
PHYSICAL REVIEW 8 VOLUM E 8, NUMBER 6 15 SEPTEMBER 1973

de HNse-van Alphen Effect and the Speci5c Heat of an Electron Gas

T. Holstein, R. E. Norton, and P. Pincust

Department of Physics, University of California, Los Angeles, California 90024
(Received 12 March 1973)

A model electron gas is studied in order to provide a microscopic justification of the Shoenberg

conjecture that the harmonic content of the de Haas-van Alpen oscillations of the magnetization M can

properly be explained by replacing the applied field H in the elementary expression for M(H) by the

total induction B = H + M The model contains a current-current interaction between the electrons;

and it is shown that the unscreened long-range nature of this interaction leads to a term in the

low-temperature specific heat proportional to T lnT. For a gas with terrestrial densities the coefficient

of this anomalous term is very small and probably beyond detection.

I. INTRODUCTION

In 1962, Shoenberg observed in some noble
metals that the de Haas-van Alphen (dHvA) oscil-
lations of the diamagnetic susceptibility were par-
ticularly rich in harmonic content. This led him
to the conjecture that this structure could be ex-
plained if one assumed that the diamagnetic contri-
bution to the magnetization M of the sample was
periodic in the inverse magnetic induction B in-
stead of the usual 8 ' (where H is the applied field,
corrected for demagnetizing effects). This would

lead to a nonlinear functional relationship M(H+M)
whose effects would be accentuated by the sharp
oscillatory nature of the dHvA effect. Pippard
extended these ideas in a thermodynamic theory
of the dHvA effect and indeed found that by taking
M(B) instead of M(H) it was possible to account for
Shoenberg's observations. More recently, Condon
and Halloran and Hsu, on the basis of dHvA and
thermomagnetic effect observations in beryllium,
have postulated the existence of a domain struc-
ture, i.e. a nonuniform diamagnetism. Azbel, '
Privorotskii and Lee, Greene, and Quinn have
discussed such domain formation on the assump-
tion that the electrons indeed move in the field
H+M(r), where r is the position of the electron
under consideration. It is the primary purpose of
this paper to give a microscopic justification of
this replacement of the applied field by local in-
duction.

Our model consists of an electron gas with a
positively charged background in the presence of
an applied, uniform magnetic field. In addition to
other interactions —e. g. , the Coulomb potential
between the electrons and between the electrons
and the background —the electrons interact with
each other via a static current-current potential
which, to order v /c, takes into account the force
between the electrons arising from the exchange
of transverse photons. The details of the model
are described in Sec. II.

It is shown in Sec. III that if the current-current
interaction is considered in the Hartree approxi-
mation, the Shoenberg conjecture of replacing
M(H) by M(H+M} follows in a straightforward
manner from the structure of the thermodynamic
potential. In Sec. IV we argue that the non-Hartree
effects of the current-current interaction are
safely negligible, and we discuss the dHvA oscil-
lations in the light of these conclusions.

In contrast to the Coulomb potential, there is no

screening of the current-current interaction at
zero frequency (for normal nonsuperconducting
systems). This feature is explicit from the cal-
culations of Appendix A, wherein the corrected
current-current potential (photon propagator) is
obtained by iterating the photon-self-energy part
in the absence of an applied magnetic field. In
Appendix B we consider the electron-exchange-
self-energy part to first order in this corrected
interaction. It is shown there that the lack of static
screening requires the frequency derivative of the
real part of the electron self-energy Z~($) to diverge
as lnl g —p, I when both P and ( approach the Fermi
surface. Similarly, the imaginary part of Z~(g)
vanishes like I g —p. I in this limit, in contrast
to the quadratic behavior characteristic' of short-
range interactions.

Because this anomalous behavior of Z~($) might
raise doubts concerning our neglect of the exchange
contributions of the current-current interaction,
and also because the results are of interest them-
selves, in Sec. V we consider the effect of these
anomalies on the low-temperature specific heat.
It is shown that they lead to a term in the specific
heat proportional to TlnT, which is indeed at
variance with the behavior linear in T character-
istic of systems with short-range interactions.
However, because the current-current potential
is essentially a relativistic effect, the coefficient
of the TlnT part of the specific heat is roughly- ave/c-10 '-10 (a =~|37} that of the dominant
term proportional to T. %e feel that this small
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relative magnitude also characterizes the long-
range exchange effects of the current-current in-
teraction on the dHvA oscillations.

A =A"+ A", (2. 2)

v xA~*= Ho (2. 3)

(2. 4)

where 0 = &' —(I/c~)(8 /sf ), and the operator for
the electric current j given from (2. 1) by

83C eK t t e2

j = — —= . (g vg —vg tj')—
8A 2imc mc

(2. 3)
In Sec. III, we discuss features of the thermo-

dynamic potential 0 viewed as the sum of all closed
linked graphs constructed according to the rules of
Luttinger and Ward. ' The internal potential lines
in these graphs come from the potential interactions
in U in Eq. (2. 1) and from contractions of pairs
of A"'s which arise in evaluating the grand parti-
tion sum as a power series in the electric charge
e. Each contraction generates an internal photon
line which connects between vertices of the kind
shown in Fig. 1. These vertices, which refer
separately to the two parts of the electric current
in Eq. (2. 5), also serve as terminals for inter-
actions with the external field A'*. Each distinct
way of connecting the ends of internal photon lines
and the external field lines to these vertices leads
to an additional expression to be included in the
sum for A.

It is adequate for our purposes to consider the
photon propagator at zero temperature. With the
definition

II. THE CURRENT-CURRENT INTERACTION

The Hamiltonian density for a system of non-
relativistic electrons in interaction with a vector
potential A is

R=Rj,'+ (V+ A)P (V — A)P+U,

(2. 1)
where Q" is the Hamiltonian density of the free
radiation Geld and P is the second-quantized elec-
tron field normalized so that g tt) is the electron
density. The symbol U in Eq. (2. 1}contains all
other potential interactions of the electrons, in-
cluding the Coulomb interaction between the elec-
trons and between the electrons and the background.

The vector potential A is the sum of an external
field A'", whose source is currents outside the
system, and a radiation field A" arising from cur-
rents induced in the medium. That is,

D (k k ) —= , d xdte '"'*' 0'
U i 0 (2v}&

&&(T(A,(x, t)A&(0))), (2. 6)

it is essentially evident from Eq. (2. 4) that we
can take the bare noninteracting photon propagator
to be

0 1 k]kq
D~~(k~ko)=ka ka . (}v- „2k -ko-zE (2. 7)

The internal photon-propagator lines reflect the
effects of a retarded current-current interaction
between the electrons arising from the exchange of
transverse photons. The retarded nature of this
interaction is manifest from the appearance of the
frequency ko in the denominator of (2. 7). We
could ignore this retardation by replacing the
propagator in Eq. (2. 7) by an instantaneous po-
tential

1 k]k~
D(~ (k) = ~ 5(~ —

kz (2. 7')

The remarks and calculations in the remaining
sections are based on the model of the current-
current interaction obtained by using the expres-
sion in Eq. (2.7') for the photon propagator. Since
the current vertices at the ends of the propagator
lines are essentially of order v/c, this approxi-
mation retains the effects of the current-current
interaction in the first order of v~/c . Higher-
order relativistic corrections are not included in
this study.

FIG. 1. Elementary vertices for the current-current
interaction which refer, respectively, to the two parts
of the electric current in Eq. (2. 5).

III. MAGNETIZATION IN THE HARTREE APPROXIMATION

We define the Hartree approximation with respect
to the current-current interaction of Sec. II as the
approximation of retaining only those graphs for
0 which are separated into two disconnected pieces
when any propagator line associated with the po-
tential in (2. 7 ) is severed.

If A„(HO) is the Hartree approximation for the
thermodynamic potential in the presence of an ex-
ternal magnetic field H& [see Eq. (2.3)], then the
magnetization density M„(HO) defined in terms of
the total induction BH by

BH =H()+MH (3.1)
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is given by the functional derivative

MH(r) = —6Qs/6HO(r). (3.2}

Within the medium, the magnetization M„differs
from the magnetic dipole moment per unit volume
to the extent that the magnetic field 0 differs
from the external field Ho,' for a sample with de-
magnetizing factor N, the magnetization M& is
equal to 1 -N times the dipole moment density.

Suppose we were to completely ignore the cur-
rent-current interaction but replace the external
field Ho by Bz in Eq. (3.1). We would then obtain
a magnetization density

M;(r) = —6Q, (B„)/6B„(r), (3.3)

+ G($,}Z($,)1e'~'++ Q'{Gj, (3.4)

where P '= AT, & is the single electron energy
matrix, Z(g, } is the proper electron-self-energy
part, G($,) is the full electron-Green's-function
matrix, and where' '" Q' is the sum of all closed-
linked skeleton graphs with the internal electron
lines associated with the full Green's function t".

The matrix e in Eq. (S.4) is essentially the
Hamiltonian for a single electron in the presence
of the external field. In the model leading to (3.3)
this external field is BH, but the self-energy parts
Z, which occur explicitly in (3.4) as well as im-
plicitly in G, arise only from the interactions con-
tained in the potential U of Eq. (2. I). Let us
compare this circumstance with that which obtains
for the thermodynamic potential Qz(HO) in (3.2}.
In this latter instance there is an additional con-
tribution to Z arising from the effects of the cur-
rent-current interaction in the Hartree approxima-
tion. But this additional part of Z simply gives the
difference between the single-electron energies
in the field B„and in the field Ho, so that the com-
bination a+ Z((, ) occurring in (3.4) is the same for
both versions of the theory. Thus, it follows from
(3.4) that

where 00 is the sum over only those closed-linked
graphs which contain no internal propagator lines
associated with the potential in (2. V').

In the remainder of this section, we wish to show
that the expressions in (3.2) and (3.3) are equal.
This equality is equivalent to the conjecture of
Shoenberg, ' once the adequacy of the Hartree ap-
proximation for the magnetization density is es-
tablished. This latter point is discussed in Sec.
IV.

An elegant form for the thermodynamic potential
0, derived in Ref. 10 and applied by Luttinger"
to the theory of the dHvA effect, is

Q = —P' Q Tr{in[e+Z((, ) —8,]

Q„(Rg) = Qo(5 )- 1} Q Tr[G($, )Z„($,)]e~Ã++ Q„'{G),
(s. 6)

where Z„ is the Hartree part of the electron-self-
energy graph, and where Q„{G]is the closed-linked
Hartree contribution to Q {Gj shown in Fig. 2. It
is equal to

Q {G)= (2P) ' Z»[G(( )Z (( ) ]e'&', (3.6)

p dk tfx 1 krak~Du (&) =
(2 )' e k~ 6~g —

ka (s. 9}

It is evident that only the term proportional to 5&&

in (3.9) contributes to (3.8}. If we also recognize
that V M„vanishes, since both Bs and Ho in (3.1)
have zero divergence, we obtain, upon substitut-
ing (3.9) into (3.8) and integrating by parts,

Q„'= —g J d~yM„(y). (S.Io)

Inserting this result into (3.V) and making use of
(3.2) and (3.3), we obtain, by varying both sides of
(3.V) with respect to H„

We can thus conclude that

Mg =MD,

which is our desired result.

IV. dHvA OSCILLATIONS

(s. 12)

It has been shown by Luttinger" and somewhat
more generally by Bychkov and Gor'kov that with
the restriction of short-range interactions, and
with the neglect of terms of order (eKH/2mcp)'~~
compared to unity (p, is the chemical potential),

iQ)
FIG. 2. Hartree contribution to Q', the wiggly line is

the potential in Eq. (2. 7 '), and the bubbles contain all
closed-linked skeleton graphs constructed according to
the rules of Ref. 10 and in the Hartree approximation
for the current-current potential.

so that

Q„(H,) = Q, (B„)—Q„'{G1. (3.V)

The expression for Q„{G)in Eq. (3.6) corre
sponding to the graph in Fig. 2 can be written

Q„' = ——,
' jd'x d'y [v xMa(x) 1,

xf)P, (z-y)[VxMa(y}]q, (3.8)

where D&& (x) is the Fourier transform of the poten-
tial in Eq. (2.V'):
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the calculation of Lifshitz and Kosevich can be
applied to a system of interacting electrons to
calculate the oscillating part of the magnetization
in terms of the quasiparticle parameters and the
features of the Fermi surface at its extrema.
Each extremum in the cross-sectional area en-
closed by the Fermi surface, where the normal to
the area is parallel to the applied field, gives rise
to its own characteristic oscillations of M vs H.

As discussed further below, the current-current
interaction of Sec. II is not sufficiently short range
to be included in the arguments of Refs. 11 and 12.
However, we have seen in Sec. III that if M(HO)

can be calculated in the absence of this interac-
tion, then the effect of including it in the Hartree
approximation is simply to replace M(H, ) by
M(B). As mentioned in the previous paragraph,
the oscillating part of M(HO) can essentially be cal-
culated. Further, any nonoscillating part of
M(H, ), although it becomes, in principle, an os-
cillating part once Ho is replaced by B, is es-
sentially unaffected by this replacement —and
therefore is irrelevant for the dHvA oscillations-
since for the metals of interest M-10 'H, and it
is only the very rapid variation of the oscillating
part of M with H that allows an appreciable effect'
to be realized when H is replaced by B. Thus, it
follows from these considerations that to the extent
the current-current interaction is adequately taken
into account in the Hartree approximation, the
results of Refs. 11 and 12 can immediately be gen-
eralized to include the current-current interaction
by simply replacing M(H) by M(B), as suggested
by Shoenberg.

The current-current interaction of Sec. II is
proportional to o.v /c (n =+») and is therefore
inherently very small for the nonrelativistic sys-
tems of interest here. Consequently, it should
certainly be adequate when considering its possible
effects beyond the Hartree approximation to re-
strict our attention to its first-order contribution
in the electron-exchange-self-energy part. In the
next paragraph we state why we feel that these
exchange contributions to the character of the
dHvA oscillations can safely be ignored.

In contrast to the Coulomb interaction, the cur-
rent-current interaction is unscreened at zero
frequency. As discussed in the next Sec. , this fea-
ture leads to deviations of the properties of a
Fermi liquid from those obtained from the quasi-
particle picture; in particular, the low-tempera-
ture specific heat is shown to have an anomalous
term proportional to T ln T in addition to the dom-
inant term proportional to T. However, because
of the inherent smallness of the current-current
interaction, this anomaly is very small and prob-
ably beyond detection. It is our opinion, although
we must admit some mild doubts in this regard,

k]k~ 1
( 'i k k A(k, (u)'

where [see (A4) j
2

ReA(k ar)"'"~~ 0-
k

(5. I)

(5. 2a)

and

(5. 2b)

It is apparent from this behavior of A(k, co) that the
current-current interaction is unscreened at zero
frequency.

In Appendix B the photon propagator obtained in
Appendix A is used to calculate the self-energy
part shown in Fig. 3. It is shown there that this
lack of screening causes the momentum P(g) at
which the electron propagator has a pole

(5. 3)

that this same degree of smallness characterizes
the effect of the current-current exchange term on
the dH-vA oscillations. That is, despite the fact
that it is formally of the same order as the Hartree
self-energy part, the effect of the long-range in-
teraction in the exchange term is confined to a
narrow frequency interval within an integral; and
further, we see no mechanism for the enhancement
of this exchange part —in contrast to the Hartree
self-energy-where the inherent v /c~ is counter-
balanced by its very rapid variation with the ap-
plied field.

V. ANOMALY IN THE SPECIFIC HEAT

In this section we wish to show that the lack of
static screening of the current-current interaction
of Sec. II leads to an anomaly in the low-tempera-
ture specific heat of the form TlnT. However, as
can be seen from Eq. (5. 15), the coefficient ac-
companying this behavior is so small that it will be
very difficult, if not impossible, to detect this de-
viation from the predominant dependence propor-
tional to T. Nevertheless, we find the existence
of this anomaly interesting in itself, and discuss it
here for this reason, as well as because we feel
that its smallness lends support for the view stated
in Sec. IV that the effect on the dH-vA oscillations
of the current-current exchange interaction can
safely be ignored. This conclusion is relevant be-
cause the long-range nature of this interaction
does not allow its effects to be included in the re-
sults of Refs. 11 and 12.

In Appendix A the class of diagrams in Fig. 3
are considered inthe absence of an applied mag-
netic field. They are shown to yield an effective
transverse the photon propagator
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to have an anomalous logarithmic behavior as the

frequency $ approaches the chemical potential

2

(( —~)»l ]—~I+O{&—~»3' m

(5.4)

where m* is defined in (B6).
To show that the logarithmic term in (5.4) im-

plies a term behaving as TlnT in the low-temper-
ature specific heat, we consider the formula of
Luttinger [Eq. (46) of Ref. 9] for the temperature-
dependent part of the thermodynamic potential at
low temperature

1
fI = —Q . dx(ln[e~+ Z~(x —iz) —x+ ie]

p 2%~ + ~No

1—c.c ) &~~-» ~ (5 5)

If we replace the sum over P by an integral and
integrate by parts, we can rewrite (5. 5) as

y pOO 1
Q= ~. p dp

~

dx
12v i 0 „ep+Zq(x —i&} —x+ i&

se, sZ, (x —ie) 1
0(x-v)

(5. 6)

where V is the volume. It is shown in Ref. 9 [see
Eq. (40) of Ref. 9] that the derivative with respect
to T of 0 is the negative of the specific heat C at
low temperature. Thus, by differentiating the
relation in (5. 6) with respect to T, we obtain

so~ sZ, (p+y/p- ie) ye'
12v i „J e +Z (p+$/p —ie) —(g+y/p —ie) sp

'
sp (e'+ 1)'

(5.7)

We wish to show that the logarithmic behavior in
(5.4} produces a term in (5. 7) behaving as TlnT.

The integral over p in (5. 7) is

p dp( )= p (z) —-c.c. ,
3 dz

0 z
(5.8)

The imaginary part of z along the integration con-
tour is the imaginary part of Z~&, &(p+y/P- ie).
For short-range interactions this is of order p
However, as shown in Appendix B, the absence of
static screening of the current-current interaction
allows this imaginary part to be as large as - P

'
when the z contour in (5.8) and (5. 10) is in the
neighborhood of z =0. Thus, with the neglect of
terms that are evidently ~O(P ), we can replace
P (z} in the second term on the right-hand side of
(5. 10) by

P'(z) =P'(z +) + 3P (z)(z - z+)—dp
dz

(5. 11)

where z is the energy denominator in (5. 7}, and
where P(z) is the root of

[eq+ Zp(P +3)/p- ie) —(g+y/p)g. p(, ) =z. (5. 9)

The integration contour in (5. 8) traverses a path
from the left to the right above the real z axis
along the contour for which P(z) is real. Thus,
Eq. (5. 8) can be rewritten

d ~
p (z) ——c.c. = p'(z) ——, . {5.10)

,3;R. l
p ' 'p'

dp (5. 12)
z(p)

f P (z) z —c.c. = —2' ReP {0).dz
(5. 13)

But we see by comps, ring (5. 3} and (5. 9) that P(0)
=P(p, +y/P). Thus, from (5. 13) and (5. 8) we obtain
for the specific heat in (5. 7),

kV ~"" p, +y p y
'

62 .I. P tf (e'+1)' '
(5. 14)

which with (5.4) leads to

D- = -4—= —+ -Ht-+ ~+ '"
ij

(a)

It is shown in Appendix C that the contribution to
(5. 7) from the second term on the right-hand
side of (5. 12) is & O(T" lnT), where n & 0. Thus,
since our purpose is to show that the leading part
of (5. 7) is - TlnT, we need keep only the first
integral on the right-hand side of (5.12). This in-
tegral proceeds to the right along a contour slight-
ly above the real z axis and then back to the left
along the complex conjugate contour. However,
it is evident that at the extremities of the contours
Imz-O(P ), so that the two contours can be joined
to give a single closed contour enclosing the origin
in a clockwise sense. Thus, the relation in (5. 12}
can be taken to be

to rewrite (5. 10) as

p (z) ——c.c.=iIm p (z) ——p (z~)dz . , 3 dz -3 dz*
Z z z~

~ = 0 + ~ + ~ ~ ~

FIG. 3. Exchange-electron-self-energy part.

(b)
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dsp
n = 2 Jt ( )~ f(e~), (As}

FIG. 4. Corrected current-current potential.

ak V 2 m*
C = — p~ T ln T+ O(T).

36m' m
(5. 15}

In this Appendix we outline the calculation of the
photon propagator in Fig. (3}in the approximation
of retaining only the two-photon self-energy dia-
grams shown explicitly in Fig. 3(b). As discussed
in Appendix B, the aromalous term in the specific
heat depends only upon features of the photon
propagator which are completely contained in this
approximation.

In conformity with our discussion of Eq. (2. 7')
in Sec. II, we will drop the frequency dependence
of the zero order photon propagator. The graphs
of Fig. 3 give

k)k,
k k +A(k, (u)' (Al)

The specific heat in (5. 15) has an anomalous
T lnT behavior arising from the lack of screening
of the current-current interaction. However, it
is easy to verify that the coefficient of the TlnT
term is - a(vz/c)(m*/m} -10 I that of the dominant
term proportional to T.

We expect that an analogous anomalous contribu-
tion of the current-current interaction to the dHvA
oscillations is correspondingly small.
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APPENDIX A

and setting f(e) = 8(p, —e), we can perform the in-
tegral in (A2) to obtain

3 2

A (k, &o)
~ ra,

'—' ' x 2x+ (1 —x') lnT=O 4 x —1
(A4)

where co~ is the plasma frequency

(u~ = 4van/m (A5)

x = m(o/kp„.

APPENDIX B

(Ae}

R
d&o ImG; f(&o) ImD„(&u —$),

(al)
where we have employed the conventional notation
of denoting the upper boundary value of the electron
Green's function by Q", as well as for the coef-
ficient of the projection operator in (Al):

k +A(k, &o+ie)
' (B2)

We wish to show that ImZ~"{8+i&) has a part
which is essentially of order 1$ —p, I when both $

and p approach the Fermi surface simultaneously;
if I ( —pl -0 with P fixed (P+Pz), then lmZ~*
- ($ —p) similar to the behavior' for all p when

only short-range potentials are present. We can
therefore use

ImGy „-((u) = —w5((u —e~f, —ReZ~f, ((o)),
R

In this Appendix we derive the zero-temperature
features of the exchange-electron-self-energy
graph of Fig. 4 which are used in Sec. V.

It is a straightforward application of the dia-
grammatic techniques" to obtain (k = c = 1)

f)= „2} ~P (P

where (k=c =1)

&(&, )= '
(n —

Jf 2, Ip'-(0 5)'I

„f( .=!i.) -f(e. Ii2)
F7+ t/2 + o-& /2

(A2)

which is generally valid for +- p. . Employing this
5 function to integrate over the direction of k in
(Bl), we obtain eventually

ImZ~*((+i&)
~ &

„——— z dry(&u)
))m p

Here a =e /4vkc =~~~, n is the electron density,
m is the electron mass, f is the Fermi function,
and e(p) =p /2m. The two terms on the right-hand.
side of (A2) arise, respectively, from the two

parts of the photon self-energy shown explicitly in
Fig. 3(b).

We will be particularly interested in the behavior
of A(k, &u) for small k and zero temperature. By
using the identity

p{(g) a -1
+ —ReZ (&u)

m Bp

kdk p2 ——
4

k -p (d+p

(B4)
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where P(&o) is defined in Eq. (5.3).
For P =P~ it is easy to check that

P 1 —
p . 85

The anomalous behavior - lf, —p, l as p and E ap-
proach the Fermi surface arises from the fact
that the magnetic interaction is unscreened at zero
frequency (for normal, not superconducting, sys-

[ep +Rez, (p)],
F

we can apply these observations to (B4) to obtain

(Bs)

terna), and that correspondingly ImD)P ((d —$) is
singular when k, (d —(, and (d —(/k all approach
zero. The first term on the right-hand side of (B5)
can therefore be ignored. Further, the leading
behavior of ImDR ((d —$) in this region is contained
entirely in the part of D"„calculated in Appendix
A. We can therefore use the form of A(k, (()} given
in (A4). Defining an effective mass m* by

ImZP*(g+ ie)
I vs =—QP p PN

7(m m ~ j

„PP~
dco

l9 (td) -9 I

dkk 1- 'P("} (B7)

which completely contains the anomalous behavior
of ImZ9" on the Fermi surface.

After some effort it is possible to conclude that
we need only consider the part of A(k, ru —(+ie)
which dominates for small k and small ur —$/k;
that is we can approximate A(k, &o —$+ie) by

e4($+ pe) ——R 17f(()p((() —$)/k) (Bs)

1mZP(f +i e) '—"—
9~9 3/m mF

, 3vm(d p'((o —()
4pp lp((d) —p I

'

+ o(l a —u I
"} (B9)

If, for example, P =P($) as defined in Eq. (5. 3},
it is evident that the first term on the right-hand
side of (89) is -1$ —p, I.

We next want to argue that the behavior of
ImZP(g) in (B9) requires (S/S f) ReZp($) to diverge
logarithmically as both P and $ approach the Fermi
surface. Although this could be demonstrated by
computing ReZp($) as we have done for ImZp(()
above, it is simpler to use the Kramers-Kronig
relation

I'

ReZP($) = —
J) p ImZP($ '), (Blo)

with ImZP given by (B9). Noting that ImZP($) in
(B9) is symmetric about $ = p, , we can differentiate
(B10) with respect to ( and integrate by parts to
obtain

eReR (() p (,(
1 1

)

which comes from the imaginary part of the loga-
rithm in (A4). Also, it can be verified that we can
ignore the term -

I p(ru) —p I k ' in the integrand in

(B7). With these simplifications, the inner integral
in (B7) can be performed with the result that

, ImZP*($ ). (Bll)
8

Putting p =pp, one can verify from (B9) that

ImZ ($ )
' '- — tan '

8]' 9F 3mm m

plus terms which vanish as $ - p, .
arctangent in (B12) becomes equal
(Bll) we thus obtain

3vm(dpa(&
' —)1)

~p(4'}-pp~'
(B12)

As) -p., the
1to ~ m. From

PP((1(.. e
( ') (B15)

from which Eq. (5.4) is obtained by integration.

APPENDIX C

In this Appendix we show that the second integral
on the right-hand side of Eq. (5. 12) does not con-
tribute to the specific heat in (5. 7) in an order
which is larger than - T as T- 0. In particular,
we wish to show that

p d I111ZP i1 + Ty r 0 ( ) ( 1)
P, + TP —69 —Z9(P, + TP)

From the discussion in Appendix 8, we know that
ImZP(p+ Ty) can only be as large as O(T} as T- 0
when p is in the neighborhood of pp =p(p(+ Ty).
Hence, the P inside the integral in (Cl} can be re-

—R R "(j)~~ —,," ( )
(B13)

From (B13) we can easily obtain Eq. (5. 4). That
is, since

dp ($) sZp(() s
sp ~ep p(~)) Ip p((f)

(B14)
it follows from (Bs) and (B13) that near ( —p, the
anomalous part of P(g) satisfies
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placed by P» and the denominator can be expanded
about p( p, + Ty ) [see Eq. (5. 3) ],

p+ Ty —e/, —Z/, (//, + Ty) = —[p p—(//+ Ty)]

ax —[f/, + Zp(p + Ty) ]p p(giry/ ~ (C2)
gp P t/

The derivative on the right-hand side of (C2) is a
finite nonzero constant which also can be taken out-
side the integral in {C1). Thus, by appealing to
(B9) to obtain the form of ImZ~ near the Fermi
surface, it is evident that the inequality in (Cl) is
satisfied if

CO

dp
y 'L+ PP

Re
I. .P -P (~+ Ty) -.

(5.4) ] I p(p+ Ty) —p(&u) I is of order I p, + Ty —&o I

x ln I p. + Ty —co I, the argument of the arctangents
in (C4) in region 1 are ~(Ty) "ln I Ty I. Thus,
for sufficiently small T, we can use the relation

tan 'y =-,'m-y

valid for small y. It is then evident that the in-
tegrand for the co integration coming from region
1 is &O(l Ty I

'ln'I Ty I) and the integral in (C4)
from this region is 0(l Ty I' ln I Ty I).

In region 2, x»1 for small T, and we can use
[A =—a(p+ Ty —&o) IP(p+ Ty) -P(ur) I ]

A gA 3A
tan ll +xl x x~ =tan ~+ 4

=tan '~~
x 1+A /x x

where a is a constant.
If the order of integration in (C3) is changed,

and if the integration variable P is replaced by x,
where P —P (p+ Ty) =x(P(//, + Ty) —P (&o}), then the
left-hand side of (C3) becomes

""dx, a(g+ Ty —&u)

x I p(g+ Ty) —p(&o) I '(1+x)'

a(p+ Ty —(o)
)Ip(p+ Ty) —p((o) I I1 —xI'

Consider two regions of x separately:

region 1: x& K(Ty)

region 2: x-K(Ty) 2/",
where 0& o & ~ and K is a constant. Since [see Eq.

The difference of the arctangents in (C4) then satis-
fies the inequality

A A 6A
tan (1+x) I1 —xl x, -tan

& (Ty) 2-4a+8/81 -si Ty i

(Ty)2/8-4 ln 8i Ty i

The integral in (C4} coming from region 2 is then
less than- I Ty I' ' ln I Ty I.

Comparing this result with the conclusion above
for the contribution to (C4) from region 1, we see
that for 0( n (+6 both contributions are less than-

I Ty I. The second term on the right-hand side
of (5. 12) thus gives no contribution to the anomalous
term in the specific heat - TlnT, as shown in Eq.
(5. 15), nor for that matter does it contribute to
the dominant term proportional to T.
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