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Application of the Plane-Faced-Energy-Surface Method to the Calculation
of the Hall Effect in Hexagonal Alloy Phases
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The plane-faced-energy-surface (PFES) method introduced by Allgaier has been used to calculate the
two components of the low-field Hall tensor for hexagonal closed-packed a and t phases having

electron-to-atom ratios in the range 1.3-1.8. Two simple polygonal PFES have been chosen to
represent the low electron-to-atom-ratio ()&1.45) and high electron-to-atom-ration ()&1.6) regions, and

the results of the calculations, which involve no arbitrary parameters apart from the choice of surface,
are in very satisfactory agreement with the experimental results. An estimate of the effect of overlap at
higher electron-to-atom ratios is made, and it appears that there is little or no overlap in the case of
the $ alloys, but there is clearly considerable overlap in the e phases.

INTRODUCTION

In discussing the Hall effect in anisotropic media
it is necessary to adopt a definition which clearly
distinguishes it from the change in resistance due
to a magnetic field. Following Logan and Marcus'
we choose to adopt the convention that the Ohmic
field is

—,'[R(5) + R(- 5)]
and the Hall field is

—.'[R(5) —R(- 5)]
so that the Hall field reverses its direction on re-
versing the direction of the applied magnetic field,
while the Ohmic field does not. Further, the Hall
field vanishes when 8 = O. This choice is based on
a calculation of Casimir, who showed that, for an
anisotropic material, if the vectors are resolved
in any convenient rectangular coordinate system

E& —Q p, ) Js+ (r x J) (3)
f

where the p, &
are functions of 5 such that

p(g(~) = p&g( ~)-
while

r(5) = —r (- 5) .
The vector r is called the Hall vector.

Kohler analyzed the limitations imposed by
crystal symmetry on the Hall vector. Writing

r) QRo B), --

the coordinate system is chosen so that one axis
is parallel to the hexad axis of symmetry in the
hexagonal system, and the other two are parallel
to mutually perpendicular directions in the basal
plane. In this case the matrix 8 is diagonal, and

symmetry considerations together with the Onsager
relationships indicate that only two of the diagonal

terms are independent. These are labeled R„and
R~ adopting the convention that R„ is the Hall co-
efficient when the magnetic induction is parallel to
the hexad axis.

METHODS OF CALCULATION OF HALL EFFECT

In the simple free-electron model, it is easy to
show that the Hall effect is isotropic, and

R = I/ne, (4)

where n is the number of carriers charge e per
unit volume. In a more general weak-field (clas-
sical) model the calculation is much more difficult.
Following Chambers the conductivity tensor 0&f

may be written as
2 sf 0

graf=- 3 Il Vlfs f4& g
~ a&

dk

8
I v)Le ~dS~/v . (5)

The I & ~ &
are the components of a vector Ks f which

is the average distance travelled by an electron be-
fore passing through a given point in the metal with

velocity vg, and thus contains the scattering time
(which is in general not a scalar). In the second
form of Eq. (5) an approximation has been used to
transform the integral over all k to an integral
over the Fermi surface Sz.

In general, the integration in Eq. (5) must be
performed numerically on the basis of accurate ex-
perimental information on the Fermi-surface topog-
raphy, the velocity distribution over the Fermi
surface, and the scattering time distribution over
the Fermi surface. For the particular case of cop-
per, where the topography and the velocities are
well documented, Dugdale and Firth have carried
out the calculation using an isotropic scattering
time and have obtained excellent agreement with
experiment. However, for hexagonal metals the
calculation is appreciably more difficult, and the
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available experimental Fermi-surface data is
much less detailed; for concentrated alloys the
lack of any direct information makes the use of
Eq. (5) out of the question.

However, recently Hitchock and Stringer have
shown that the Hall coefficients in a disordered
hexagonal close-packed Cu-Ge alloy are qualita-
tively consistent with the mean curvatures of a
"reasonable" Fermi surface. This is an extremely
simple case, since the Fermi surface is probably
still confined to the first zone, and the dominance
of impurity scattering means that the assumption
of an isotropic relaxation time is reasonable. For
this reason, it is clearly worth exploring the pos-
sibility of carrying out a more exact quantitative
calculation.

Tsuji and Kunimune' have carried out a detailed
calculation of the transport properties of cadmium
using a model Fermi surface approximating the
complex experimental surface, but neglecting re-
laxation anisotropy. The agreement with experi-
ment was poor, although the calculation was capa-
ble of producing anisotropies of the right order.

In fact, it is clear that attempts to calculate the
Hall effect in terms of Eq. (5) or any similar ap-
proximation for disordered hexagonal alloys will
(a) be extremely difficult; (b) contain a large num-
ber of disposable parameters, in the sense that
direct experimental information is not obtainable;
and (c) lack the flexibility necessary for interpre-
tation of data produced from a wide range of alloy
systems.

In this paper, we explore the possibility of using
the plane-faced-energy-surface (PFES) method
introduced by Allgaier. ' This novel approach
does not appear to have been applied to the inter-
pretation of the Hall coefficient in alloys, but it
has the virtue of simplicity in the number and type
of calculations required, and aspects such as vary-
ing velocity and relaxation time can be easily in-
troduced.

gaier' and is in terms of the motion of positive
charges).

Figure 1 shows a cubic Fermi surface of edge
length 2p in momentum space, centered on the
origin. The electric field is applied along the x
axis, and produces the displacement „ indicated
by the dashed lines:

4p„=eE„7. . (8)

The longitudinal current produced by the displaced
carriers is the product of (a) the carrier density
in the newly occupied and newly vacated states,
(b) the charge e, and (c) the velocity v, on the top
face of the Fermi surface:

AP, =ev JE,r'
and the transverse current is then

i, = (2/h')(4peE, 7)(ev+,v)(ev, ) .

(8)

hp),

Now, if a magnetic field H, is applied along the z
axis, the Lorentz force causes a portion of the
displaced distribution, indicated by the dotted lines
in Fig. 1, to drift across the upper right edge of
the Fermi surface, and thus produce a transverse
current, and there is an equal contribution from
the lower left edge. The transverse displacement
ls

The PFES Method

In principle, the method replaces the real Fermi
surface by a polyhedron bounded by plane faces.
So long as a carrier remains on one face, it makes
no contribution to the Hall effect, but as it drifts
across the edge of a face it effectively rotates its
momentum vector through a relatively large angle,
thus contributing to the rotation of the overall cur-
rent vector and producing a Hall effect. The cal-
culation thus consists of determining the shift in
the polyhedron due to the application of the external
forces, and hence the number of carriers which
must move across an edge to produce the neces-
sary shift.

The method of calculation can be shown as fol-
lows (the illustration is taken directly from All-

2P

2P

2P

FIG. 1. Displacements produced by applied fields on a
cubic PFES.
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E» &.(- i.)

v„
3@'e v,

and writing

(10)

i,(1)= (2/h )(2eE,rA')(ev ) (12)

we get

1 v„
0 2ne v„
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(a)

FIG. 3. The plane-faced energy surfaces {PFES)chosen to describe the behavior of hexagonal alloy phases. {a) Sur-
face for 8 &1.45; {b}the surface for high 3.

tion i„4i, but one of the components will be the
same as those in the first situation.

Application of PFES Method to Hexagonal Alloy Phases

At the lowest electron-to-atom ratio 5 for which

f alloys are stable, the phase is comparable to
the concentrated fcc primary solid solutions. The
(0002] faces resemble the (lllj faces of the fcc
structure so one might expect there to be contact
between the Fermi surface and the (0002) faces of
the Jones zone. On geometrical grounds there
should also be rather more extensive contact with
the (1010]faces. One may therefore regard the
Fermi surface in extended k space as layers of
spheres connected by necks in an hexagonal array,
each layer being connected by thinner necks to
similar layers above and below. At low electron-
to-atom ratios (around 1.3) it is reasonable to
suppose that there is no overlap into the next zone.

As the band fills, the spheres will expand and
the necks grow thicker, becoming a more promi-
nent feature of the arrangement. Eventually over-
lap will take place into the next zone but for the
moment this will be neglected.

It is necessary to choose PFES polygons which
can be used to describe this surface. We have
been unable to select a single polygon which can
be continuously changed over this range and have
instead selected two different polygons appropriate
to the limiting situations which are shown in Fig.
3. It must be stressed that the selection of the
form of the PFES is the only arbitrary choice that
is made in this calculation and what is more it
turns out that the result is not very sensitive to

Zy = Sx Zb~1 s (16)

where v is the velocity of electrons on. the sur-
face. In the present paper it will be assumed that
the magnitude of v is the same on all faces, which
will enable it to be eliminated from the final re-
sult. A and B are the distances of the energy zone
boundaries from the origin, and C and D are the
distance to the apices of the prisms.

The current i,„is conveniently split into two
contributions: those from hole-like transitions
(the angle between the adjacent faces is greater
than m measured on the filled side), and those
from electronlike transitions. Figure 4 sketches
in an extended-zone scheme the holelike and elec-
tronlike transitions.

Then,
I

i',„= g B —(C -A)

and

3&3 C
(CR DR)8/2 e

the exact form chosen, a point made by Allgaier
in his original paper.

For the low S model [Fig. 3(a)] with the hexad
(c) axis parallel to the z axis (the direction of the
magnetic field) the components of the currents i,
and i, are

i = e Erv —(& —B) —-(C-A)—8 2 CD 2C 2D
2 D C

D
(C +D )' ' (16)
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L&

Lr'
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(a)

(b)

FIG. 4. Electron and hole orbits for the low p surface, sketched in the extended zone scheme: (a) H parallel to the
hexad axis; (b) H perpendicular to the hexad axis. Alternative electron paths are shown.

8 393 C
(C-A) s, e EH rv

(18)

With the hexad axis normal to the z axis, Eqs.
(15}-(18) become

i„= (4/h')e Erv[2v 3AD —6BC],

Z Zg Zb 2

(25)

(26)

3(b)] the equations corresponding to Eqs. (15) to
(18}for the hexad axis parallel to the z axis are

2, CC, (C)' W2

Wsc—(C -A} 2 3 (Cs Ds sos 2 (19)

~e
3sX

~ h
z x-

4 sos
De EH, m

4 sos
Be EH, TU

(27)

(28)

(20)Zy=Zbs1 )

8 C 2(3 CD
i,'„=,——2(C -A), , e'EH, rv'

2

(21)
8 C K3 CD s s

4 Cs Ds

(22)
The volume of the polygon is

and one electron per atom would occupy

(3& 34/)' AB. (24)

2

V = C D )( 3 —(D —B)
—

2( 3 —42) 3 (C —A )D C
(23)

and for the case where the hexad axis is normal
to the z axis the equations corresponding to Eqs.
(19) to (22} are

i,(A &C) = (4/h')e Erv4&3AC, (29)

(30)

'„,(C A)=, A —2C) A22'
Ws

(31)

As the band fills the arms which previously con-
tributed to an open orbit begin to make a holelike
contribution

;„(-,A C) = A —2C)
4 2

For the high electron-to-atom ratio model [Fig.
+

2
(A —3C) e EH, rv3 2

(32)
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The volume of this polygon is

V= 4&3 tA (B+D)+ 2ABC] .
These equations can then be solved numerically

with appropriate choice of the dimensions of the
surface and the Hall coefficients calculated using
Eq. (14). For the first model A was set equal to
1.06B, and in the second model (A+C) was set
equal to l. 06(B+D), both these corresponding
with ideal axial ratio. In both models C was set
equal to D which makes the surface as nearly free
electron like as possible. It is then possible to
calculate values for R„, R„and 5. These re-
sults are shown in Fig. 5.

Experimental Determination of Hall Coefficients

To test the results of the calculation, single
crystals of some f-phase alloys have been grown
using a modified Bridgman technique. The Hall
coefficients have been determined using the dc
technique described by Lane et a/. ' The composi-

Alloy system

Silver-aluminum

Single Crystals
R)p RFE

l.712
1.768
1.776
1.791

-1.4 + 0.1
—2.1 + 0.3
—1.9+ 0.1
—2.4+ 0.2

Rg/RFE

—0.9+ 0.1
—0.8 + 0.2
-1.05+ 0.15
—1.3+ 0.2

Copper-germanium
(Ref. 6)

1.42 —0.25+ 0.1 0.8+ 0.25

Alloy system

Silver-aluminum

Polyc rys tais
R/RFE

1.57
1.80

0.53
2.86

TABLE I. Measured Hall coefficients. All the poly-
crystalline specimens were cast and annealed but ground
rather than rolled so as to preserve the as-cast texture.
The copper germanium alloy marked with an asterisk
was the result of a failed single-crystal run and was
therefore large grain sized. There was a possibility of
oxidation of the zinc-based alloys due to the method of
preparation. For this reason the specimen marked with
two asterisks was oxidized for 6 h at 400 'C to deter-
mine the importance of this. The alloys labeled (a) are
e phase: the remainder are f phase. R+E is the value
of the Hall coefficient calculated from the free-electron
theory.

1
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U
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0
U

Z
1
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IJJ
K

~ Cu Ge

«g Sn

~ 0 X )o o

g Ag Al

xAg Zn

R

Copper-germanium

Silver-tin

Silver-zinc
(Ref. 13)

Zinc-copper

l.36
1.42
1.50

1.39
1.48
1.57

1.463
l.486
l.507

(a) 1.S3

(a) 1.828
(a) 1.S55
(a) 1.850
(a) 1.867

0.063
0.3*
0.024

0.088
0.055
0.034

0.23+ 0.03
0.18 + 0.02
0.18+ 0.02
0.10

0.085
0.12
0.2**
0.155

1.2
I

1.4 1.6
ELECTRON C ONC ENTRATlON

1.8

FIG. 5. Calculated and measured Hall effects for f-
phase alloys. The full curves are calculated from the
surfaces shown in Fig. 3: the left-hand pair are for the
surface shown in Fig. 3{a) and the right-hand pair for the
surface shown in Fig. 3{b). The experimental results
are those listed in Table I. The coefficients for the sin-
gle-crystal specimens are shown as vertical lines where
length indicates the experimental uncertainty; the low 8
values are for Cu-Ge single crystals {Ref. 6) and the high
5 'values for Ag-Al single crystals. The points are for
polycrystalline specimens of undetermined texture and
should therefore lie somewhere between the curves rep-
resenting the separate coefficients.

tions of the crystals and the experimental values
of the Hall coefficient are listed under "Single
Crystals" in Table I.

It is not easy to grow crystals of these alloys,
since most form by a peritectic reaction; and in
the case of e-phase alloys it has so far been im-
possible to grow single crystals. However, as
Lane has shown, it is reasonable to expect that
for polycrystalline specimens of hexagonal metals
a Hall coefficient will be obtained which will have
a value somewhere between those of the two single-
crystal coefficients, the exact value depending on

the orientation distribution in the polycrystal.
Thus, results derived from polycrystals can be
used to give a semiquantitative indication of the
correspondence between experiment and theory.
Data from polycrystalline specimens are listed
under "Polycrystals" in Table I.

These results, and the single-crystal coeffi-
cients of Hitchcock and Stringer, are included in
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Figs. 5 and 6. It is apparent that there is very
satisfactory agreement in the case of the f-phase
systems shown in Fig. 5; the e-phase results
shown in Fig. 6 are discussed later.

Discussion

At first the choice of a PFES seems unrealistic
because of the sharp changes in direction at the
edges. However, this is equivalent to the summa-
tion of the infinitesimal changes in direction as-
sociated with movement on a real, smoothly
curved, Fermi surface and for the low-field Hall
coefficient there will thus be little difference:
the PFES simply replaces a difficult integral with
a relatively simple, small number of summations,
the only error being that the edges do not satisfy
the low-field condition. To obtain an accurate
result it is only necessary that the PFES should
reasonably closely follow the actual Fermi sur-
face. For example, Allgaier' demonstrated that
a regular polygon having 24 faces gave a value for
the Hall coefficient within 10% of the value cal-
culated for a spherical Fermi surface by conven-

FIG. 6. Calculated and measured Hall effects for &-

phase alloys. The dashed curv, s are those calculated
without overlap for the surface shown in Fig. 3(b); the
f-phase single crystal results for Ag-Al crystals are
included as vertical lines. The full curves are. calculated
assuming the onset of overlap. The experimental points
are for polycrystalline specimens of undertermined tex-
ture, and should then lie somewhere between the curves
representing the separate coefficients. It is clear that
there is considerable overlap, and that the simple calcula-
tion may have underestimated the amount.

tional methods.
The results of the present analysis show a most

encouraging agreement with the experiment, and

it should be noted that although the two forms of
PFES used are quite different they may be joined
to form a reasonably smooth continuous curve.
This reinforces the point that the detailed form of
the PFES is not critical. Furthermore, the cal-
culation involves no other arbitrarily assignable
parameters.

It seems very likely that overlap into the secon. d

energy band will occur within this range of 8 and

the new states will produce their own contributions
to the Hall coefficients. The magnitude of the ef-
fects can be estimated as follows. When overlap
first occurs a small fraction of newly filled states
must be in the second band. By the time the elec-
tron-to-atom ratio has risen to its value for a full
band (taken here to be 2, the semiquantitative re-
sult we obtain is insensitive to the actual value),
half the newly filled states will be in the second
band. Thus, the upper limit to the effect of filling
new states is obtained by allowing half the elec-
trons to occupy states in the second band after the
onset of overlap.

If the new states are said to be square blocks of
dimension 2F &2F &I' on each zone boundary face,
then the volume of the new states would be

V'= 32F (34)

The contributions of these states to the currents
would be

i', =i', =64F e ErU/h

i'„= 8Fe EH, rU /h

(35)

(36)

These must be added to the earlier contributions,
picking values of E which make

V'= V- Vo,

where V is the volume of states filled in the first
zone, and Vo is the volume of states filled at the
onset of overlap.

Massalski and King' have suggested that over-
lap across the {1010)faces occurs at an electron-
to-atom ratio of approximately 1. 5 in silver-based
alloys, from their lattice-parameter data. An

estimate of the possible change in Hall coefficient
is shown in Fig. 6. In this case, as the model is
becoming unrealistic for electron-to-atom ratios
of less than about 1.6, overlap was considered to
start at an electron-to-atom ratio of 1.66 (roughly
corresponding to the composition at which Mas-
salski and King's lattice-parameter data for sil-
ver-aluminium shows the discontinuity attributed
to the onset of overlap). However, the general
features of the effect will be the same whenever
the onset of overlap. The effect of there being only
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a small proportion of states filled in the new zone
initially will lessen the initial change. Since the
simple model seems to fit the experimental re-
sults for the f-phase alloys better than this it
seems that the initial degree of overlap is very
small. However, the results for the &-phase poly-
crystals shown in Fig. 6 are clearly inconsistent
with the model without overlap, and indeed suggest
that the simple modification above underestimates
the contribution of the overlap.

There has been no attempt to include axial ratio
variations explicitly in these calculations. To do
so would be simple, but since there is a degree of
arbitrariness in the relative contact areas with

the (0002) and (1010j faces of the zone boundary, the
relatively small effect of a change of axial ratio
would be concealed. This effect must be quantified
before the technique is applied to systems where
there is a wide variation of axial ratio.

The assumptions that both the relaxation time
and the velocity are isotropic are clearly question;

able, although the satisfactory agreement with ex-
periments suggests that in this case they are cor-
rect. However, in other cases (for example, the
pure group-II metals and dilute alloys based on

them), these assumptions are unlikely to be cor-
rect, and in that event the calculations will involve
some more arbitrary aspects. On balance, how-

ever, the PFES method would appear to be an ex-
tremely useful method for these alloy systems,
and suggests that study of the Hall effect may give
useful information on Fermi-surface effects in
hexagonal alloys. In particular, the results ob-
tained suggest that there is very little overlap in
f-phase alloys, but quite extensive overlap in the
E phase.
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