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Studies of a Single Vacancy, a Divacancy, and Interstitials in Lead Using Long-Range
Oscillatory Pair Potentials
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The long-range oscillatory pair potentials obtained by Johnson, Hutchinson, and March are applied to the
calculations of the properties of a vacancy, a divacancy, and interstitials in lead. The formation energies, the
migration energies, and the atomic relaxations around the defects have been calculated on the basis of the
atomistic model. It has been shown that divacancies are more mobile than single vacancies and a
body-centered interstitial is more stable than a ( 100&-split-type interstitial in lead.

I. INTRODUCTION

A number of theoretical calculations based on

the atomistic model and the use of interatomic po-
tentials have been published for the study of the
properties of lattice defects in metals. Com-
puter experiments are always intended to propose
a plausible interpretation of experimental results
and, in some cases, to give the solution to an ex-
perimentally inaccessible problem. The reliability
of the predicted values, however, is entirely de-
pendent on the validity of a given interatomic po-
tential and the model used. The selection of a
proper potential is very important in these types
of calculations for defects. This was one of the
main subjects of the Battelle Institute Materials
Science Colloquium. '

Empirical Morse potentials, third-order poly-
nomials, " and occasionally Born-Mayer poten-
tials have been employed in most of the studies
so far published. The short-range nature and the
existence cf one minimum, except in the case of
Born-Mayer potential, are characteristic of these
potentials. Rigorously speaking, the validity of
these potentials should be verified by experiments.
Unfortunately, experimental methods which can
directly measure interatomic potentials are not
yet available. However, many authors have pointed
out from the theoretical point of view that the ef-
fect of the conduction electrons on the direct ion-
ion interaction should be taken into account and
that the potentials in metals are oscillatory at long
ranges owing to this effect. + ~ This theoretical
conclusion is partially supported by the indirect
experimental evidence of the Knight shift in alloys
and the oscillatory force constants obtained from
the phonon spectra. The calculations using the po-
tentials with such simple forms as the Morse po-
tential are not satisfactory for this reason, even
though these are tractable.

As mentioned above, the direct measurement of
an interatomic potential is very difficult. The re-
cent progress of neutron- and x-ray-scattering ex-

periments, however, is encouraging in spite of the
inherent problems in the analysis of the data. John-
son, Hutchinson, and March~ (JHM) have derived
pair potentials from neutron scattering data of liq-
uid metals. These show a long-range oscillatory
nature (called LRON in the present paper), and in
this respect, these are fundamentally different
from the potentials used before but consistent with
recent experimental and theoretical results.

Different pair potentials in metals can be ob-
tained using pseudopotential theory. These poten-
tials are usually not consistent in both of their am-
plitudes and phases. Two aspects of this situation
should be considered. One is related to the non-
unique choice of the bare-ion potential in the pseudo-
potential method. The concept of a two-body in-
teraction potential itself is correct within the
framework of the second-order perturbation the-
ory. E the calculation is carried out only to the
second order and the higher-order terms are
truncated, then different pseudopotentials may
lead to different pair potentials. The other prob-
lem is the approximation used to take into ac-
count the electron-electron interaction in the di-
electric function. Shyu et al. and Shaw and
Heine+ have fully investigated this problem. Their
results are encouraging and lead us to believe that
there exist well-defined pair potentials in metals
which can be used to describe the properties of
defects.

It is of great interest to apply these LRON po-
tentials to the study of point defects in metals.
Harrison made two observations in an intuitive
way based on his potential in Al. One is the re-
laxation of the nearest neighbors to a vacancy and
the other is related to the binding energy of a di-
vacancy. Shyu, Brust, and Fumi' have calculated
the distortions and the relaxation energy around a
vacancy in Na, using a LRON potential which was
obtained by Cochran from lattice dynamics. Simi-
lar calculations in Na have been performed by
Torrens and Gerl and Brown et al . Particu-
larly, Brown et al. used the potentials obtained by
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Paskin and Rahman for liquid sodium.
In the present paper, we have treated the ener-

getic problems for these lattice defects in lead
with the help of a new technhlue for relaxation.
The JHM potentials were used. The formation
energies and the activation energies for the mo-
tion of a vacancy and a divacancy have been cal-
culated. The stability of (l00)-split and body-cen-
tered interstitials was also investigated. The jus-
tification of using the poteztial obtained from the
liquid state to solve the problems in the solid state
is a difficult problem. The most delicate question
is whether the LRON part of the pair potential is
only the reflection of ion packing in liquid metals,
or is the real Friedel oscillation caused by the
conduction electrons in metals. Although there are
many problems in the approximate theories of liq-
uid metals, it was shown ' at least that the con-
duction electrons are responsible for the LRON
part of a pair potential.

In recent years, some theoretical studies of de-
fect properties using the pseudopotential theory
have been published. This method is becoming
a powerful tool for the study of simple defects such
as a vacancy. However, it will be quite difficult to
apply this method to more complex lattice defects
such as a divacancy, interstitials, and dislocations.
Besides the effort required in the calculation, as
was discussed in detail by Chang, "the results are
sensitive to the choice of the pseudopotential even
in the case of simple defects. In our opinion, cal-
culations based on the atomistic model and the ef-
fective pair potential have not yet lost their use-
fulness in comparison with a pseudopotential ap-
proach. It is premature at this stage to assert
that this type of calculation is meaningless.

This paper is divided into five sections. In
Secs. II and III, respectively, the method of com-
putation and the interatomic potentials are de-
scribed. Section IV is devoted to the results and
discussions. Concluding remarks are given in
Sec. V.

II. METHOD OF COMPUTATION

A. Model

All atoms in a spherical perfect crystal con-

taining about 1000 atoms were initially located on

lattice sites. The region of 86 atoms near the
center of the crystal is called region I, which con-
tains the lattice defect to be studied. All the atoms
around the defect in region I were allowed to relax.
The remaining atoms in the crystal, being treated
as fixed, are called region II. The size of the
crystal was determined as follows: the radius of
the spherical region I was taken to be about the
cutoff distance of an effective pair potential. The
thickness of region II was chosen to be slightly

larger than the cutoff distance.
In general, the total crystal energy can be sepa-

rated into two parts. One is the volume-dependent
energy and the other is the structural energy which
depends on the detailed atomic configuration. In
body-centered-cubic (bcc) alkali metals, the vol-
ume-dependent energy is very important and has
to be taken into account correctly in the calcula-
tion. In face-centered-cubic (fcc) metals includ-
ing lead, however, the contribution from the vol-
ume-dependent energy to the formation energy of
a defect may be smaller than that of the structural
energy. This is also expected from the fact that
in fcc metals the elastic anisotropy, that is, the
deviation from the Cauchy relation, is smaller
than that for bcc metals. The contribution from
the change of the crystal volume owing to relaxa-
tion was neglected in this calculation.

As was pointed out by many investigators, 3~'3~

the problem of the electron redistribution around
the defect is very important, particularly for al-
kali metals. This problem is beyond the frame-
work of the atomistic model or the empirical two-
body interaction potential. The change of the crys-
tal energy owing to the redistribution was also
ignored. %e will only consider the structural en-
ergy and hereafter call this the crystal energy.

B. Basic Formulas

The relaxed configuration around the defect is
determined so as to minimize the crystal energy
of region I. This energy is given by

(2 I)

where

(2. 2)

and Q (r,~) is the interaction potential energy be-
tween the ith and jth atom. i and j summations are
performed over all the atoms in region I except
wheni =j, r& and r& are the position vectors of the
ith and jth atom, respectively. According to
Doyama and Cotterill, the formation energy of a
cluster of X. point defects can be obtained by the
following steps.

(i) X atoms were removed independently from
the crystal at positions sufficiently far from each
other and then placed on the surface. The energy
required to produce this state is expressed as

Ezv-EJ = XEg (2. 3)

where E„v is the energy of the crystal containing
X unrelaxed vacancies and Ep is the energy of the
perfect crystal with X atoms restored to their orig-
inal lattice points. E~ is defined as the crystal en-
ergy of an atom on the surface and is given by
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s pED (2. 4)

Eo=Ey=+4'(&ig), (2. 5)

BlE =0 (2 7)

(iii) The unrelaxed X cluster was relaxed and
the desired defect was obtained. The final step
requires the following energy:

I
Exv Exv— (2. 8)

where E,v is the minimum energy of the crystal
contained the defect and E„„is the relaxation en-
ergy. E„„is expressed as the positive quantity as
well as E~v. Finally, the formation energy of a X

cluster can be obtained by adding the contributions
of steps i, ii, and iii; then

F BI
Exv= ~Es —E~v- E,„. (2 8)

The binding energy E,v of X clusters is obtained
from the above considerations:

where the summation over i is taken over all the
atoms that interact with the jth atom. In a perfect
crystal E& does not depend on the subscript j and
has a unique value noted here as Eo.

(ii) X unrelaxed vacancies were gathered to-
gether and an unrelaxed cluster of order X was
created. The energy required for this step is ex-
pressed as

Exv —Ezv = E (2 8)

where E,v is the energy of the unrelaxed X cluster.
E„v is expressed as a positive quantity in the pres-
ent paper. This formula implies that

motion of a defect. In fcc metals, both the saddle-
point configuration of a vacancy and that of a diva-
cancy can be determined simply by considering the
symmetry of the lattice. These are shown in Figs.
1 and 2, respectively. As seen from the schematic
diagram of Fig. 3 for the motion of a vacancy, the
migration energy is calculated from the equation

Em-Esp, -EDp (2. 13)

We have relaxed an atom along the direction of
the force acting on it in the preliminary calculations.
The force on atom i owing to the remaining atoms
in the crystal can be calculated as

1PP(r(s) r(g
2 ) ~V)) Jfg

(2. 14)

where J is the number of truncation. Then atom i
was displaced along the direction of the vector F,.
and the force on atom i was again calculated at the
new position. Each atom in region I was moved
in turn in the same manner, until the force on it
became zero. Finding the zero-force atomic con-
figuration normally corresponds to finding the min-
imum-crystal-energy position. In case of an oscil-
lating pair potential, however, this method could
not be applied because of the lack of convergence.
The difficulty was overcome by using the mini-
mum-total- crystal-energy criterion instead of the
zero-force criterion. We have developed a differ-

E» is the crystal energy with the moving atom at
the saddle point and E» is equal to E,v. Similarly,
for the motion of a divacancy, the formula (2. 13) is
also valid and E»=E&v in this case.

C. Method of Relaxation

E qp
——Eqv+ E~„—XE~„

B B (2. 10)

where E&„ is the relaxation energy of a vacancy.
Using this formula the formation energy of a va-
cancy is written

F B'E]v=Es-Eqv-E~„-Es -E~ (2. 11)

where E,v=0 [see Eq. (2. 7)]. E,v canbe rewritten

FExv = l Es (E~v+Ei.)- (2. 12)

= XEz —(E~„+XE&„) [from Eq. (2. 10)]

(ES -El.)-ELF

= &Eiv E~v . [from-Eq. (2. 11)]

Thus, we can obtain the binding energy as

Exv = XE iv —E~v = —(E ~v
—&Eiv)

Note that the binding energy E„v is expressed as a
positive quantity.

Finally, we consider the activation energy for

V Vacant Si)e
S Saddle Point

FIG. 1. Saddle point for the vacancy motion in a fcc
metal.
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A, B.C Vacant Sites
Saddle Point

FIG. 2. Saddle point for the motion of a divacancy in
a fcc metal.

ent technique for the method of relaxation to obtain
the stable configuration. This iterative method
has two steps.

As the first step, the atomic shells around the
defect were relaxed radially from the center of the
defect, one after another. Except for a vacancy,
we took into account the anisotropy of atomic dis-

t theplacement in the second step as follows: Le e
original position of the relaxed atom be (x, y, z).
Kith the help of the symmetry of the displacement,
"toms around the defect were grouped. Atoms in

the same group were relaxed at one time followed
b the symmetry. The crystal energies at the po-y es
sitions (x+ hx, y, z), (x- 4x, y, z), (x, y
z), (x, y —4y, z), (x, y, z+ az), (x, y, z —Sz),
and (x, y, z) were calculated. hx, 4y, and 4z
are the increments of the coordinates x, y, and z,
respectively. The relaxed atom was moved to the
position corresponding to the minimum energy of
the crystal. If the minimum energy in these seven
energies corresponds to the original position (x,
y, z), nx, ny, and 4z were reduced, and the new
seven crystal energies were calculated and again
compared with each other. In this way the equili-
brium positions of relaxing atoms were determined.
In most cases, this method which is called here
the seven-point criterion has given satisfactory
results. The validity of this method was tested
in such a way that relaxations around the defect
were calculated in two ways using the same trun-
cated Morse potential. One is the method des-
cribed above and the other is the zero-force cri-
terion, and the two results were compared with
each other. The agreement was quite satisfactory.
However, the seven-point criterion requires a
considerable amount of time to compute the mini-
mum-energy configurations.

III. INTERATOMIC POTENTIAL

LRON potentials obtained by Johnson, Hutchzn-
son, anon and March were chosen as interatomic po-
tentials in lead. These are shown in Fig. 4. The
potential Pbl was derived from the neutron scatter-

p(r) (eV)

PE)2

0.05—

8 2

r (A)

-P.l

FIG. 3. Schematic energy diagram of atom-vacancy
exchange.

FIG. 4. Johnson, Hutchinson, and March long-range-
oscillatory (JHM LEON) pair potentials for lead.
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ing data of liquid Pb at 350 'C using the Born-
Green's theory. The potential Pb2 was derived
from the data at 550 C in a similar manner. JHM
have also given the potentials calculated from the
Percus- Yevick theory, but these were not used in
this paper because such theory is more suitable
for the description of liquid insulators.

In the actual calculation, a truncation of the po-
tential is necessary. The pair potential was trun-
cated at the fifth zero point in a fairly arbitrary
manner, but the effect of this truncation on the final
results, the relaxation energy and atomic relaxa-
tions, was not so large, since only the total-crystal-
energy criterion, not the force criterion, was used.
The pair potential was further approximated by the
third- and the fourth-order polynomials in five
ranges of r, r being the distance between two atoms
(see Fig. 5). The potential was expressed in re-
gions A and E as

p (r)=A, (r —r~) +Az(r —r~) +Az(r —r~), (3. 1)

and in regions B, C, and D,

P (r) =A, (r —rz)'+A, (r —rz) +As(r —rz)'

+A, (r —rz) . (3. 2)

All the potential constants were determined so as
to fit the experimental curves. These are tabulated
in Table I.

The effect of the truncation of the potential on
the formation energies of defects has to be care-
fully examined. From Eq. (2. 5), Ez is given by

E, = zEz= —Z y (r, )
1

2~

For a vacancy, E/ Ez0. 01 is usual; thus Ez is
the dominant part in E&&. In contrast to the fact
that E&„ is the quantity expressing the difference
between the unrelaxed and relaxed crystal energies,

{r)
eV

utof f

Es(ev)
0.

0.6-

07— P62

0.5—

10 20 30
Atomic Sheti, Number

FIG. 6. Crystal energy of an atom on the surface Ez
as a function of the atomic shell taken to the summation.

E~ is the simple summation of the interaction po-
tential between every atom in the crystal. Accord-
ingly, the LRON part of the potential must be taken
into account in the calculation of E z. It is re-
ported' ' that the LRON part of a potential can be
correctly described by the same form as Friedel
oscillation,

Q (r) = A cos (2Br+ C )/% (3. 3)

A, B, and C are constants, and were determined so
as to reproduce the LRON part of a potential. Using
this form, E& was calculated as a function of the
crystal size and was plotted against the order of
atomic shell in Fig. 6. As the sum approaches
about the 36th atomic shell which contains 1198
atoms, E~ nearly converges to the limited value.
These are 0. 674 eV for Pb1 and 0. 597 eV for Pb2,
respectively.

Bowley' has also given a pair potential in lead
by the pseudopotential theory. This potential is
very different from JHM potentials in the positions
and magnitudes of the maxima and minima. As
Bowley himself' and Shaw and Heine" have stated
that the potential obtained by the pseudopotential
method has not yet been settled, more detailed
study is desirable. Bowley's potential was also
applied to the vacancy problem. Preliminary cal-
culation has shown that this potential leads to un-
reasonable results, so that this potential was not
used in the present study.

IV. RESULTS AND DISCUSSIONS

A. Vacancy

A

FIG. 5. Fitting of the LRON pair potential by five
polynomials.

The final relaxations of neighbor atoms are
given in Table II together with previous results
using empirical Morse potentials. The relaxations
of atoms are expressed in units of nearest-neighbor
distance: a plus sign means that atoms moved
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TABLE I. Potential constants of effective pair potentials of lead (x& and r2 are in A).

2591

Potential

Pbl A
B
C
D
E

Pb2 A
B
C
D
E

A(

—0. 388611
0.200589
0. 004237

—0. 014632
0. 035138

—0. 387142
0. 145399
0. 005077

—0. 001973
0. 009199

A2

1.768340
—0. 143611

0. 021834
—0. 047859
—0. 311463

1.685358
—0. 117079

0. 021674
—0. 022391
—0. 104114

A3

—0. 168751
0. 008213

—0. 011369

—0. 126462
0. 006947

—0. 007707

A4

0. 182997
—0. 050749

0. 042787

0. 153276
—0. 047215

0. 033077

3.03
4. 09
6.00
7. 50
7. 50

3.01
4. 06
6. 00
7 ~ 57
7. 57

y'2

4. 09

8. 78

4. 06

8. 86

away from the vacancy and a minus sign means
the opposite relaxation. The results in the present
calculation are significantly different from those
obtained earlier by Girifalco and Weizer ' and those
by Wynblatt and Gjostein. ' There are two features
to be noted

The first point is the direction of displacement
of neighboring atoms around the vacancy. So long
as we use the Morse potential, we have the same
results at least for the first- and second-nearest-
neighbor relaxations. The nearest-neighbor atoms
move toward the vacancy and the second neighbors
move away from it, which can be ascribed to the
nature of the Morse potential with one minimum.
Using JHM potentials as in the present study, the
first and second nearest neighbors move to the op-
posite direction compared with the case of Morse
potential. This situation is quite similar to the
case of aluminum which has been discussed earlier
by Harrison. These results suggest that in the
case of LRON potentials, the effect of distant
atoms and the position of the first minimum are
important in determining the direction of relaxa-
tion of neighboring atoms. Also, each atomic
shell around the vacancy does not always relax
alternately toward and away from the vacancy even
if the empirical Morse potential is chosen. Partic-
ularly, the LRON part of JHM potentials compli-
cates the problem.

The second point is the magnitudes of the relax-

ations of neighboring atoms. The relaxation of the
nearest-neighbor atoms is very small and that of
the second neighbor atoms is fairly large compared
to the previous results.

The relaxation energies and the formation ener-
gies are shown in Table II and Table III, respec-
tively. The relaxation energies are significantly
small compared to the previous calculations. This
may be thought as a common nature of LRON po-
tentials and similar results have been also ob-
tained in Na. ' ' The LRON part of the potentials
must be responsible for these results in a compli-
cated way. Unfortunately, reliable enough experi-
mental data do not exist to conclude whether or not
the predicted values are true.

Recently, the neutron scattering and positron-
annihilation measurements have been developed.
The positron annihilation in metals is particularly
sensitive to vacancy-type defects, and in this re-
gard, many studies have been made. 4'4 The re-
sults appear promising in providing information on
the electron redistribution and the lattice distor-
tions around the defects.

Experimental data are only available for the
formation energy of a vacancy in lead. Feder and
Nowick have determined the formation energy to
be 0. 49+ 0. 10 eV from dilatometric and x-ray ex-
periments. The formation energy can be also ob-
tained from the positron-annihilation measurement
in a metal. Recently, McKee et al. have used

TABLE II. Atomic relaxations and relaxation energies of a vacancy in lead (in % and
eV, respectively).

Atomic relaxations
First nearest neighbor Second nearest neighbor

Eir
relaxation

energy Ref.

—1.0
—1.0

0. 06
0. 04

0. 61
0. 59

—1.4
—0. 85

0. 162
0. 081
0. 090
0. 016
0. 026

Girifalco-Weizer (Ref. 35)
Wynblatt-Gjostein (Ref. 36)
Wynblatt (Ref. 37)
Present work (Pbl)
Present work (Pb2)
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TABLE III. Formation energy (Efp') and migration energy (E&&) of a vacancy in lead (in
eV). Q& is the activation energy for self-diffusion.

E~vF .~v=Qi-EivF
Qg

1.09 Egg/Q)
Ref.

41-46

Experimental
values

0.49+ 0. 10
0. 50+ 0. 03
0. 48

0. 60
0. 59
0. 61

Q EF +EAf

0.45 Feder-Nowick (Ref. 39)
0. 49 McKee et al. (Ref. 40)
0.44 Pochapsky (Ref. 38)

C alculated
values

0. 26

0.66
0. 57

0.67 0. 93
0.76 ~ ~ ~

0. 77 1.43
0. 60 1.17

0. 28

0.46
0. 49

DuCharme-Weaver (Ref. 25)
Wynblatt (Ref. 37)
Present work (Pbl)
Present work (Pb2)

this technique and successfully obtained the forma-
tion energy in lead to be 0. 50+ 0. 03 eV. These ex-
perimental values are a little smaller than our re-
sults of 0. 66 eV for Pbl and 0. 57 eV for Pb2. The
discrepancies are mainly due to the large E~, be-
cause, as mentioned above, the relaxation energy
is a small quantity compared with E~. A large Ez
is also the direct consequence of a large amplitude
of JHM potential. Waseda and Suzuki have shown
that a pair potential in Cs has a smaller amplitude
than JHM potential. This is probably the case for
other alkali and polyvalent meials. Accordingly,
the agreement between the calculated and experi-
mental values will be improved by employing a
more proper potential in lead. However, it should
also be kept in mind that other contributions such
as those due to electron redistribution and the vol-
ume-dependent part of a crystal energy were not
taken into account in the present calculation. The
migration energies were calculated to be 0. 77 and

0. 60 eV for Pb1 and Pb2, respectively. In fcc
metals, it is generally accepted that the self-dif-
fusion is conducted by the vacancy meehan-'sm.
Therefore, the migration energy can be calculated
from the relation

Q~
——E(y+E j~

E (4. I)

Using Q, = 1.09 eV" and E&"„=0.50 eV as the ex-
perimental values, E«= 0. 59 eV is obtained. Al-

though the relaxations of the nearest neighbors are
only taken into account in the calculation, the cal-
culated values agree fairly well with the experi-
mental value. If the relaxations of the second- and

third-nearest-neighbor atoms were also taken into
account, the relaxation energy will increase
slightly.

Wynblatt has also given the migration energy
to be 0. 76 eV using the empirical Morse potential.
This result agrees well with our results. These
theoretical values and E,~/Q, are given in Table III.
It is quite important to note that different LRON po-
tentials led to the same conclusion that the forma-
tion energy of a vacancy is less than the migration

Eq~ ——Eq+ Ep„—2E )„
B (4. 2)

E,„ is the relaxation energy for divacancy and
should not be confused with the relaxation energy
E,„ in the case of a vacancy. It is unfortunate that
experimental values of E2„and E&„are not avail-
able.

Comparing with the values of other face-cen-
tered-cubic metals, the presented values are rea-
sonable. Doyama and Koehler have given the
binding energy of a near-neighbor divacancy for

TABLE IV. Results for a divacancy (in eV). E~ is
the energy per atom, E„ the relaxation energy, Ed the
binding energy without relaxation, B& the binding energy,
and E&& the formation energy.

Potential E& Epv E2v E2y3 F N

Pb1
Pb2

0. 674 0. 030 0. 113 0. 11
0. 597 0. 042 0. 091 0. 08

1.21 0, 36
1.06 0. 29

energy and &,„jQ, is about 0. 47, which is consis-
tent with experimental results.

As mentioned in Sec. I, DuCharme and Weaver
have obtained the activation energies for self-
diffusion in metals using a modified point-ion pseu-
dopotential. Their results also show that the for-
mation energy is less than the migration energy.
However, since they have completely neglected the
lattice distortions, their calculated values can not
be compared with our results, because tlute relax-
ation energy for the atomic configuration of the
motion of a vacancy is not negligible.

B. Divacancy

The relaxation energy, the formation energy,
and the binding energy are given in Table IV to-
gether with related values. E„ is the potential en-
ergy between two atoms separated by the nearest-
neighbor distance and equals the binding energy of
a divacancy without lattice relaxation. Using nota-
tions defined before, E,=E2&. The binding energy
E&& was calculated from
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TABLE V. Formation energies of a (100)-split inter-
stitial and a body-centered interstitial (in eV).

Potential

Pb1
Pb2

(100) split

2. 01
2. 21

Body

1.76
1.44

A (100)-split interstitial and a body-centered
interstitial are only examined. The formation
energies of these interstitials were calculated in
order to determine which of these interstitials is
more stable in lead. The formation energy for
each interstitial was obtained as the difference of
two crystal energies, one is the perfect-crystal
energy and the other is the energy of a crystal con-
taining an interstitial. These results are given in
Table V. A body interstitial is more stable than a
(100)-split interstitial. This is a very interesting
result, because the most stable atomic configura-

Al to be E&&= 0. 17+ 0. 05 eV. On the other hand,

by neglecting the lattice relaxation, Harrison"
has computed E,~=E„for Al and obtained E&~= 0. 05
eV, which is smaller than the experimental value.
He explained this difference as due to the reason
that much of the binding comes from elastic relax-
ation. In our calculation for lead, however, the
contribution of elastic relaxation is small and a
large part of the binding energy comes from the
nearest-neighbor interaction between two vacancies.
Therefore, a rough estimate of the binding energy
of a divacancy can immediately be made.

The migration energy of a divacancy was cal-
culated to be 0, 36 and 0. 29 eV for Pb1 and Pb2,
respectively. These values are compared with the
migration energy of a vacancy, 0. 77 and 0. 60 eV
for Pbl and Pb2, respectively. Two different
LRON potentials, which are determined at two dif-
ferent temperatures, show the same results that
the migration energy of a divacancy is less than
that of a single vacancy in lead.

C. Interstitials

tion of interstitials has been normally thought to be
a (100)-split interstitial type in fcc metals. This
has been shown by many theoretical calculations,
particularly for Cu. On the other hand, Koehler
and Leibfried' have suggested that the stable in-
terstitial is a body interstitial in Cu and Ag, and a
(100)-split interstitial in Au by considering the re-
covery-peak structures of stage I for these metals.
They have also suggested that a (100)-split inter-
stitial becomes more stable as the potential is
changed from soft to hard, although the repulsive
potential of ion core is not well known. According
to this suggestion, in case of polyvalent metals in-
cluding Pb, a body-centered interstitial is thought
to be the stable interstitial. This is consistent
with our results.

V. SUMMARY

(i) Using the long-range oscillatory pair poten-
tials (Pbl, Pb2) of lead obtained by Johnson, Hutch-

inson, and March, the formation energies, migra-
tion energies, and atomic relaxations around a va-
cancy and a divacancy were calculated. These val-
ues are, respectively, E,~=0. 66 eV, E,"~=0.77
eV, E,~= 1, 21 eV, and E&~=0. 36 eV for Pb1 and

E&&=057 eV, E&&=0.60 eV, E&&= 1.06 eV, and
E~™~=0. 29 eV for Pb2.

(ii) It has been shown that the formation energy
of a vacancy is less than the migration energy and

also that divacancies are more mobile than single
vacancies.

(iii) The formation energies of a (100)-split in-
terstitial and a body-centered interstitial were cal-
culated and compared. In lead, a body-centered
interstitial is more stable than a (100)-split inter-
stitial.
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