic formulas for the low-field limit.
Thus we will utilize Eq. (14) and write the effective
potential as

&z, E,a &o~/uP 1
32 1 —(u,/(u afk

—-,''Q( )
(19)

The chief drawback of this approximation is that it
predicts the beam radius will shrink to zero when
self-focusing occurs. In reality the higher-order
terms in ~ cause a saturation effect which, when
combined with the diffraction effect, limits the ulti-
mate beam radius. Thus from Eqs. (18) and (19)
we predict a critical power corresponding to a cen-
tral field intensity

is essentially due to a quasirelativistic effect, a
measure of the nonlinearity of the system is pro-
vided by eE/m*uc~ = o.. In the presence of a mag-
netic field the electrons are moving along the cy-
clotron orbits. As the velocity of the electron is
bent in the opposite direction by the magnetic field,
the polarization of the incident light is also pointing
in the opposite direction. Thus the light can co-
herently accelerate the electron for many cycles.
In the steady state, the electron is driven at the
frequency of the incident radiation and its velocity
is finally 90' out of phase with the electrical force;
so the field stops doing work on the electrons. The
peak velocity is largely enhanced, however. The
chief limitation on the electron acceleration is the
collision time 7. For this reason we never allowed
&, to approach too closely to &.

Using the expressions and formalism derived in
previous sections, we now obtain results for a case
of practical interest. Our calculations are done
for the semiconductor InSb. ~ The relevant parame-
ters are m*= 60 m, where m, is the free-electron
mass, E,=0. 234 eV, and &~=16. This yields c*
=1.llx108 cm/sec, which is ~ the velocity of
light,

The radiation frequency was taken to correspond
to the COz laser, ~ = 1.742 x 10" rad/sec. The
plasma frequency was chosen to be such that ~2

= &u /103, corresponding to a carrier concentration
of n = 2. 55&& 10" cm . Under these conditions the
free-carrier absorption is very small, especially
if the experiment is performed around liquid-nitro-
gen temperature. Also, since co» &, one may ne-
glect cooperative plasma effects. For these pa-

099.

IV. RESULTS AND DISCUSSION
098

O.Q
O.Q

In the previous sections we derived an expression
for the nonlinear dielectric constant for a semicon-
ductor in a dc magnetic field. We found that a sub-
stantial enhancement of the nonlinear behavior is
possible when the cyclotron frequency is close to
the frequency of the incident radiation. This en-
hancement, coupled with the fact that even without
a magnetic field the nonlinear behavior is strong,
produces the largest nonlinear dielectric behavior
known.

The mechanism for the enhancement is simple.
In the absence of a magnetic field the electrons are
constantly accelerated to some peak velocity given
by eE/m*&u, where E is the electric field. The
electrons are then decelerated until they move with
this speed in the opposite direction. The process
repeats itself periodically. Since the nonlinearity
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FIG. 1. Nonlinear dielectric function as a function of
power parameter y for ~/+ =0, 0.3, 0.8.
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that for a strong magnetic field (e. g. , &u,/&a=0. 8),
the main effect of increasing the power y is to ver-
tically displace the potential curve. Since the fo-
cusing length is analogous to the time required to
go from a maximum orbit radius to a minimum
orbit radius, and this is unaffected by a vertical
translation of the potential curve, we can under-
stand the insensitivity of z& with y. The only rea-
son that we have to work with moderate powers,
instead of weak powers, in to overcome the atten-
uation effects.

In this paper we have shown that there is a reso-
nant enhancement of the self-focusing effect. This

resonance occurs between w and ~,. The chief
manifestation of this resonance is observed in
Figs. 3 and 4, where one sees a sharp initial vari-
ation of beam radius with propagation distance
when the magnetic field is present. It should be
noted that Q, is power dependent and, consequently,
a detuning from resonance can occur if the strength
of the beam gets considerable, as when the beam
focuses. In Fig. 6, we present g,/~ as a function
of &u,j+ for various values of y. At small inten-
sities, the two quantities are essentially the same,
as expected. At large y, however, there is a con-
siderable shift.
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