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The singularity at the Fermi edge in the soft-x-ray spectra of metals is known to be described by a
factor Igtt' multiplying the onewlectron intensity. Using a separable potential, Nozihes and
de~i~icis showed that a is a function of the Fermi-electron phase shifts. However, $0, treated until

now as a constant, has not yet been derived. Vfe extend the above factor to other frequencies, writing
it in the form G(eg(e)/g. Using simplified diagrams we can introduce a reidistic potential and
orthogo~gg»~el plane waves and we determine 6(e) and 4(a) in a range of about 3 eV from the edge.
The calculations are applied to NaLQ 3 I.iK, and BeK bands. The factor G(c), related to the
open-line part of the problem, presents a singularity in the slope at e = 0. This fact, important in the
K bands, was not realized before. However, the edge singularity does not appear to be strong enough
to explain the premature peak in the Kwmission bands. The p-scattering resonance discussed by
A11otey is probably dominntgt here.
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The 6~'s are the electron phase shifts at the Fermi
level, the scatterer being the localized core hole
involved in the x-ray transition; I i(tc) is the one-
electron transition intensity and coo is the Fermi-
edge frequency.

Since then, a number of papers were devoted to
the study of this singularity where various secon-
dary effects neglected by ND are investigated,
namely, the temperature dependence, the effects
of the many-body correlations, the lattice relaxa-
tion, s and the hole recoil. ~ These effects are
small and therefore the simple model used by ND
may be considered quite satisfactory. In this mod-
el the conduction electrons interact individually
with the core hole through an effective static po-
tential switched suddenly at the moment of the x-
ray transition.

However, Eq. (1) is valid only in the neighbor-
hood of the Fermi edge. Moreover it contains two
unknown constant factors: $z, related to the core-
hole potential, and Go, related to the open-line
part of the problem. Actually these factors are
not constant but depend on the frequency. A better
way to write Eq. (1) would be

It(~)=f i(~)G(~)[t(~)/~~ -~o~)"
with G(&cc) = Gc and t(top) = $s, The aim of this paper

I. INTRODUCTION

The expression describing the edge singularity
of the soft-x-ray band spectra of metals was de-
rived four years ago by Nozieres and de Dominicis'
(hereafter quoted as ND). This expression has the
form of a power law as conjectured by Mahan:

Ii(&c) = It (tc)Gp(4/ I to —ice I )"
with

is to determine all these functions, especially in
the Fermi-edge region.

It is not the first time that the shape of the band
spectra of metals described by the one-electron
model is questioned. Previously attention was paid
to the low-energy features in emission, namely,
the tailing, which modifies the one-electron band
shapes proposed by Skinner et al. ~ In his model
the total intensity is given by I, (cc), which is ap-
proximately proportional to (d

" for the simple
metals (energy &c = 0 is ascribed to the bottom of
the emission band). The contribution of this tailing
to the total emission intensity, however, is weak.
This tailing is due to the electron interactions, which
also play a role inside the bands. This role, investi-
gated in Ref. 5, may be considered to consist of
two parts. First, the static part of the effective
interaction of the conduction electrons with the
core hole gives rise to the edge singularity and af-
fects the whole band in emission and absorption.
Second, the dynamical part of this interaction and
the interactions between the conduction electrons
(correlations) give a contribution which appears as
a more or less constant background, contrary to
what happens with the static part of the core-hole
interaction. The tailing in the emission spectra
chiefly appears as an extension of this background.
It was estimated by the author in collaboration with
Bergersen and Brouerss in a first-order calculation
(see Fig. 1). It depends weakly on the core-hole
structure (treated in Ref. 3 as a point charge) and,
in fact, does not modify strongly the general shape
of the bands.

The situation is quite different concerning the
static core-hole-electron interaction. In the edge
region, where it gives rise to the singularity, an
expansion of the interaction in a few terms is not
suitable. Moreover, as was shown previously, '
the open-line part of the problem is very sensitive
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FIG. 1. Emission and absorption L2 3 band of Na,
according to Ref. 5, {a) in the one electron theory and {b)
when account is taken of the electron-electron interac-
tions and of the dynamical part of the interaction with the
core hole {treated as a point impurity). These effects
are calculated in a first-order theory (which fails in the
small region ~ & 0). The effect of the static part of the
hole interaction, namely the edge singularity, is not
represented here [see Fig. 8(a)].

to the core-hole structure. In fact, up to now, only
the exponent &z& of (2) is known. It is given by the
general ND expression (2). Ausman and Glick"
estimated itfor Li and Na. Further we shall dis-
cuss their values and extend their results to other
metals.

In this paper, however, we shall mainly be in-
terested in determining $(&o) and G(&u). In ND,
G(&u) is an undetermined constant and $(&oo) = $0 is
assumed to be of the order of the Fermi energy

In other words, ND calculations do not depart
from the Fermi edge. Moreover, the problem of
calculating the absolute intensity, solved by Skin-
ner in the one-electron model, appears again.

This latter problem, often let aside is, however,
important. Presently, the absolute intensity is still
considered as hard to measure, but we would like
to point out recent experiments performed by Kerr
Del Grande and Oliver' to determine such intensi-
ties in absorption. Comparison of intensities be-
tween neighboring emission bands with different E

is also possible experimentally and would require
the knowledge of the constant factors in (1). From
a more theoretical point of view, there is an im-
portant question. Is it correct to interpret the
band-spectra intensities as a simple product of a
one-electron oscillator strength and a density of
states? On the other hand, in some applications
one may have to compute intensities by means of a
perturbative expansion of the type

fr (~ ) ~ I i 4& ) [I+ n i In(g, / 1 ~ —~, l )1,
valid at some distance from the Fermi edge. In
such calculations, $0 must be known even if one is

not concerned with the absolute intensity, whereas
in Eq. (1), $, appears only in a scaling factor,
&0&O'

Another problem, considered in this paper, is
the &u dependence of ((&a) and G(&u). The method we
will use gives the best results at the Fermi edge.
However it may be extended safely at some distance
from this edge. In emission, it covers practically
all the band, except the tailing region where the
methods of Ref. 8 give better results. The (d de-
pendence is particularly important for 0.&

&0 {K
bands), where one has to determine the position of
an intensity maximum in the emission bands. The
problem of the premature peak of the lithium-K-
emission band is an old problem. Presently it has
two possible explanations: first in terms of the
electron-hole P-scattering resonance considered by
Allotey, and more recently in terms of the edge
singularity which is a rounding-off effect when o. ,
&0. The problem is to know which of these two ef-
fects is dominant. We will examine this problem
for Li and Be. The ur dependence in (2) may also
be important not only for K bands but also for L2 3

bands, where a, (= o.o) has its largest absolute val-
ue.

In Sec. II we give the general formulation of the
problem, based on the two-Hamiltonian model. At-
tention is paid to the introduction of a nonseparable
potential, i.e. , a realistic potential, which will be
used throughout our calculations. First, in Sec.
III, we treat the closed-loop part of the problem.
We show that the two vertex loops provide the ex-
ponent (2) as a, function of the Born-approximation
phase shifts. In Sec. IV, using various arguments,
we show that these phase shifts give satisfactory
results for the usual metal densities. In Sec. V the
open-line part of the problem is treated. Up to this
section, the calculations are performed by de-
scribing the core-hole interaction with the help of
a pseudopotential; the effects of various model po-
tentials are also considered. In Sec. VI the orthog-
onalized-plane-wave (OPW) method is directly
introduced and applied to the Lz 3 band of Na and to
the K bands of Li and Be. The results are dis-
cussed in Sec. VII.

II. FORMULATION OF THE PROBLEM

The x-ray emission/absorption intensity is given
by

Iq(+) = Re f ds e "'F,(s)

with

E, (s)= Q Z W)~(k') W, ~(k)Mpp(s)+ fft~-l k, fci

Here and in what follows the upper signs are re-
lated to emission and the lower signs to absorption.
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FIG. 2. Diagrammatic representation of Eqs. (7) in
the emission and in the absorption case. The core state
is occupied during the shaded time intervals. The open
circles represent the interaction with the radiation field.

The energies k and frequencies &o are measured
from the bottom of the conduction band;

W, (k) = k'h, (k)F, (k) (8)

[with h, (0) 40] represents the matrix element of the
x-ray transition between the conduction state k and
the core state; l and m are related to the total an-
gular momentum of the core state and the x-ray
photon; one averages over the 2l+ 1 degenerate
states. The propagator Mg {s)may be written' as

( I U'(«, s) sf~(s)U(s, 0)sf(0) U'(0, —«) I)
( I U'( — ) I )

(7a)
in the emission case, and as

( I U(«, e)e,.(s) U'(e, O) a-„(0)U(O, —«) I )
( I U'(«, —«) I )

(7b)
in the absorption case. We use the two-Hamilto-
nian model which is now standard for this prob-
lem. ' When the core state is vacant, the evolu-
tion of the system is described by the operator U',
related to an electron gas interacting with the lo-
calized charge + e. When the core state is occupied,
the operator U is used, which is related to the usu-
al homogeneous electron gas. The general dia-
grams describing Mg. (e) are given in Fig. 2. In
the absorption case, the ND diagrams are easily
recognized. The emission case is somewhat more
sophisticated because we consider that the scat-
terer is present in the initial state, contrary to the
ND model, where it acts in the final state both in
the etnission and absorption cases. This conven-
tion, which we used before, ' allows us to describe
the one-electron states by nonscattered Bloch
waves in both cases. However, a relevant vacuum
contribution coming from the renormalizing de-
nominator of (7a) must be taken into account. This
contribution is represented by the last term be-
tween the brackets in Fig. 2(a). The shaded in-

tervals in Fig. 2 are those during which the scat-
terer does not operate. The thin and heavy lines
are defined as in Fig. 1 of ND: The thin line de-
notes the free-electron propagator, the heavy line
the renormalized propagator when the scatterer is
present.

The exponent (2) contains two terms .The first
one, 25,/s, comes from the open-line contribution
of Fig. 1 and the second one,

eo= —2 2 (2I'+ 1)(5,./w)'
r'*0

(8)

Concerning the closed-loop part, we will only
take into account the lowest-order significant loops,
which are the two vertex loops. Such an approxi-
mation can be justified by showing that it leads to
quite satisfactory 6&'s. Let us consider first the
case where only one loop accompanies the x-ray
process and let us represent this single-loop con-
tribution by C&,. In Fig. 2, it appears in a factor
e )«~ which is then approximated by (1+C„„).
Using the diagram rules stated in Appendix C, Eq.
(5) takes the form

E,{s)= E~ (s)( 1 + 2 Z (2 I '+ 1) j~ dp fo

x lV%&i ~ (P, Q)l fd4 f dt's e ' ' ),
(9)

where F& (s) is the open-line contribution. The
integration domain of (t„t~) is [(0 &t, &s or 0&t~ &s)
and t~ & t~] in emission and 0 &t~ & t)) & s in absorp-
tion. After performing this integration and drop-
ping the terms proportional to s, which only pro-
duce a band shift irrelevant to the present prob-
lem, Eq. (9) is substituted in (4). This gives

r, ( ) i,') )+f a)f"~
ao 0

x(I, (&o)-Ii[~s (—pq )]) ), a). ' (10)4&co(p, e)
(p -q)

with

comes from the closed-loop contribution. This re-
sult was obtained by ND and other authors~4 by re-
placing the realistic core-hole potential by a sep-
arable potential. This approximation allows one to
establish the power law with a correct exponent,
but fails however in the calculation of $(v). Such
a calculation requires a realistic Potential. It is
what we do, but we will be compelled to make other
approximations. In fact, we will use two types of
approximations. One applies to the closed-loop
part of Fig. 2, the other to the open-loop part, and
the validity of these will be checked by appealing
to the ND expressions (1) and (2).

III. CLOSED-LOOP CONTRIBUTION
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"l~td, d) —~(do ds)l ~ ~tds &c)f dd
hp p

dtd -d —
)}

4pq
(P -q

The last double integral gives 1+1n((up/t) and we
obtain

I, (-(uo) =I t (-(uo) [1+Eo(s)]

with

&p(e) = «kp& kp) [I + ln((up /e)]

and

(12)

I=1+ dp dq o oo
' —1 . (14)

o (P -q ) «ko~ko)

Let us now introduce the phase shifts in the Born
approximation which at the Fermi level are related
to the core-hole vertex function D~, defined in Eq.
(Bl), by

5i = o akpDi(ko, kp)

=(8vk ) if dkkv(k)P, (1 -k /2k ) . (15)

Then, using Eqs. (8) and (11), one has

&o= «ko ko) (16)

for the negative term of the exponent a&. Equation
(12) can then be considered as the first two terms
of (1) in a op expansion. Up to now, two approxi-
mations are made: (i) Only one loop is used; (ii)
this loop has only two vertices, this latter approxi-
mation being equivalent to the Born approximation.

At the Fermi edge, however, the one-loop ap-
proximation can be brought back to a many-loop
treatment. Indeed, in Eq. (12) I i appears as a
general factor, and such is the case for all the
other terms related to any number of loops. More-
over, the second factor of (12), which has the form
1+Ep, can be continued as 1+Ep+ 2Ep+- ~ ~ =e o,
and (12) can then be restored into the power form

I)(- (uo) = I i (-&uo)(go/e)'p (1V)

with
(e

I
(dpe (18)

a
«p, q) = ——

Pq Z(2l'+ l)[L'r'(P q)]
fs ~p

The star still refers to the open-line contribution.
At the Fermi edge, i.e. , for the frequency cop+ 4,
with e = I &u —(up I vanishing, Eq. (10) can be written

) ( g)=) ( g)I t+f dlf'd) (d P
hp 4'

tP -e

I ) [tu a (P —q )] 4Pqo(fp~ q)
I', (t ) (p'- q')'

Writing E(tu) = op ln [$(tu)/I tu —(up I ], we obtain for
$((u) the expression

5(tu)= l(u —(uple '""", (21)

which tends to Eq. (18) at the Fermi edge, in the
same way as (10) tends to (12).

In the framework of the Born approximation, we
obtain in this way an expression for $((u) for the
closed-loop part. This expression is correct at
the Fermi edge as given by Eqs. (18) and (14) and

may be extended to other frequencies in the form
(21), as long as l(u —tuol does not exceed the Fermi
energy.

The next point will consist in showing that the
Born 5, 's given by (15) are satisfactory at the Fer-
mi momentum. If this is true, it implies that Eqs.
(16) and (11)will yield, as a good approximation,
the second term. op of the exponant n„and that the
loops with more than two vertices will on1y contrib-
ute a small correction to (21).

IY. BORN PHASE SHIFTS

The 5&'s are expressed in the Born approximation
by Eq. (15), where v(k) represents the effective po-
tential seen by a conduction electron. This poten-
tial takes into account the screening effect of the
other conduction electrons and the structure of the
core hole. These two effects are separated if we
write

v(k) = v»(k)/e(k) (22)

where v»(k) is a pseudopotential containing all the
core structure, the conduction electrons being de-
scribed by plane waves; e(k) is the Lindhard static
dielectric constant related to the screening effect.
For small k, v(k) tends to the Thomas-Fermi po-
tential

quencies. Let us consider again n loops instead of
1. The new terms coming in Eq. (10) will contain
convolution factors like I

& (tung& „(p&-q&)) which
are not too troublesome. Indeed the integrants
peak strong1y at p& -q~ -0, and the arguments of I~&

can be simplified into tu+ (pi -qt), in such a way
as to allow a factorisation. Equation (10) can then
also be generalized to any number of loops, giving
the exponential form

I, ((u) = I', ((u) e""', (18)

with

d(a) f ddf dd

This method is exact only at the Fermi edge but
it also provides a good approximation at other fre-

Sea~
k k+k, (23)
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with k, = 4kp /was.
Up to now we only know the values of e& and 5&

proposed by Ausman and Glick ' for Li and Na. We
shall begin by showing that these values are very
close to the ones obtained by means of the Born ex-
pression (15) and the above Thomas-Fermi poten-
tial. By substitution of Eq. (23) into (B5) or (15),
one has a solvable integral, ' giving

p2i 2 $2

ma& Pq
(24)

where Q& is a Legendre polynomial of the second
kind. Hence, one has

5, = (askp) Qr(l + ks/2ko) (25)

5( = —,
'

w(x —1) (()((x)

(w, = (x —1) [Q, (x) —
p (x+1) ]

with

x = 1+ 2(waskp) = 1+0.33r,

(27)

(28)

Inthe caseof Li (r, = 3. 28) andNa (r, = 3.96), we ob-
tain the values given in Table I, where they are
compared with Ausman and Glick's results. The
agreement is very good. But such an agreement
must be explained, since at first sight the Born
approximation seems rather crude, especially con-
cerning 50.

The condition of validity of the Born expression
(16) is v(r) «kpp at the distance r- [I(I + I)]"p/kp.
Using the ~-dependent Thomas-Fermi potential
vTz(r) 2(a|(r) =' e ' ", this condition becomes

e-(4(((+()/raskp& (( ( [I(I 1)]1/2
g/2

which is satisfied only for /) 1. In other words,

Concerning (w(, let us consider a(p, (I) given by Eq.
(11) or (B6). In Appendix B, (B6) is shown to be
equivalent to (B8), i.e. ,

(T(p (I) (2w) fj&,(
dk k [v(k)] (26)

which applies to any local pseudopotential. In the
special case of the Thomas-Fermi potential and
for |P = (I = kp, Eq. (26) becomes op = —-', (1+ waskp) '.
This gives, with Eq. (25), the following very sim-
ple expressions for 5& and ~&..

Eq. (16) is valid for all the 5('s except 5p. This
latter 50 can now be calculated with the help of the
Friedel sum rule, that is,

5p= p w —Z(21+ 1) 5(
f p(f

(28)

= (kp/4w) [v(k)] p p

For k = 0, potential (23), as well as potential (22),
have the limit 8w/ask, = 2w /kp, and this verifies the
sum rule. The Born 5&'s can now be shown to be
acceptable. Indeed let ~5& be the error introduced
in 5, by the Born approximation. For l 40, 45(/5(
is small. On the other hand, 50 and & n —50 are of
the same order, as can be seen in Table I. Hence
according to Eq. (29), one has

&5p/5p= &5p/( p w —5p) = Z(2l+ 1)&5(/2 (2l+ 1) 5,
&~1 l&1

= &5(/5( (with I &0)

which shows that &5p/5p also is small.
The agreement with Ausman and Glick is partic-

ularly interesting because these authors use quite
a different method and approximations. However,
their method is not so straightforward. It consists
in substituting a nonseparable potential in an ex-
pression established by ND for a separable poten-
tial. Furthermore this expression [Eq. (43) of ND]
is nothing else than the solution of an equation es-
tablished by Kohn 6 for a very general potential,
solved by ND precisely because they use the ap-
proximation of the separable potential. This in-
troduces in Ausman and Glick's calculations a num-
ber of approximations which are hard to estimate
and which finally require the introduction of a scal-
ing parameter g to satisfy the Friedel sum rule.
This parameter is taken as being of the order of

where the Born 5&'s can be substituted in the second
member. But this will also provide a Born 50 given
by (15). Such a result is due to the fact that the
Born phase shifts at the Fermi level satisfy exactly
the Friedel sum rule. This property of the Born
5('s can easily be verified by means of Eqs. (16),
(B4), and (B7) with r=r', which give

Z(2l+1) 5, =kpf drrwv(r)Z (2l+1)[j,(kpr)]P
l~0 gso

TABLE I. Phase shifts and ND exponent for Li and Na. The numbers in parentheses are those proposed by Ausman
and Glick {B,ef. 11).

Li (~, = 3.28), g= —0. 176 (-0.199) Na (r~ = 3. 96), 0 = —0. 198 (- 0. 189; —0.232)
~r C)

0. 891 (0. 914)
0. 152 (0. 149)
O. 031 (0. 025)
0.007 (0.005)
0. 0015 (0.0011)

0. 391 (0.409)
—0. 079 (-0 ~ 104)
—0. 156 (-0.183)
—0. 172 (-0.196)
—0. 175 (-0.198)

0. 955
0. 145
0. 026
0.005
0. 0010

(0. 921; 1.04)
(0. 163; O. 133)
(O. 024; 0. 019)
(o. oo4; o. oo3)
(o. ooo8; o. ooo7)

0.410 (0.398; 0.433)
—0. 106 (-0.085; —0. 148)
—0. 181 (-0.173; -0.220)
—0. 195 (- 0. 186; —0 ~ 230)
—0. 198 (-0. 188; —0. 232)
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proposed by Ashcroft for seven metals versus the
radius R~ of the Slater valence orbital in the free
atom. The related points are practically located
on a straight line passing through the origin, the
largest deviation being = 12%. Concerning the pres-
ent problem, we have by the way a method to es-
timate the change in the Ashcroft radius if an elec-
tron is missing in a core shell. We compute the
new orbital radius of the valence electron by means
of the Slater rules and then use the linear relation
emphasized on Fig. 4. For Na, one has, according
to Slater rules (in atomic units),

-01%~ P=]

P=2

P=3

R@——n*/(Z —s) = 3/(11 —8 x0.85 —2 x 1.00) = l. 364

and, if a 2p electron is missing,

R„=3/(11-7x0. 85- 2x1.00) =0.987

Hence we deduce the modified core radius of Na:
FIG. 3. Exponent 0.'& as a function of the electron-

density parameter x~, according to Eq. (28).

0.6, while it should normally be very close to 1;
moreover it depends, although weakly, on the mag-
netic quantum number of the core hole, which is
not to be expected on physical grounds. Our meth-
od, which is much simpler, may in a sense extend
Ausman and Glick's conclusion for Li and Na to
other metals, according to which conclusion a& is
positive only for l = 0. This conclusion appears
verified on Fig. 3. It should be noted that a spike
in K bands (a, & 0) would require r, ~ l. 6, a density
too high for the normal metals, except perhaps Be.

One may, however, wonder whether the values
given by Eqs. (27) and (28), and by the way by Aus-
man and Glick, are not overestimated for 50. In-
deed those values for l &0 are probably a bit too
small, the Thomas-Fermi screen being too strong
for small distances. Equation (29) would then in-
dicate that 50=0.96 given in Table I for Na is prob-
ably overestimated. On the other hand, if we use
a pseudopotential, for instance the Ashcroft pseu-
dopotential, we obtain a very small 50. Ashcroft
proposes for Na a pseudopotential having a core
radius of 1.66 a.u. This radius is a cutoff distance
below which the Coulomb potential is canceled by
the core effect. This would give 5z = 0.53, surely
too small. However, using a comment made by
Ashcroft, 8 his core radius can be decreased to
take account of the inner-shell ionization. The
point is to know how much the core radius has to be
so modified. Towards this end, one may look for
a relationship between the core radius R, proposed
by Ashcroft and some atomic property like, for
instance, the orbital radius of the valence electron
in a free atom. ' To determine this, we can use
the rather simple technique provided by the Slater
rules. In Fig. 4 we represent the core radius

R~~ = R~Ra~/Rsi = l.20 a. u.

2.0

1.5

0.5

0.5 1.0 2.0

FIG. 4. Ashcroft core radius R~ vs the Slater radius
Rsq of the valence orbital for seven metals (closed cir-
cles). If a core electron is missing, one can estimate
the modified R~ (open circles) by computing the new R~
and then by using the quasilinear law shown in this figure.

instead of R, =1.66 a.u. For Li, the same method
gives R~ = 1,21 a.u. for a missing 1s electron in-
stead of R, =2.00 a. u.

As shown in Table II, the modified R,* gives val-
ues for 6~ and a& closer to the Thomas-Fermi val-
ues, and then may be expected to be rather close
to the actual values. In Sec. VI, we will use the
OPW method, which is more accurate, than the
previously mentioned "modified" pseudopotential
method. We obtain the results given in the last row
of Table II. These results are rather similar to
the preceding ones. However for Li, a& is again
negative as obtained by Ausman and Glick and as
suggested by observed K bands.
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TABLE II. Phase shift, exponent, and constant $p of Eq. (1) calculated using (a) the
Thomas-Fermi potential, the Ashcroft pseudopotential (b) with a normal core radius and (c)
with a modified core radius, and (d) the OPW method of Sec. VI; $p is defined by Eqs. (18)
and (14).

5p

Na L&,3 band

&o &p

Li K band

&o

Be K band

4p

(a) TF
(b) Z,
(c) 8
(d) OPW

0. 96
0. 53
0.76
0. 70

0.41 0.417
0.24 0.333
0. 34 0. 353
0. 33 0. 349

0. 15
0.29
0.21
0. 14

—0. 079
0. 122
0. 035

—0. 057

0.401
0. 390
0. 324
0. 365

0. 15

0. 16

—0. 018

0. 016

0.359

0, 307

The use of the pseudopotential is very straight-
forward, but is probably not quite safe, especially
if large k's are involved inthe calculations, as could
be the case for the open-line contribution. In any
way it gives, concerning the exponant a&, results
which are certainly a good estimation of it.

The conclusion of this section concerning the
closed-loop contribution to the ND problem is that
the two vertex loops give the dominant contribu-
tion. It is indeed those loops which allow us to get
results similar to those of Ausman and Glick ' and
probably even better results, according to the way
the short-range structure is treated.

limits, (0, k()) or (k(), ~), depend on the hole or par-
ticle character of the corresponding k states. The
first sum goes over the n+ 1 possible choices of
the 5 function among the 8's, and the second sum is
over the n t possible arguments of these functions.

We will make two assumptions. The first, also
made in Sec. IV for the closed-loop part, is still
valid for the open-line part: The phase shifts given
by the Born expression (15) are satisfactory. The
other assumption, which will be dropped later for
the lowest-order terms, is the following: We will
assume, as in ND and Ref. 14, that D, (k, k') is sep-
arable and write

V. OPEN-LINE CONTRIBUTION

The introduction of a realistic potential in the
open-line part of the diagrams seems more diffi-
cult. In this case it is not possible to isolate dom-
inating diagrams as was done in the case of the
closed-loop part. At the Fermi edge, this open
line is shown by ND to give a power divergence of
the form

kk'D, (k, k') = u(k')u(k")

Let us write for simplicity

k' k)(k)=w(k )

and introduce the following functions:

Utr) =+ 2fdr

(33)

(34)

(35)

I 0
( ) ~ (g /~)25(/r ((25(/r) ln((p/6) )
(d 0 (30) V((o) = a u (k')w (k2)

k2 (36)

If we only use open lines with a finite number of
vertices, it is, of course, not possible to repro-
duce this exponential form.

Let us consider, however, the expansion

I )'(~) = I2((w)+I ((w)+I'((w)+ ~ ~ ~ (31)

x8 [kkD(k, k)]8 ~ ~ ~

x 8„.[k„kD,(k„,k)] 8 [k" h, (k)], (33}

where the 8's represent [&o a k(+$2„(k2—k, )] ', ex-
cept one of them, which is the 5 function 5((() + k(
+ g),„(k&—k2)). The signs + and the k-integration

where the successive terms relate to open lines
with 0, 1, 2, etc. , vertices located in the unshaded
regions of Fig. 2. The general form of the n ver-
tex term is, according to the rules of Appendix C,

I",{(0)= Q 5 (+ 2)fdk'f dk, f dk2 ~ ~ ~ fdk„fdk
8)ud are())

)([k' k, (k')] 8'[k'k D, (k', k )]

II'((o)=sfdk[u(k )] 5((o —k )= 2s(o ' [u((o)]
(3'I)

V'((o) = )/f dk u(k ) u (k ) 5((() —k )

= -', s(0 (/2u(w) w(w), (36)

W'((o) = sf dk [w(k2)]25((o —k ) = —,
'

w&o "'[w((u)]2

=I)(w) (39)

I4( ) I()( )
8(/(e)

The signs in E(ls. (35) and (36), and the integration
limits, (0, k()} or (k(), ra), depend on the hole or par-
ticle character of the state k.

In addition to E(l. (33), ND also assumed that
w(k ) and u(k ) were proportional functions. (We,
however, will not use this assumption. ) Using the
Born phase shifts and this second assumption of
ND, i.e. , w(k )= cu(k ), we could write (30) in the
form
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= c'Z(nf) ' U'((o) [U(a1)]",
n~0

which would mean that

(40) I &(~)=I1(~)C(~) U(~),

Ii((o) = [I1(ra)/(n+ 1){][2+ (n —1)C(~)]

(49)

I",((o) = c (n{) U'((o) [U((o)]" (41) x C(&u)[U(&o)]" for n) 2 . (50)

In other words, the initial and final radiative ver-
tices of the open line would be treated on the same
footing as the vertices related to the interaction
with the core hole. In that case, all the free prop-
agators contributing to the open-line part are of the
same type as in the closed-loop part. This shows,
by referring to Eqs. (35), (33), (15), and to the
closed-loop results, that we could write

U((o) = (25,/2) ln [$,((o)/ l (o —(@aI ] (42)

which is consistent with ND results as well as with
the results and discussion of Secs. III and IV. In-
dex l in $& means that, in the definition (21) and
(20) of $, c(p, q) and &ra are replaced by c, (p, q) and
o,o, where

c1(Ps q) = 2Iq(2 i+ 1) [—D1 (P, q)]

o«= —2(2I+1)(5,/2)' .
The situation, however, is not so simple if we

consider w(k ) and u(k2) as being two different func-
tions. In this more realistic situation, the second
member of Eq. (41) has also to contain V(~) and
V'(&o). To see how to modify (41), let us consider
(32). The first summation in Eq. (32) is carried
over n+ 1 terms. Two of these terms are obtained
by substituting a 5 function for 8 or 8', which
means that in (41) U'U" has to be replaced by
V'U" 'V. The n —1 other terms of Eq. (32) are ob-
tained by the substitution of a 5 function for one of
the 8„.. . , 8„., which in (41) would modify U'U" in-
to VU'U" 'V. All that shows that Eq. (41) has to
be replaced for n~ 2 by

I i = [(n+ 1)t] [2 V'U" 1V+ (n —1) VU'U" 2V]

(43)
For n = 1, one simply has I

&
= V'V and, for n = 0,

I
&

= W'. These I
&

can now be added to obtain the
exponential form. One gets

I,*(+)= I', 4d) [&(~)e""'+B(/d)], (44)

with

X=C2+2C(1-C) U-'

B= (1 —C)(1 —C-2CU ) I

and

C
uv
~U

(45)

(46)

(47)

IO( ) 4 &
1+1/2 [h( 1/2)] 2 (48)

where A, B, C, U, V, u, and u} depend on ~. The
U and V expansion of Eq. (44) is thus equivalent to
(31), the successive terms being

It is interesting to note that I&(&u), as well as I, (&g),
is not affected by the separability assumption (33).
Indeed for n= 1, Eq. (32) becomes

Ii(/d) = —2fa

dk'2}(+kayak')

f„dk
xk' " h, (k') 26(ur —k'2)

x D, (k', k)(~ —k2) 1k"2h, (k), (51)

where the separability is not required to perform
the integration. One obtains (49) with

~0 Q2
C((o) U((o) = 2 dk

x 1/2 U2 D, (k, ~ ) . (52)
k ' h (k)

(0 h1 ((0

For n= 3, the agreement between Eqs. (50) and
(32) is no more exact, but still very good, especial-
ly concerning the dominant term, where 8, (&o —k, )
= 5(&o —k, ). Equation (44), where U is given by (42)
and CU by (52), thus restores the lowest-order
terms without requiring the separability of D, (k, k ).
Concerning the higher-order terms, a result of the
same type as the closed-loop contribution can be
obtained using the same $(m).

Grouping Eqs. (19) and (44), we obtain Eq. (3)
with

G(~) =&(~)[51(~)/h(~)]""'

This gives an expression of the edge behavior of
band spectra which is not only a good approxima-
tion of the ND result regarding the exponent value,
but which also describes the absolute intensity of
the bands, in the frequency range of about coo above
(or below) this edge, in emission (or absorption).
An important point has to be emphasized, which is
the singularity in the slope of G(~), right at the
Fermi edge. This point, not mentioned until now,
will be discussed in Sec. VII. However, before
surveying the present results, we would like to
present more detailed calculations where the pseu-
dopotential method, used up to now, namely, in the
expression of D&(p, q), is finally replaced by the
more elaborate OPW method.

VI. INTRODUCTION OF THE OP%'S

In this section some details are given about the
calculation of $(u&) and G(+). The following two
cases are considered: (i) The conduction electrons
are described by plane waves (PW) and the inter-
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action v(k} with the core hole is represented by a
pseudopotential. (ii) The electrons are described
by OPW's and v(k) represents the screened Cou-
lomb potential of the core hole. This latter ap-
proach is better, since the pseudopotential is not
fitted for large k's whose contribution may be im-
portant, particularly in the open-line part, as was
shown previously.

The difference between the two approaches es-
sentially appears in the treatment of D,(p, q}, as
given by Eq. (B1). In the first method, the func-
tion u, (k, r) appearing in (Bl) is the Bessel func-
tion j,(kr), and v(k) is given by Eq. (22), where
we use the Ashcroft pseudopotential" v„(k)
= Sx(as k ) cos(kR, ). In the second method the
more sophisticated u, (k, r} given by (A3) is used
and the potential is

v (k) =g(k) v cb(k)/p (k), (54)

where vcb(k) = Sv(ask )
' is the Coulomb potential

and g(k) is the charge density of the core hole.
In coordinate space, Eq. (54) has the form

P

v (r) = d x'
/
g, (x')

[

o v*( /x' —x
/
),

where v*(r) is the Fourier transform of vcp(k)/e(k).
This shows thatg(k) is given byg(k) = (g, (e'I'*lg, ).
If g, is degenerate, an average is performed over
the degenerate states to take account of the flip-
ping due to the electron collisions. Explicit ex-
pressions of g(k) are given in Appendix A, namely,
Eq. (A13) for the Na Lo o state and Eq. (A14) for
the K state in Li or Be.

The expression of $(&o} essentially appears in
the close-loop calculation of Eq. (21), where (20)
and (11) are used.

In the PW case, where a(p, q) is given by (26),
it is easier to change the order of integrations.
One obtains

E((o)= —(2v) 4 dkk[v(k)]o d(g'(g' o

0 &Q

x[1-Ii'(~ +~')/Ii'(~)] T(k, ~'), (55)

with m' =p —q and

T(k, pp) = (g' for 0&&'&k-k

= —,'[1—(pp'/k —k)'] «r ~k —k'~&(u'&k+k'

=0 elsewhere

Incidently we notice that T(k, pp) is directly related
to the Lindhard dynamical dielectric constant by
the relation v cb(k) T(k, &o ) = Svk Im e (k, &o ). Such a
relation is not surprising since the Lindhard c(k, ~)
is also calculated in the two-vertex-loop approxi-
mation. The &' integration can then be performed
analytically in (55) if I~o(td) = pvro' +

[h(&u
~ )]o is

approximated by I~o(&p) = —,'x&o' ~o[h(0))o. This as-

sumption considerably simplifies the calculations
and introduces only a small change in Eq. (55),
since the integrant peaks strongly for &'= 0. So
only a simple integral over k remains, which can
be performed numerically. At the Fermi fre-
quency the divergent term has to be extracted first,
as in Eq. (13). Then L, given by Eq. (14), can be
computed in the same way as E(u&)

Once $(&o) and $,(~) are known, one can calculate
G(&o) given by (53). In Eq. (53), A(&u) and B(&o)
are given by (45) and (46), using C(&o) and U(&o) de-
fined by (52) and (42). So the main problem is to
calculate C(+) U(&o) = I, (&o)/I, (~) as given by (52),
the rest of the calculation being straightforward.

First let us consider again the PW case. Using
Eq. {B5)and changing the order of integrations,
(52) becomes

C((o) U(pp)= (2x ) l( dkkv(k)Mg(k, (o)
Jo

with, by writing & =u,

(56)

0+u

M, (k, u)=rt(k —kp+u) dp(p -u )
max(ao, la-u I )

P" h, p p+g —k

The integration in this expression can be per-
formed analytically. Let us note that, here, re-
placing h, (p) and h, (u) by h, (0) could introduce a
serious error since the large p's play an impor-
tant role, especially when /» 1. Anyway, the
analyticintegrationof Eq. (5V) is possible here,
even with the exact h, (P). For the Fermi fre-
quency ={do, i.e. Q =ko the divergent term~ 2 2

has also to be isolated in (5V), by writing

Mr{k~ &go)=q{2ko k)(2ko) ~Pi(1 —k /2ko)ln(+o/&)

+ convergent terms. (58)

This divergent term substituted in Eq. (56) gives,
using (B5) and (B3),

C( u)p) U( (op) = (25g/v) ln((dp/e)

+ convergent terms.

Looking now at Eq. (42), one sees that C(ep) = 1;
thus G(&up) = [4(&uo)/$(&op)] '~ ~' is finite at the Fer-
mi edge (an practically equal to 1). However,
special attention must be paid to G(&o) in the Fer-
mi-edge region, where it varies rapidly, as shown
on Fig. V. In that region, using expressions like
(58) and (59), where the diverging term is ex-
plicitly written, may considerably increase the
precision of the numerical calculations.

Until now, we have only considered the PW treat-
ment, which is the first step in the OPW method.
The introduction of the OPW's requires first the
use of Eq. (54) instead of the pseuodpotential,
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F~G. 5. Frequency dependence of f(u) using the pseudo-

potential method (dashed curves) and the OPW method
(solid curves).

& [C(&u) U(&o)] = 2 ' dk
&op

k ' h (k) , g/2X 1/2 I 1/2) D J(k& K )q
~ l~+

where o'(p, q) and D', (p, q) are given in Appendix
B. Here the calculations are mainly numerical,
the first step being the tabulation of 0' and D', .
Let us note, however, that for the K bands of Li
and Be, one has A [C(&u) U(&o)] = 0, since D;= 0.

VII. RESULTS AND DISCUSSION

The aim of this paper is to calculate the func-
tions appearing in Eq. (3) in a frequency range of
a few electron volts, in the Fermi-edge region.
In emission, our results concern almost all of the
band except, however, the tailing region. The cal-
culations are applied to three simple metals, Li,
Be, and Na, where the effects due to the band
structure are particularly weak and where the
OPW method can be used rather easily.

The function $(&o) was first investigated. This
function appears as a constant in ND calculations
and is presented as being of the order of the Fer-
mi energy &o. This prediction is good. In Fig.
5, $(~)/4~2 is plotted for the three metals con-
sidered and $2//kd2 values lie between 0.3 and

then the introduction of additional terms in E(&u),
for the ](~) calculation, and in C(e) U(&o), for the
G(&) calculation. According to Eqs. (20) and (B11)
on one hand, and a,ccording to Eqs. (52) and (B9)
on the other, those terms are, respectively,

~kp

AE((o)=' dP
~

dq
"'o

f,'[~+ (p'- q') 4pqo'(p, q)
f,'(~) (p'- q')'

LiK~
BeK~

NaL»

I I

em. abs.

LiK

BeK

NaL23

0.
I

0.1 0.2 0.3
I

0.4

FIG. 6. Frequency dependence of G(m) using the
pseudopotential method (dashed curves) and the OPW
method (solid curves). Only the OPW results are re-
liable. For a=-&0, G(cu()) is equal to 1.03 for Na, 1.14
for Li, and 1.13 for Li. These values are represented
by the open circles.

0.35. On the other hand, the results calculated
by using a pseudopotential (dotted curves) are
close to those calculated by the more precies OPW
method. The value of $o can thus be estimated
rather easily by means of Eqs. (18) and (14) for
metals where a pseudopotential is known. More-
over Table II shows that the parameters appearing
in the pseudopotential can be approximately es-
timated without important changes in the value of

In our calculations, for instance, the Ash-
croft radius R, was replaced by R, , to take ac-
count of the deep core ionization, but R, gives al-
so a rather reliable $2. All that is due to the
fact that the large k's for which the pseudopo-
tentials are not fitted do not play an important
role in Eq. (55). The same can be said about the
calculation of a, , where an expression like (28)
can easily be used for a first estimation. Con-
cerning the ~ dependence, $(&o) appears as an in-
creasing but smooth function and this enables one,
in a first approach, to replace $(+) by a constant
$p without modifying too much the edge shape. In-
deed, for 1.~ 3bands, where the effect of the sin-
gularity appears in a rather extended region (1 or
2 eV), the variation of $(cg) is particulary weak.
For the K bands, however, the slope of $(+) is
more important, but here also $(&u) can be re-
placed by (p, since the singularity effect appears
in a much smaller region, because of the small value
of nq.

Concerning G(&u), given in Fig. 8, the situation
is quite different. First, one has to take account
of the detailed core structure, since here the
large k's are important. Figure 6 shows that the
discrepancy between the pseudopotential results
and the OPW results is large and only the latter
results are reliable. Another point is that G(&u)

acts as a constant in an important part of the bands.
For the three metals, the constant part of G(co)
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We consider the core wave functions $,(x) as
strongly localized and we describe the conduction
electrons by the single OPW's:

P„"(x)= (2v) 3 e' '* —Zg,"(k)g,(x), (Al)
c

where g, (k) is the Fourier transform of g, (x). As
discussed in a previous paper, the OPW charac-
ter of the conduction-electron wave function is
important only close to the ion involved in the
x-ray process. We can then write g, (x)
=R„,(r) YP(x) and express Eq. (Al) as a sum of
partial waves, that is,

P(x)=(2v) ~ 4v Q Q i', (k, r) Y, (k) Y", (x),
lII0 tlt+~l

(A2)
with

u, (k, r}=j,(ky}+g,(k, r) (A3)

&c+& CO

g, (k, y}= —Q R„,(r) dr r j,(kr')R„,(y')
g*1 0 (A4)

The functions g, a.re different from zero only for
l c /„where l, is the largest angular momentum
appearing in the core states.

We use the core-state wave functions provided
by the Qater rules, ~0 which are quite satisfactory
for the metals considered in this paper, i.e. ,

give the band shape (dotted line), if one supposes
G(&o) = G(&oo). The change in the band edge due to
G(&o) is more evident in K bands, where the round-
ing off effect is increased.

An important fact has still to be emphasized.
Figures 8(b) and 8(c) show that the edge singularity
is not sufficiently strong to explain the premature
peak observed in the emission E bands of Li and
Be. This could already be surmised by a look at
the small values of 0.& in Table II or even in Fig.
3. (For Be, n, is even slightly positive. ) The
introduction of the singularity in the slope of G(u&)

does not modify this situation very much. So it
seems that an important credit has to be given
back to Allotey's theory, where these premature
peaks are explained by an electron-hole p-scat-
tering resonance.
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APPENDIX A: WAVE FUNCTIONS AND OTHER RELATED
EXPRESSIONS

Na, Li, and Be. For Na, one has

R,o(r) = 2n" se

Rao(r) =2Ps sA[ye + —24ns(n+P) 4e "],
Rs, (r) = 2(P'/3)' re ~,

with

A=[3-576n P (n+P} ] '~,

(A5)

R„(r)= 2n"'e (A7)

with 0. = 2 —0.30 = 1.V for Li and Qt = 3 —0. 30 = 2. 7
for Be. This gives

g~(k, r) = —Sn (k + n ) e (A8)

Let us now consider the x-ray transitions ma-
trix (g, ~n p~gg). For the Ll ~b anodf Na the
transition involves the 2p core state. Using Eqs.
(AS) and (A6), one obtains

&4~s pistil&)=8(2P')"'(iv) '

x [5 H(k) + (-,
'

5 k' —k„k,)(ki+ p')-'], (AQ)

with

n 4 2n —PQ Q(k —3P3) + Sks

n + P P(k'+ n')' 24(k'+ P')*
(A10)

2 Pz 4 Pa

The two terms in the brackets of Eq. (AQ) are,
respectively, related to transitions involving the
s term and the d term of g~. The Kronecker 5
means that the photon polarization vector n has
the direction of the p-state g, . Since, for k's of
the order of k0, the d term is quite negligible in

(AQ), Eq. (6) can be written as Wa~(k)=ho(k)YOO(k),
with

ho(k) = H(k) jH(0). (A11)

The corresponding expressions are simpler for the
K bands of Li and Be. According to Eqs. (A7) and

and, in a.u. , n = 11—0. 30 = 10.7 and P = -,' (11
—0.35 x 7 —0. 85x 2) = 3.425. Since l, = 1, this gives
the two functions

go(k, r) =s(k)e "+b(k)re ~",

g, (k, r)=c(k)re ~,

with

s(k)= —Sn~[n(k +n ) +3b(k)(n+P) ],
b(k)= SA P [(k —3P )(k +P )

+24n (n+P) (k + n ) ],
c(k)=-~P k(k +P ) ~.

For Li and Be, the only core wave function is
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(A8), one has

((,in pilaf)=2(2a')' v 'k„(k +a )

in

D', (p, q)=2& ' drr j,(pr}j,(qr)v(r), (B4)

g(k)=s 2 g,.(k)
C

= (1 —k /4P )(1+k /4P ) (AI3)

For the K bands of Li and Be, g, is the nonde-
generate 1s state and one has

where g, is the ls core state, so that Eq. (6) be-
comes W, (k)= kh, (k) Y, (k), with

hi(k) = (1+k /4a ) (Al 2)

where Y', (k) gives the photon polarization. In Eqs.
(All) and (A12) we write h, (k) in such a way as to
have h, (0) = 1.

Finally let us mention the expression of g(k)
=(tf, ie' '*if, ) appearing in (54). Inthecaseof the
L2 3band of Na, a flipping of the 2p state ispos-
sible and one has, in principle, to introduce the
nondiagonal matrix element

=[5„.—6k, k, (k +4P } '](1+k /4P )

However, after averaging, one has

one obtains

Di(p, q)=(4v'pq) ' 2 2 k2
dkkv(k)P, 2 )

(B5)
or, after an evident change of variable,

~+1

D', (p, q) = (4v') ' duv [(p'+q' —2pqu) '~']Pg(u),

which can easily be computed and tabulated. To
handle

o'(P q)=-2Pq ~ (2I+I}IDI(p q}]'
i=0

we use the expression

(B6)

(pR) 'sinpR = 4 (2l+ I)j,(pr)j, ( pr') P, ( u) (B7)
s=o

with R = )x —x'
I and u = cos(x ~ i'). Substituting

(B4) in (B6), one obtains

o (p, q)= —2v pq + 5„.(2l'+I)
g(k) = (1+k /4a )

APPENDIX B: FUNCTIONS D~( p, q) AND 0(p, q)

(A14)
OO -2

x drr j,(pr)j, .(qr) v(r)
0

o (p, q) = —2' pq g (2l+ 1) [D&(p, q)]
g~0

(B2)

In this appendix, we shall give some expres-
sions related to the two functions D, (p, q) and

o(p, q). First let us note that for p =q, D,(p, q)
is related to the Born-approximation phase shift.
In this paper we only use the phase shift at the
Fermi level and we write

6, = 2vkpDg(ko, ko}. (B3)

If |(I;(x) is a plane wave, in other words if in Eq.
(A2) u, (p, r) =j,(kr), Eqs. (Bl) and (B2) can easily
be expressed as an integral in k space, where the
effective potential v(k) is generally known explicitly.
Sub stituting

v(r) = (2r r) '
lt dkkv(k) sinkr

&0

The core-hole scattering is described by the
matrix element fdxgg(x) v(r) f;(x), which using
(A2) takes the form

l

& & I'( (P) F
& (q) Dg(P q)

g=0 m-l

with the "core-hole-vertex" factor
«OO

D, (P, q) = 2 ' vdrr u, (P, r)u, (q, r)v(r). (Bl)
+Q

In the two-vertex loops, Eq. (Bl) contributes
through a factor

Then replacing 6«, by —,'(2l +1)f; du P, (u) P, .(u) and
using (B7) one has

«00 «CO

o (p, q)= —v 2 drrv(r) l dr'r'v(r')
&0 a 0

r r+r
dR R sinpR sinqR.

Di(p q)=Di(p q)+Dl(p q)

with

D', (p, q) =2v '
t drr G, (p, q; r) v(r)

&0

(as)

G, (p, q; r) =j,(pr)g, (q, r)+gr(p, r}j,(qr}

+g&(p, r)g~(q r)

The rest of the calculation is straightforward and

gives

o (p, q)= —(2v) dkk[v(k)] (B8)
~P-e]

which, compared to Eq. (B6), is very easy to com-
pute.

now g;(x) represents the OPW (A2), one can
write
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Introducing again v(k), one has
OO +a

D', (p, q)=v dkkv(k) drrsinkrG, (p, q;r) .
~0 JO

(810)
The integral in the square brackets can be per-
formed analytically and D', (p, q) can then be tabu-
lated like (85) after computing a single integration
over k. A similar treatment is applied to o(p, q).
We write

culation of E,(s ) given by (5) and depend on M». (s),
which is described by the diagrams of Fig. 2.
These diagrams contain two types of vertices: the
radiative vertices, represented by open circles,
and the vertices related to the interaction with the
core hole. These core-hole vertices are essential-
ly located on the thick lines (unshaded region of
Fig. 2). The rules are the following: (i) A line,
joining two vertices of any kind acting at times
t& and t&, contributes through a factor

o(p, q)=o'(f q)+o'(P q)

with

(811)
[q(k kp) rl(tz —t, ) —rl(ko k) rl—(t, —tz)] e '

o'(P, q)=-klan &(2f+1)g(P q)

x [D;(p, q) + 2D, (P, q)], (812)

where we have only to substitute Eqs. (85) and
(810). The advantage of Eqs. (88) and (812) over
(82) is twofold: v(k) is used instead of v(r) and
the summation over an infinite number of terms
does not appear any more.

APPENDIX C: DIAGRAMMATIC RULES

The diagrammatic rules are related to the cal-

The q's are the step functions q(x) = 0 for x& 0 and

q(x) =1 for x &0. (ii) A core-hole vertex contri-
butes a factor ikk'D, (k, k'). The function D, is
given by Eq. (81). (iii) A radiative vertex con-
tributes a factor k"h(k) related to the dipole ma-
trix element by Eq. (6). (iv) Every closed-loop
contribution is multiplied by a factor —2l(l + 1).
The sum over the l's is performed afterwards.
(v) One integrates over all the k's from 0 to ~ and
over the times (except s) from —~ to 0, and
from s to ~ in emission, or from 0 to s in absorp-
tion.
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