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The effective-mass approximation for shallow acceptor states in cubic semiconductors with degenerate

valence bands is reformulated. The Hamiltonian is written as the sum of a spherical term and a cubic
correction, thus pointing out the relevance of the spherical symmetry in the acceptor problem and the

strong similarity to the case of atoms with the spin-orbit interaction. Without the introduction of any

explicit representation of the Hamiltonian, the present formulation yields a meaningful classification of
the acceptor states and reduces the eigenvalue problem to simple radial Hamiltonians. These radial

Hamiltonians are explicitly given for the most improtant acceptor states and are shown to apply also to
the description of the exciton problem. The variational method is used in the numerical calculation.
The resulting eigenvalues, eigenfunctions, and related quantities are given as functions of the relevant

parameters. The theoretical ionization energies are compared with available experimental data.

I. INTRODUCTION

The optical and transport properties of semi-
conductors are strongly affected by the presence
of charged impurities, owing to the bound states
that such impurities produce in the forbidden ener-
gy gap. ' Depending on its valence being larger or
smaller than that of the host atom it replaces, the
impurity can act as a donor or acceptor, respec-
tively. In the former case, the extra electrons are
associated with the conduction-band minimum
whereas, in the latter, the missing electrons
(holes) are related to the valence-band maximum.

The relation between impurity states and band
structure has been studied by Kittel and Mitchell
and Luttinger and Kohn, ' within the limits of the
effective -mass approximation. The potential pro-
duced by charged impurities is long range. At
distances from the impurity site large compared to
the lattice constant, this potential is well described
by a Coulomb potential screened by the dielectric
constant of the host. At distances smaller than or
comparable to the lattice constant, the potential
strongly deviates from the Coulombic behavior be-
cause of the presence of the impurity core. Since
the wave functions of these bound states generally
extend over distances of many lattice constants,
the deviations affect only the ground state (central-
cell corrections).

Donors and acceptors have been most studied in
crystals with the diamond and zinc-blende lattice.
For these substances, it is well known' that the
band structure has a simple minimum in the con-
duction band and a degenerate maximum in the
valence band. Therefore donor states are easily
investigated ' whereas a complex analysis is re-
quired for acceptor states.

The first investigation of acceptors in Si and Ge
was done by Kohn and Schecter. Using the varia-
tional method, they calculated the energies of the
lowest four optical transitions in the acceptor
spectrum. Later Mendelson and James considered
again the acceptor spectrum of Ge using the same
variational approach but with more general trial
functions. Since then, Suzuki et al. ' and Mendel-
son and Schultz" have improved the previous varia-
tional calculations by including the split-off valence
band, whereas Sheka and Sheka' have included the
lowest conduction band in order to treat the case of
small-gap semiconductors.

All these calculations show that the effective-
mass approximation is satisfactory for excited
states whereas, for the ground state, one must
consider the chemical shift. These investigations,
which use a brute force variational approach, have
not helped in achieving a clear insight of the ac-
ceptor spectrum. In particular, these results do
not show explicitly the dependence of the acceptor
spectrum on the energy-band parameters and
therefore they cannot be generalized to any cubic
semiconductor. Furthermore, these calculations
are time consuming even when a small number of
trial wave functions is used; and the limited number
(i.e. , two) of angular momenta represented in the
trial functions has no justification but necessity.

Recently, we have given preliminary reports'
of a new approach to the acceptor problem which
has several advantages over the previous investi-
gations: The simple formulation of the problem and
the absence of any explicit representation of the
Hamiltonian make possible a clear insight and a
meaningful classification of the acceptor states.
Furthermore the new formulation suggests a new
set of parameters to describe the valence band,
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which allow us to tabulate results for any cubic
semiconductor. In order to achieve all these ad-
vantages we make use of the strong similarity be-
tween acceptor centers and atomic and nuclear sys-
tems. This similarity, which has not been fuQy
exploited so far, becomes apparent from the ac-
ceptor Hamiltonian if the terms which have strict
cubic symmetry are separated from the terms
which, besides having cubic symmetry, are also
spherically symmetric. Since the former terms
generally contribute much less to binding than the
latter terms, we can neglect the cubic contribution
in first approximation. In this way, we are left
with a spherical model of the acceptor center which
is strongly similar to atomic systems with the
spin-orbit interaction included. In this analogy,
different degenerate valence bands in the acceptor
case play the role of different spin states in the
atomic counterpart. Large profit can be obtained
from this similarity because we can use the theo-
rems and techniques of the angular momentum the-
ory which were very useful in the study of atomic
systems. The effect of the cubic term may then
be added as a perturbation of the spherical model.

The spherical model is presented in detail in
Sec. II. The radial Hamiltonians which describe
acceptor states of various symmetries are derived
in Sec. III in the limits of strong and weak spin-
orbit coupling. Section IV is devoted to the nu-
merical solution of these Hamiltonians. In this
section we give the results for the acceptor energy
levels, wave functions, mean radii, and probability
to be in the central cell (the latter quantity is use-
ful in the evaluation of central-cell corrections).
The admixture coefficients of different angular
momenta in the acceptor wave functions are also
given to show the effect of interband coupling in
this problem. Furthermore, the theoretical ener-
gy spectrum of acceptors is explicitly given for
several semiconductors and compared with avail-
able experimental data. In Sec. V we summarize
the main achievements of the present work and dis-
cuss possible extensions. For convenience, in the
Appendix we give the concepts and theorems of
angular momentum theory which are used in the
present paper.

II. SPHERICAL MODEL

In the present paper the acceptor center is
described with a Coulomb potential screened by the
static dielectric constant of the host crystal. Pre-
vious investigations "have shown that this ap-
proximation is satisfactory for excited states but
not for the ground state, whose binding energy is
affected by central-cell corrections due to the
impurity core. %'e feel, however, that accurate
solutions of the acceptor problem in the Coulomb
approximation are nevertheless of great interest

' ~bg, )(J.J,&+9,p.)P,J.}

where (ab)= (ah+ ha)/2; co and mo are the crystal
dielectric constant and the free electron mass,
respectively; y„y2, and y3 are the parameters
proposed by Luttinger for the description of the
hole dispersion relation near the center of the
Brillouin zone; p is the hole linear momentum
operator and J is the angular momentum operator
corresponding to spin 2. Hamiltonian (1) is valid
for crystals with the diamond structure and in the
limit of strong spin-orbit coupling, i.e. , when the
valence-band spin-orbit splitting & at the center
of the Brillouin zone is much larger than the ac-
ceptor binding energy. In the case of zinc-blende
crystals, terms linear in p should be added to
Hamiltonian (1) but, as we have already proved in
the case of exciton states, " the binding contribu-
tion due to these terms is very small and therefore
negligible.

The above Hamiltonian can be thought of as de-
scribing a particle with spin & in a Coulomb poten-
tial. The first term is the particle kinetic energy,
the second and third terms represent a kind of
"spin-orbit" interaction, and the last term is the
external potential. The strong analogy with atomic
systems is evident. In the study of Hamiltonian
(1) it is therefore convenient to use the same tech-
niques which have been successfully applied in the
theory of atomic spectra. To begin, let us intro-
duce the following second-rank Cartesian tensor
operators':

Pq~ = 3p) p~ —5]qp

and

Z~ = '(J,J +J J,) —5@J'—,

(2a)

(2b)

where the indices i, k=|, 2, 3 mean x, y, z, re-
spectively. These operators are symmetric ten-
sors

P,a = Pa, and Jqa = Ja

even for the ground state since they allow an esti-
mate of the magnitude of central-cell corrections.
Furthermore we will restrict ourselves to the
more common case of singly charged acceptors
because this is the case where central-cell effects
are less relevant. In fact, the larger the charge,
the more localized (and therefore sensitive to
chemical shifts) are the acceptor wave functions.
Assuming also that the acceptor kinetic energy is
well described in the effective-mass approxima-
tion, the acceptor Hamiltonian is'
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which have vanishing trace

P]a5,&=0 and &(a&pa=0,

the parameter

5 = (r, r-p)/r&, (6)

where we have used the Einstein convention on re-
peated indices. The convenience of introducing the
tensor operators P;~ and Z&~ is due to the fact that
the operators p and J appear in Hamiltonian (1) in
second order only. With the help of these tensor
operators, the acceptor Hamiltonian can be written
in compact form as follows:

ap=h t'py&/e mp
2 2 (10)

which measures the cubic contribution, i.e. , the
last term in (6). Furthermore we use the effective
Rydberg

Rp = e mp/2k t'py&

and the effective Bohr radius

yg g
e2 1

p — — [r, (r.-r.)-5„]J „J,.2m0 601' 9m0
(5) as units of energy and length, respectively, and

we write Hamiltonian (6) as follows:
The Cartesian tensors (2a) and (2b) are reducible
tensors of second rank and therefore they can be
decomposed into irreducible spherical tensors of
rank l =0, 1, and 2. Because of the symmetry
property (3) such decomposition does not contain
the l = 1 component. Since also the l =0 component
is absent because our tensors have vanishing trace,
we can write Hamiltonian (5) in terms of the sec-
ond-rank (f = 2) irreducible components P& ' and

J,' ' (q = —2, —1, 0, 1, 2) as follows:

y, pp
e' 3y, +2yp

( p(p& .J(p))
2mo ~0& 45mo

y' {[~"&x J&'&)&'&+-' v70[y "& x J&'&]&'&
18m 0

4 +5 0

+[p(2& x J(2)](4) ]. (6)

where we have used the definitions of scalar and
vector products of irreducible spherical tensor
operators which are given in the Appendix.

Expressions (1) and (6) are different but equiva-
lent ways of writing the same acceptor Hamiltonian.
The symmetry of our problem is obviously cubic
and according to symmetry considerations Lut-
tinger' wrote Hamiltonian (1) as the most general
expression in second order in p and with cubic
symmetry. Expression (6) is equivalent to (1) but
is written in terms of spherical tensors which are
irreducible representations of the full rotation
group and not of the cubic point group of the crys-
tal. This makes it possible to separate in (6) the
last term, which is strictly cubic, from the first
two, which, besides having cubic symmetry, are
also spherically invariant. This separation of the
acceptor Harniltonian into terms with spherical
and cubic symmetry is the foundation of the spheri-
cal model that we are going to present. The rear-
rangement of terms in (6) suggests a more con-
venient set of parameters for the description of the
acceptor problem. Together with y„we use the

parameter

&& = (6yp+ 4yp)/5»

which gives the strength of the spherical spin-
orbit interaction, i.e. , the second term in (6), and

ff...=(1/g')I p'-'V (~'" ~ J&")]—2/. , (12)

which has full rotational symmetry. The effects
of the cubic term will be studied in a future paper
as a perturbation on the solutions of (12).

The valence-band energy dispersion relation is
given in the spherical model by

E= —(r,/2m, )p' +& (J'&p& ~ J&p&),

where p= Sk is a c number. Considering that J is
the angular momentum operator corresponding to
spin p, we can solve (13) and find two parabolic
bands with curvature independent of the direction
of k,

(13)

E, = —(K'y, 2/m)p(1+y, )k . (14)

The dispersion relation (14) is represented in Fig.
1 for different values of p. . Note that the param-
eter p. has been defined in such a way that for p, = 1
one of the two bands becomes flat. Furthermore,
for values of &( larger than 1, the spherical model

&=~P'-- — u(J"" J'")9S'

5 {[g(2)x J(2)](4)1
gS'

+ —~qg[~& &x J& &]&4&+[g( &x J& &]&4&]. (11)

where the band structure of the host crystal is
characterized through the valence-band param-
eters p. and 6.

The values of the parameters p, and 6 for 13
crystals with the diamond and zinc-blende struc-
ture are listed in Table I together with the Luttin-
ger valence-band parameters y„y„and y, and the
values of the dielectric constant c0. From these
values it is evident that, with the only exception
of Si for which &&/5 =2, the parameter 5 is much
smaller than the parameter p, , and therefore the
cubic term in Hamiltonian (11)will contribute little
to the binding energy. " In the present paper we
will completely neglect the cubic term in (11) and
we will study the acceptor problem in the spherical
approximation which is described by the following
Hamiltonian:
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TABLE I. Values of the static dielectric constant &0 and of the valence- band parameters
ff +2 and p3 used in the present calculation. The valence-band parameters p and h intro-
duced in the present paper in connection with the spherical model are also given together
with the energy and length units Ro and ao, respectively.

&
a Ro (meV) ao(A)

Si
Ge
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
ZnTe
CdTe

11.40
15.36b

12.0
10, 754
12.56'
15 Vc

12.4
14.6~

17 9
1h

9 1h

10, 1h

9.7"

4. 22
13.35
4. 15
4. 20
V. 65

11.80
6.28

19.67
35. 08
2. 54
3.77
3.74
5.29

0. 39
4. 25
1.01
0. 98
2, 41
4. 03
2. 08
8. 37
15.64
0. 75
1.24
1.07
l. 89

1.44
5. 69
1.75
1,66
3.28
5. 26
2. 76
9.29
16.91
1.09
1.67
1.64
2.46

0.483
0, 766
0. 701
0. 661
0. 767
0. 808
0. 792
0. 907
0. 935
0. 751
0. 795
0. 755
0. 844

0.249
0, 108
0, 178
0, 162
0, 114
0. 104
0. 108
0. 047
0. 036
0. 134
0. 114
0. 152
0.108

24. 8
4. 3

22. 8
28. 0
11.3
4. 7

14.1
3.2
1.2

81.6
43.6
35. 7
27. 3

25. 5
108.5
26. 4
23, 9
50. 8
98. 0
41.2

152.0
332. 3
10.9
18.2
20. 0
27. 2

~For valence-band parameters see P. Lawaetz, Phys. Rev. B 4, 3460 (1971).
"R. A. Faulkner, Phys. Rev. 184, 713 (1969).
'M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).
~L. Patrick and P. J. Dean, Phys. Rev. 188, 1254 (1969).
'G. E. Stillman, D. M. Larsen, C. M. Wolfe, and R. C. Brandt, Solid State Commun.

9, 2245 (1971).
C. Hilsum, S. Fray, and C. Smith, Solid State Commun. 7, 1057 (1969).
%. G. Lorimor and W. G. Spitzer, J. Appl. Phys. 36, 1841 (1965).
"D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129, 1009 (1963).

p.=0.5

FIG. 1. Energy dispersion relation for the top four
valence bands near the center of the Brillouin zone as
described by the spherical model. Each band is doubly
degenerate. Note that for @=1 one valence band becomes
flat and that for p &1 the spherical model describes the
inverted-valence-band structure.

describes the dispersion relation characteristic
of narrow-gap semiconductors like n-Sn and the
mercury compounds. The more general dispersion
relation corresponding to Hamiltonian (1) and in-
cluding also the cubic contributions is easily shown
to be

E,'= —(I y, /2me)(k +[(p, —y5) k

+~& 5(5p —5)(k„k, +k,k,'+k, k„)j' ), (15)

which for 5=0 reduces to (14). The effects of the
approximations involved in the spherical model,
i.e. , of replacing the dispersion relation (15) with
the more simple expression (14), are shown in
Fig. 2 for Ge, which represents a typical case as
can be seen from the values given in Table I. Ac-
cording to the dispersion relation (15}the curva-
ture of the two parabolic bands depends on the
direction of k. From Fig. 2 we see, however, that
such dependence is quite small for common values
of 6, and this is the reason of the soundness of the
spherical model.

The spherical-model Hamiltonian (12}is valid
in the limit of strong spin-orbit coupling between
the valence bands. %e also wish to study the op-
posite limiting case, i. e. , the case of vanishing
spin-orbit coupling. Even though this latter case
occurs less frequently than the former, neverthe-
less its study will be useful in estimating the effect
of the spin-orbit interaction on the acceptor binding
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H.',.=(1/g')[P'--'~(I &" ~ I"&)]—2/. . (19)

Before analyzing the spherical-model Hamil-
tonians (12) and (19), we wish to discuss analogies
and differences between the acceptor problem and
the direct exciton problem in crystals with the dia-
mond and zinc -blende structure. The Hamiltonian
which describes the relative electron-hole motion
of direct excitons ' is

+-'~VO [P" xI'")" +[I"xI" ]"] (16)

which is completely analogous to (11). It is evi-
dent that also in this case we can apply the spheri-
cal approximation, since the relative strength of
the cubic term is similar in (11) and (18). The
spherical-model acceptor Hamiltonian in the limit
of vanishing spin-orbit interaction can therefore
be written as follows:

H„=H+P /2m„ (20)

90 — ———— &11 1 &

SPHERICAL MODEL

100

FIG. 2. Actual energy dispersion relation for the
valence bands of Ge near the center of the Brillouin zone
and along the main symmetry directions b, , E, and A.
The deviations between the real valence bands and those
predicted by the spherical model (also shown) are pro-
duced by the cubic term.

energy. Neglecting spin and the spin-orbit inter-
action, the valence band is threefold degenerate at
the center of the Brillouin zone and the acceptor
Hamiltonian corresponding to (1) is'

sy
(y + 4y )

P y2 (P2I2 +P2I2 +P2I2 )
iSQ Q

' [{p„p„){I,I„)+{pp, ){I,I,)

+{p,p„){I,I.)I], (16)

which is very similar to (1) except for numerical
constants and the fact that the operator 4 is re-
placed by I, the angular momentum operator cor-
responding to spin 1. We define in analogy with
(2b) the Cartesian tensor

I(2 = 2 (I(I2+I2I() —6(2 I
which has the same properties (2) and (4) of the
tensor J&~. Using the second-rank irreducible com-
ponents I', ' ((I = —2, —1, 0, 1, 2) of the tensor (17)
and using the units (9) and (10) we can write Hamil-
tonian (16) as follows:

H'=~p2 —,((P&2& I&'&)
3k

6 {[I&&2&xI&2&] &(&1
382 4

where H is the acceptor Hamiltonian and m, is the
electron effective mass at the center of the Bril-
louin zone. Since the second term on the right-
hand side of (20) is easily included into the acceptor
Hamiltonian H by substituting the parameter y,
with y', =y, + m, /m„we see that the acceptor and
the exciton Hamiltonians are formaQy similar.
One would be tempted, therefore, to solve the ac-
ceptor problem following the same lines used for
the exciton problem. ' Experimental data, how-
ever, show that the two kinds of energy spectra
are completely different in that the exciton spec-
trum resembles very closely that of the hydrogen
atom whereas the acceptor spectrum is completely
different. The solution of this puzzle is evident
after writing Hamiltonian (20) in a dimensionless
form analogous to (11). Using the units (9) and

(10), where y, is replaced by y,', we obtain for the
exciton Hamiltonian

II =~p -- — (2(((I' 'J )
2 2 1 (2 (2)

gS'

+ c(6 {[I&2& xv&2&] &'&1
4

+-,' ~Z0[J&&2& xZ&'&] &'& +[I &'& xi&2&] &(4&), (21)

which is exactly equal to the acceptor Hamiltonian
(11)except for the fact that both the' spherical and
the cubic spin-orbit contributions are scaled by a
factor a =y, /y', =y, /(y, +m&&/m, ) whose value is
typically of the order 0. 3, as shown in Table II.

Even though the exciton and the acceptor spectra
are described by the same formal Hamiltonian, the
two cases differ considerably because of the differ-
ent strength of the spin-orbit terms. While in the
exciton case these terms can be adequately treated
by using perturbation theory, a more sophisticated
treatment is necessary for the acceptor spectrum.
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TABLE II. Values of the scaling parameter 0(, which
describes the strength ratio of the "spin-orbit" terms in
the exciton and in the acceptor Hamiltonians. The scal-
ing parameter is calculated using the values of pq given
in Table I and the electron masses quoted in Ref. 15.

Ge
AlSb
GaP
GaAs
GaSb
InP

0. 34
0. 04
0. 35
0. 34
0.36
0. 32

InAs
InSb
ZnS
ZnSe
ZnTe
CdTe

0.32
0.34
0. 50
0.49
0.25
0. 34

In Sec. IV we will show that the scaling parameter
n =0. 3 is indeed responsible for the big differences
between acceptor and exciton spectra.

III. ANALYSIS OF SPHERICAL-MODEL HAMILTONIAN

&(p =0) = —1jn' (23)

when the energy unit (9) has been used and n is the
usual hydrogenic principal quantum number. The
eigenstates can be classified according to n =1, 2,
3, ..., and to the values of the orbital angular
momentum L and its component in any given direc-
tion, which we will assume to be the z direction.

For p. &0 we have to consider the "spin*' oper-
ator S and the spin-orbit term (22). The acceptor
Hamiltonians (12) and (19) are spherically sym-
metric in the coupled orbital and spin spaces and
the total angular momentum F = L+0 is a constant
of the motion. Accordingly the acceptor states can
be classified following the L-S coupling scheme
used for atomic systems. Since for practical pur-
poses the only important acceptor states are those
with L = 0 and L = 1, in what follows we will limit
our consideration to them. Furthermore since the
L-S coupling scheme depends on the particular
value of S, we will distinguish the two cases of
strong and weak spin-orbit coupling.

In this section we present a qualitative study of
the spherical-model Hamiltonians (12) and (19)
which are valid in the limits of strong and weak
spin-orbit coupling, respectively. These HamQ-
tonians can be thought of as describing an hydrogen
atom perturbed by a spherical term

&+(P&2), S(z) )

which can be considered as a kind of "spin-orbit"
interaction when the spin operator S assumes the
values ~ and 1 in the limits of large and small spin-
orbit splitting &, respectively. For p. =0, Hamil-
tonians (12) and (19) become identical to each other
and to the hydrogen-atom Hamiltonian and there-
fore can be solved exactly. For this case the ac-
ceptor energy spectrum is given by

A. Strong Spin-Orbit Coupling

C(P„,)=f,(r)iL=1, J= —.', F=—.', F,),

(Pe/a) f2(y)l L=l J=& F= & E )

(24b)

+@~(r) IL =3, J= &, E= ~, F,), (24c)

@(P,p) =f,(r) i
L = 1, J= g, F = —',, F,)

+g,(r)IL=3, J=&, E= —,', E,), (24d)

where the functions IL, J; E, E,) are eigenfunc-
tions of the total angular momentum in the L~
coupled scheme and f,(r) and g, (r) are general
radial functions which are defined by the condition
that the functions (24) must be eigenfunctions of the
Hamiltonian (12). To calculate the matrix element
of the acceptor Hamiltonian between the functions
(24), we use the "reduced-matrix-element" tech-
nique, which for our purposes can be written

(L', J, F, M~(P ' ~ J' ")~L, J, E, M)

which expresses the matrix element of the spin-
orbit term (22) as a function of a 6-j symbol'8 and
of the reduced matrix elements (J I I J' '

I I J') and
(L'I IP' '

I IL) which are explicitly calculated in the
Appendix. The matrix element of the hydrogenlike
term that appears in (12) is calculated very simply
and ls

(L', J, F, M~-rP'-- ~L, J, F, M&

= -—r —r' —+, -- 3„,. (26)
1 d, d L(L+1) 2 I' '

As a result we obtain that the radial wave Axnctions

f, (v) and g, (r) must be solutions of the following
systems of differential equations:

ln this case Hamiltonian (12) is valid and the
total angular momentum is F = L+J. Vfhile the
hydrogenic nS states give rise only to nS3& states
(the numerical lower index representing the value
of F), the hydrogenic nP states split into nP, &„

F3&, and nP»&. Furthermore the spin-orbit term
in Hamiltonian (12}couples only hydrogenic states
for which L1L =0, +2. This selection rule, together
with the fact that E is a constant of motion, defines
the most general expression for the eigenfunctions
of the acceptor Hamiltonian. For the most impor-
tant acceptor states the most general wave func-
tions can be written as

@(SS/2) ~fo(r) IL = o J= p, F= ~, F )

+go(x) ~IL=2, J=g, E=g, E,), (24a}
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d 2 d 2 d 5 d 3
2+ - —+ —-~ - ~ 2+-—+~ fo(r)dy' r dr r dr2 y dy r

=0, (27a)

dr r dr
d 2 d 6 2, + ——-~+ — E-go(r)dy' r dy y y

dz 2 d 2 2
(1+V) a+- —-~ +- -~ f|(r)=0drz r dy r y (27b)

d' 2d 2 2(1-fu) 3+——-~ +- -E
drz r dr y r

d 3 d 3-5P
d

z- (1+-,'p), +——-~ + —-Z g,(r)
d2 2 d 12 2

dh r dr r

=0, (27c)

dz 2 d 2 2(1+ sp) ~ + ——— r+——-Edr' r dr r r

—5 &6/, z — +~

d 7 d 8—5W6P. z + +~dr' r dr r

d 2 d 12 2(1-ku) + ——-~ +—-& gs(r)dr r dr r r

=0, (27d)

which are valid for the states Ss&, P,I2, P3/zy and

P5&z, respectively. The differential equation for
P«, states (27b} can be solved exactly because it
is similar to a hydrogenlike radial equation for p
states, and we find that its eigenvalues are

1
E(nP, p) =(, (n = 2, 3, .. .) .(1+p, )n

(28)

Exact solutions of the Hamiltonians for the Sz&z,

P3/z and P,& states have not been found. Approxi-
mate solutions of these Hamiltonians obtained using
the variational method wiQ be discussed in Sec. IV.

B. Weak Spin-Orbit Couphng

The acceptor Hamiltonian valid in this limit is
(19) and the total angular momentum F=L+I is
again a constant of motion. Also in this case the
spin-orbit term couples only hydrogenic states for
which &L = 0, +2. In the L-I coupling scheme the
hydrogenic nS states give rise only to nS& states,

4(P~) =F,(r) ~L= 1, I=1, F =0, F,),
I'(P,) =F,(r)

~

L = 1, I= 1, F = 1, F,),
(29b)

(29c)

@(P ) =F,(r)
~

L = 1, I= 1, F = 2, F,),
+ G3(r)

~

L = 3, I= 1, E = 2, E,) . (29d}

The matrix elements of the acceptor Hamiltonian
(19) between the above functions can be calculated
using expressions (25) and (26). The values of the
reduced matrix elements appropriate for this case
are given in the Appendix. As a result we find the
following systems of differential equations for the
radial wave functions F,(r) and G,(r):

while the hydrogenic nP states split into nPD, nP„
and nPz. The most general functions describing
these states are

4(S,) =F~(r) ~L=0, I= 1, F =1, F,)
+G~(r) ~L=2, I= 1, E=1, F,), (29a)

d 2 d 2
z+ ——+—-E

dkz ydr y
d 5 d 3v2p z+ +dr r dr Fo(r)

=0, (30a)

d 1 d d 2 d 6 2—W2p, , ——— (1+p, ) z+ ——-~ +— EGD(r)-r dh r dr r r

d 2 d 2 2(1+2') 3+——-r +—-E F,(r)=0,
dy r dy r (30b)

dz 2 d 2 2
(1 —p), + ——-~ + —-E F,(r)=0,dr r dr (30c)
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d' 2d 2 2(1+5') a+- —-~ +--E d 7 d 8
gW6p, g+ +~dr' ~ dr

d 12 2(1+-V) s+- —-~ +- -E Gs(r)dy' y dy y y

=0 (30d)

which apply to the states Si, Po, Pi, and P~, re-
spectively. The differential equations (30b) for the

Pa states and (30c) for the P, states are similar to
hydrogenlike radial Hamiltonians for p states and
can be solved exactly. The corresponding eigen-
values are

and

1
E(sPO)= a (s=2, 3, ...)1+2' s (31)

E(nP,)=(, (n=2, 3, ~ ~ .).1

Approximate variational solutions to the Hamil-
tonians for the Si and P2 states will be discussed
in Sec. IV.

IV. METHOD OF SOLUTION AND RESULTS

go(r) =r 5B,e (33b)

The same trial wave functions have also been used
for the variational solution of the S, radial Hamil-
tonian (30a). Similarly, the trial wave functions
used for the P,~ state,

f,(r) =r 5 C,e ™& (34a}

gs(r) = r Zi D, e "", (34b)

have also been used to approximate the radial part
of the P«, and P& eigenfunctions. While the linear

Exact solutions for the eigenvalues and the eigen-
functions of the radial acceptor Hamiltonians (27)
and (30) are in general very hard to obtain. Only
for the P,&, Po and P, states can an exact solution
be obtained since, in these cases, the Hamiltonian
reduces to that of the hydrogen atom for p states.
For the other states, we have solved each Hamil-
tonian using the variational technique. We have
assumed as trial wave functions, superpositions of
Gaussian functions times the lowest possible poly-
nomials which behave correctly at the origin.
For the S,&, state we have used

fo(r) = RA, e '& (33a)
fbi

and

TABLE III. Acceptor energy spectrum as function of
the parameter p in the strong spin-orbit limit 4, = ~).
The energies are in units of the effective Rydberg Ro.

0. 00
0. 05
0. 10
0. 15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0. 55
0.60
0.65
0. 70
0.75
0. 80
0. 85
0, 90
0, 95
1.00

1SS]'2

l. 000
1.002
l. 009
1.021
1.037
1.060
1.089
1.125
1, 171
1.228
1.299
1.388
1.503
1.653
1.857
2. 145
2. 580
3.309
4, 768
9.145

2$3]2

0. 250
0.251
0.254
0.258
0.264
0.273
0.284
0.297
0. 313
0, 333
0. 358
0.388
0.426
0.476
0. 542
0.635
0.773
1.003
1.460
2. 820

2Pi(2

0.250
0.238
0.227
0.217
0.208
0.200
0. 192
0. 185
0. 179
0, 172
0, 167
0.161
0.156
0. 152
0. 147
0.143
0. 139
0.135
0. 132
0. 128
0. 125

2P3(2

0, 250
0, 261
0.273
0, 287
0. 302
0.320
0. 341
0. 365
0. 394
0.428
0.468
0. 518
0. 580
0. 660
0. 767
0. 917
1.142
1.518
2. 268
4. 521

2P5) 2

0.250
0.248
0.248
0.249
0, 251
0.256
0.262
0.270
0.281
0, 295
0.322
0. 336
0.366
0.406
0.461
0, 539
0.657
0.857
1.259
2.470

parameters A.„B„C„andD, were used as varia-
tional parameters in order to minimize the energy,
the same constant set of values for the 21 param-
eters e, was used throughout the calculations.
These parameters have been chosen in geometrical
progression (a„,=go.„with g independent of i}and
their range of values is wide enough to cover all
actual situations met in studying the acceptor
spectrum, the smallest value being 0., = 1&&10 and
the largest ez, = 5&10'. For example, with this
set of Gaussian functions, the lowest-energy eigen-
values of the hydrogen atom for s and P symmetries
are E(ls) =1.00000, E(2s)=0. 24999, E(2P)
=0.25000, and E(3p) =0. 10889, in units of Ro.

The energies of the lowest acceptor states of
interest are tabulated as a function of p. in Tables
III and IV for the cases of strong and weak spin-
orbit interaction, respectively. The energy spec-
trum for the more relevant case of strong spin-
orbit coupling is also given in Fig. 3. These re-
sults represent the first extensive theoretical in-
vestigation of the acceptor energy spectrum as
function of the valence-band parameters. An in-
teresting feature of these two energy spectra is the
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0. 00
0. 05
0. 10
0. 15
0.20
0.25
0.30
0. 35
0.40
0.45
0. 50
0. 55
0.60
0.65
0.70
0. 75
0. 80
0. 85
0. 90
0. 95
1.00

1.000
l. 004
1.017
1.037
1.064
1.100
1.145
1.201
l.268
1.351
1.453
1.580
1.742
1.952
2. 234
2. 631
3.228
4. 227
6.224

12.213

2Pp

0. 250
0. 227
0.208
0. 192
0. 179
0. 167
0. 156
0. 147
0. 139
0, 132
0. 125
0.119
0.114
0. 109
0. 104
0. 100
0. 096
0. 093
0.089
0. 086
0. 083

2P,

0. 250
0, 263
0.278
0.294
0. 313
0. 333
0.357
0. 384
0.417
0.455
0. 500
0. 556
0.625
0. 714
0.833
1.000
1.250
1.667
2. 500
5. 000

2P2

0. 250
0.249
0.251
0.255
0. 261
0.269
0.281
0.295
0.312
0, 333
0, 360
0. 393
0. 435
0.490
0. 565
0. 669
0. 827
1, 091
1.619
3.207

diverging binding energy of a few levels (and the
ground state among them} when it approaches 1.
This behavior is consistent with the valence-band

TABLE IV. Acceptor energy spectrum as function of
the parameter p, in the weak spin-orbit limit Q, = 0). The
energies are in units of the effective Rydberg Rp.

dispersion relation (14), which shows that for It =1
one valence band becomes flat and therefore gives
rise to infinite binding energy in a Coulomb poten-
tial. The same is also valid in the case of weak
spin-orbit coupling. Not all levels however have
diverging binding energy for p, = 1. These levels
(P», and Pe), which have finite binding energy at
p. = 1, are associated with those valence bands that
maintain their parabolic behavior at p, = 1 and
therefore do not give rise to any extreme localiza-
tion. These two classes of acceptor states have
different behavior not only for p, approaching 1 but
also over the entire range of p. . In fact divergent
levels have increasing binding energy for increas-
ing p, while the opposite behavior is valid for non-
divergent levels.

When p, increases, we observe not only an in-
crease in binding energy but also a localization of
the wave function. This is evident from Fig. 4,
where the radial functions fe(v) and gs(r} of the
ground state 1S3/p are shown for different values of

A measure of the localization of the wave func-
tions is given by the expectation value (r}over the
various acceptor states. This quantity is shown in
Fig. 5. As expected, all states become more
localized when p. increases, with the only excep-
tion the state P, /2, which shows the opposite be-
havior. From the ground-state radial functions

5

10

CA

w
CQ
Ch

CL

LLI

LIJ
U
U
LIJ

C9
CL
UJ

UJ

C9

CI
Z',

K

1 1 S3/2
2- 2S3/2

0 I I i I & I i I

0 0.2 0.4 0.6 08 1

I I ~a~ ~0

IL =0.8
0.8 - / L

g (l)

02' =o4 F 0

0 0.4 0.8 1.2 1.6 2

r(EFFECTIVE BOHR RADII)

FIG. 3. Calculated acceptor energy spectrum as a
function of p, in the strong spin-orbit coupling limit Q,
= ~). The cubic term has been neglected (5 = 0). The
energies are in units of the effective Rydberg Rp.

FIG. 4. Radial wave functions fp(r) and gp(r) of the ac-
ceptor ground state for different values of p. Note the
increase in localization and the increase in the gp com-
ponent as p increases. The functions are normalized
in such a way that fo [ I f0 I + Igo I ]r dr= 1 and are given
in units of ap 2, ap being the effective Bohr radius.
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0.4— 0.6

0.6— 0.4

O
0.8— 0.2

IJL0
O
UJ
U
U
4J
A
a

V

02 0.4 0.6 08

FIG. 5. Expectation value of r for various acceptor
stateas afunction of p. While (r) increases with p for
the state I' f,~2, all other states become more localized as
pincreasesand have (r)=0 for p, =1.

given in Fig. 4 we see that localization is not the
only effect occurring for increasing p, . The ad-
mixture of different orbital angular momenta also
changes appreciably with p, . The change with p, of
the admixture probabilities is shown in Fig. 6 for
the various acceptor states.

A quantity of interest when estimating central-
cell corrections is the probability of finding the
trapped hole at the impurity site. This probability
is given in Table V as a function of p, for the two
lowest states that do not vanish at the origin, i.e. ,
1S3p and 283&&. The result that these probabilities
increase with p, is rather obvious and is a direct
consequence of the localization effect previously
mentioned. However, the ratio of the two proba-
bilities for the same value of p, is surprisingly
nearly constant over the complete range of p, and
very close to its hydrogenic value of 8. An esti-
mate of the importance of central-cell corrections
can also be obtained from Table VI, where we give
the theoretical acceytor spectra in the spherical
approximation together with available experimental
values of the acceptor ionization energies. We
note that the comparison between theory and ex-
periment is somewhat doubtful for those crystals,
like Si and GaP, where the strength of the cubic
term in the acceptor Hamiltonian is relatively
high. Furthermore we wish to mention that the
spherical-model acceptor spectra in Si and Ge are
in satisfactory agreement with previous theoretical

0 0.2 0.4 0.6 0.8
0

1

FIG. 6. Admixture coefficients of different orbital
angular momenta as function of p for the acceptor states
studied in the present paper. The left scale refers to
the lower orbital angular momentum (f& functions) and
the right scale refers to the higher orbital angular mo-
mentum (g& functions). The g components increase with
p as is also shown for the ground state in Fig. 4. The
state 2P&~2 is not shown because it has only a single or-
bital angular momentum component.

TABLE V. Probability of finding the acceptor hole at
the impurity site as a function of the valence-band parame-
ter p for the states 1$3~2 and 2$3~2 in the strong spin-
orbit coupling limit. This probability can be used to es-
timate central-cell corrections and is given in units of
(4mao), ao being the effective Bohr radius.

0. 0
0. 1
0. 2
0. 3
0.4
0. 5

1$3

4. 00
4. 12
4. 52
5.30
6. 74
9.46

2$3(2

0. 50
0. 51
0. 56
0.66
0. 84
l. 20

0, 6
0. 7
0.8
0. 9
l. 0

1$

15, 2
30. 0
85. 2

576. 6

2$3) 2

1, 9
3.9

11.3
77. 7

energy spectra.
Up to now we have considered the acceptor ener-

gy spectrum in the two extreme limits of strong
(Z=~) and weak (Z=0) spin-orbit coupling, when
& is the spin-orbit splitting in the valence bands at
the center of the Brillouin zone measured in units
of the effective Rydberg, Eq. (9). While in most
cases considered in Table VI the acceptor binding
energy is much smaller than the spin-orbit splitting
and therefore the result for 4 =~ are a reasonable
approximation, in some cases it may be necessary
to evaluate the acceptor energy spectrum for finite
values of 4. Under these circumstances the ac-
ceptor Hamiltonian becomes a 6X6 matrix operator
and its solution is rather intricate. An approxi-
mate way to obtain the effects of a finite value of
~ is to interpolate between the values obtained
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TABLE VI. Theoretical energy spectrum of acceptor
impurities in the strong spin-orbit coupling limit as pre-
dicted by the spherical model using the parameters given
in Table I. Experimental ionization energies are also
given. The symbols in parentheses refer to the kind of
impurity and the energy unit is meV.

Si
Ge
A1Sb
GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
ZnTe
CdTe

S,(expt. )

68. 9'(Al)
10.8~(Ga)
33' (7)
64. 0~(Zn)
31.0'(Zn)

i3 =15'(Sn)
56. 3~(cd)

10" (Cd)

114' (Li

1$3/2 2$3/2 2Pf /2 2P3/2 2Pg/2

31.6
9.8

42, 4
47. 5
25. 6
12.5
35.2
16.6
8.6

175.6
110.1
77. 7
87.4

8. 6
2, 9

12.4
13.7
7.6
3.8

10.5
5. 1
2. 7

52. 0
33, 0
23, 0
26. 5

4.2
0.6
3.3
4.2
1.6
0.65
2. 0
0.4
0.2

11.7
6.1
5.1
3.7

11.2
4. 2

17.5
19.1
11.1
5.6

15.5
7. 9
4. 2

75. 1
48. 6
33.4
39.9

7, 6
2. 5

10.5
11.7
6. 5
3.2
8. 9
4.4
2. 3

44. 1
28, 0
19.6
22. 6
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for 4 = 0 and for & =~. For the state 183/3 and

2S3/2 such interpolation can be conveniently done
with the functions S,(d ) and $2(Z), respectively,
which we have defined in our investigation of the
exciton energy spectrum. " The functions $,(Z)
and $2(Z) are the exact interpolating functions for
the case in which the terms in p. , 6, and & can be
handled in perturbation theory, and therefore we
expect them to be a reasonable approximation even
in our case. The effect of finite 4 is particularly
significant in the case of Si. In this case the in-
terpolation to finite 4 for the state 1S3/2 is shown
in Fig. 7. We see that even in the case of Si this
effect is relatively small, and therefore we believe
that the approximate interpolation scheme here
proposed is accurate enough for most practical
purposes.

Having studied the energy spectrum of Hamil-
tonian (12) for all positive values of p ~ 1, we are
now in a better position to discuss analogies and

We have studied the problem of shallow acceptor
states in semiconductors using a spherical model
in which the generally small cubic terms that ap-
pear in the acceptor Hamiltonian are completely
neglected. The model gives a reasonably good ap-
proximation to the acceptor energy spectra in most
semiconductors and reduces the formidable ac-
ceptor Hamiltonian to simple radial differential
equations which have been solved with the varia-
tional technique. Though the model, as it is, is

37—

F 35
SI tS 3yP

z 33
LLI

3I I

4
I

6 IO

FIG. 7. Variation of the ground-state ionization energy
in Si with the valence-band spin-orbit splitting 6 {in
units of the effective Bydberg Ro). The ionization energy
for intermediate values of 6 has been obtained by inter-
polating between the limits of strong and weak spin-
orbit coupling with the function appropriate for the ground
state of the exciton. The arrow corresponds to the ac-
tual value of b, in Si and gives an ionization energy of
33.7 meV. The horizontal mark on the right side «r-
responds to the ionization energy for b, = ~, which is
31.6 meV.

differences between the acceptor problem and the
direct exciton problem. We have already seen that
the two systems are described by the same Hamil-
tonian, the only difference being in the strength of
the "spin-orbit" terms which for the exciton case
are scaled by a factor at =0.3. This means that the
strength of the "spin-orbit" terms is p =0. 7 for
acceptors and p, '=n p. =0.2 for excitons. These
two values of p, correspond to completely different
regions as is shown in Fig. 8. In the exciton
regime (small p, ) the spin-orbit terms can be
treated using perturbation theory and the energy
spectrum deviates only slightly from that of the
hydrogen atom. In the acceptor regime (p close
to 1) the spin-orbit terms produce such an extreme
localization of the acceptor wave functions that the
energy spectrum has no resemblance at all with
that of the hydrogen atom. This effect is due to
the fact that one of the valence bands becomes flat
in the limit p. -1.

V. CONCLUSIONS
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FIG. 8. Exciton problem and acceptor problem are
described by the same formal Hamiltonian but have com-
pletely different energy spectra. The figure shows the
appropriate range of p values for excitons and acceptors.
While for excitons the effect of p can be treated by per-
turbation theory and the energy spectrum is nearly hydro-
genic, the situation is completely different for acceptors.

generally satisfactory, various improvements can
be made to it. First of all, the cubic terms which
are responsible for energy shifts and splittings in
the energy spectrum can be included. " This im-
provement is presently under investigation and
will be the subject of a future publication. ' Ac-
ceptor energy spectra accurate to 10 eV will
also require a more accurate treatment of the ef-
fects of the finite value of the spin-orbit splitting
than the approximate interpolation technique pro-
posed in the present paper. Finally, in the case of
zinc-blende crystals, one should also consider the
corrections to the binding energy produced by the
terms which are linear in the hole momentum. The
effects of these terms, which we have neglected,
can be studied in the framework of the spherical
model.

The problem of acceptor states also requires a
detailed study ot the acceptor potential. In the
present paper we have studied the problem using a
screened Coulomb potential and we have neglected
short-range potentials which are due to the impurity
core and which are responsible for the chemical
shifts of the acceptor energy levels. A step for-
ward in the understanding of the short-range corn

In this Appendix we briefly review the results of
angular momentum theory which have been used in
the present study of the acceptor Hamiltonian.
These results will be given without proof, which
can be found, for example, in the book by Ed-
monds. "

A given Cartesian tensor of second rank T&,
where i, k= 1, 2, 3 means x, y, and z, respectively,
can always be reduced to irreducible spherical
tensors of rank 0, 1, and 2 as follows:

To ' --Tn+ Tg2+ T~~ (rank 0), (Al)

and

~o = &j.2 —~a&
(rank 1),&i"='(1&~2)~T23 32+i(T31 ~13)

(A2)

+~i =+(Tis+iTas)

T,~' = 2(T~, —T22 + 2aTu)

(rank 2), (A3)

where the quantization axis has been assumed to
be the z axis or 3 axis. From the above defini-
tions, it is evident that our tensors P,~, J,~, and
I,~, which are symmetric tensors with vanishing
trace, can be decomposed only into irreducible
spherical tensors of rank 2 according to formulas
(AS).

Two spherical tensors of rank k, and k2 can be
coupled to form other spherical tensors whose rank
k is limited by the condition I k& —k21~ k~ (k~+ kz).
The resulting spherical tensors are defined as

[T +1 )(V 2 ] = (—1)~1 ~2++(2k~ I)1/2

kg kg k
g(kj) U(kg)

~1' ~2 1 2 a1 e2
(A4)

The values of the 3-j symbol (~&~2 ', ) have been
tabulated by Rotenberg et al. for the lowest values
of the parameters. A. special case of the product
(A4) is obtained when k, = kz and k=0. This special

ponentof the impurity potentials has recently been
taken by Baldereschi and Hopfield' in connection
with the problem of isoelectronic traps, but much
work has still to be done in this direction.

Furthermore we wish to mention that the spheri-
cal model is an excellent starting point for the
study of the effects on the acceptor spectrum due
to external perturbations such as magnetic fields
and strain fields. Since external perturbations are
a powerful tool for the experimental investigation
of acceptor states only when a detailed theoretical
treatment of their effects is available, work must
be done also in this direction and the spherical
model will be of valuable help.

APPENDIX
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case is the scalar product between tensors and is
defined as

(T(a& .U(») Q ( 1)eZ(A)U&a& (A5)

Products of tensor operators have been used in
the present paper to write the acceptor Hamiltonians
in more convenient form. In this respect, the fol-
lowing reduction formulas will be useful:

(P2J2 +P2J2 +P2 J2 )
)

P2JR + ~(P(2&, J(R))

+~ ([P(2) &(J(2)](4&

y) ~pp[P&»x J&2)]&&&+[P&&&x J(2&)(4) ) (A6)

and

Q.p,)(JJ,}+1p,p.)[JJ.]+(p.p. ](J.J.]
$(P(2), J(2&) $ ([p(2& x J(2) ](4&

+ —,
' J f0[P& & x J&»]&4& p[P& & +J&» ]&4& ] (A f)

where (ab}= (ah+ ba)/2. Expressions (A6) and (A7)
remain valid if the spin operator J' is replaced by
I.

Finally the matrix elements of the scalar product
(P'" J"') between eigenstates of the total angular
momentum F = L+J are easily evaluated using the
"reduced-matrix-element" technique, expression

(25), which expresses the matrix element
(L', J, F, Ml(P' ' ~ J ')IL, J, F, M) in terms of a
6-j symbol and of the reduced matrix elements
(J'

I I
J'2'

l I J') and (L'I IP'"
I IL). The values of the

6-j symbols can be found in the book by Rotenberg
et al. The reduced matrix elements are given by

2 +1 d L —1
A8

(LIIP&»IIL) J3g2 (2 + )('L+2} "
(2L —1}(2L+ 3}

d 2 d L(L+1)
dr2'y dr r2

(l. 1& $~/pl i
/ /

j&
~ I. (2L 2&( K+24& )'

2L+ 3

d 2I +1 d L(L+2)"
d~2 y dr ' r2

(L'
I
IP'"I IL)=0 & IL'-L 1~0, 2, (A11)

x[(2J'-1)(2J)(2J'+ 1)(2J+2)(2J+ 3)]'i .
(A 12)
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