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This paper defines and analyzes in detail the Wannier functions a, of a one-dimensional periodic
lattice with a point defect. It is shown that these functions have exactly the same exponential
localization as the Wannier functions of the perfect lattice and that they approach the latter
exponentially as the site ! recedes from the defect site. Variational methods for the calculation of the
a, are described. Eigenfunctions of the system can be obtained from the a; by the solution of a
one-band Slater-Koster-type equation, which, however, is exact in the present theory. Moments of the
density of states can be obtained directly from the a; without calculation of the eigenfunctions; so can
the total electron density, n (r), corresponding to a full “band.” It is suggested that for a nonperiodic
system the Wannier functions may be easier to compute directly than the eigenfunctions.

I. INTRODUCTION

The eigenfunctions of the Schrodinger equation
with a periodic potential are the Bloch waves ¢3(x),
characterized by the wave number % and a band
index. (The superscript signifies the perfectly
periodic lattice, and we do not explicitly indicate
the band index.) They extend quasiperiodically
through the entire system. An equivalent set of
functions, arising from the ¢% by a unitary trans-
formation, are the Wannier functions® a(x)
=a%(x - Ib), exponentially localized?™® near the
atomic sites b (I=0, +1, +2, ...). A serious
drawback is that these functions are not eigenfunc-
tions of the Hamiltonian. However, their localized
nature has nevertheless made them useful for
many theoretical discussions. ®

When the periodicity of the potential is lost, as
by the presence of an isolated defect or a surface,
or in a disordered solid, the eigenfunctions are of
course no longer of the quasiperiodic or Bloch
character; rather, they typically include localized
bound states as well as extended scattering states.
It has generally been assumed that also in such
nonperiodic systems there exists a complete set
of well-localized Wannier functions a;(x), equiv-
alent to the now rather complicated eigenfunc~
tions. However, the existence and properties of
these functions have not been hitherto demonstrated.
Neither has there been available a constructive
method for computing them.

The present paper deals with what is perhaps the
simplest system with impaired periodicity, a
one-dimensional periodic lattice with an isolated
impurity at the origin. For this system we can
rigorously establish the following results (Secs.
I-1V). Let #° be the constant which determines
the exponential decay of the Wannier functions
al(x) of the perfect lattice in the sense that

 Jim et =% =0, n<n.
Mot

(1.1)

oo

Then there exists a set of real orthonormal Wan-
nier functions for the perturbed lattice a,(x) which
has exactly the same degree of localization,

lim eM*Plq,(x)=0, h<h®,
|x=1b| ==

(1.2)

as the perfect-lattice Wannier functions. (The
intuitive feeling that their range could be of the
order of the bound-state range is thus not cor-
rect.) As -, these perturbed Wannier functions
approach those of the perfect lattice in the follow-
ing exponential manner. For fixed x -1b,

lim e2""?[q,(x) - a%(x)]=0, h<hO.
T

(1.3)

Thus only a small number of perturbed Wannier
functions will differ significantly from those of the
unperturbed lattice.

In Sec. V we describe a variational method for
finding the a,, without prior knowledge of the eigen-
states.

Section VI deals with applications. We show how
the eigenfunctions can be calculated in terms of
the a,. This procedure is similar to the one-band
Slater-Koster method but, unlike the latter, is
exact. Next, we show how one can obtain directly
from the a; (and without need of the eigenfunctions)
the total electron density n(T) for a full “band, ”
and the moments of the density of states n(E).

We have shown in the present paper that the
Wannier function a,(x) depends only on the imme-
diate vicinity of the site /b where it is localized.
For this reason we believe that in the case of non-
peviodic systems Wannier functions may be easier
to compute than the eigenfunctions in which the
influence of a disturbance makes itself felt over
large distances. Thus Wannier functions may well
become increasingly useful in theories and com-
putations relating to systems which have lost their
full periodicity such as defects in crystals, sur-
faces, and disordered solids.
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II. FORMULATION OF PROBLEM

We consider electrons in a one-dimensional
perturbed periodic lattice, with Hamiltonian

2

H:—;—xg—+V(x)+v(x); (2.1)

here V(x) is a periodic potential with the period-
icity and symmetry properties

Vix+b)=V(x), (2.2)
V(- x)=V(x); (2.3)

and v(x) is the perturbing impurity potential which
also has the inversion symmetry (2.3) and is
localized in the central cell, i.e.,

v(x)=0, |x|=30. (2.4)
The system is taken to extend over the interval
—3d=x=3d (d=Nb; Neven; N>1). (2.5)

(See Fig. 1.)
The eigenfunctions ¢(x) are required to satisfy
the differential equation

Ho(x) = Eo(x) (2.6)
and the conventional periodic boundary conditions
pGd)=¢(-3d); ¢'Gd)=¢'(-3d. (2.7)

For a perfect lattice, v=0, these eigenfunctions
are the Bloch waves

(p?nk(x),
where

k=Q@2n/d)[-3:N, ..., 0, ..., GN-1)] (2.8)

and 7 is the band index. The corresponding eigen-
values E?,,k are grouped in quasicontinuous energy
bands, each containing N levels. [See Fig. 2(a). ]
We now consider the perturbing potential v(x),
gradually being switched on. For definiteness we
shall think of it as attractive. We shall also con-
centrate on the energy levels associated with the

V(x) +v(x)

-d/2 -b/2 |b/2 d/2

FIG. 1. Schematic plot of the potential V (x) +v(x) vs
x for a periodic lattice with an impurity at the center.
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FIG. 2. Schematic plot of energy levels for d=6b for
(a) periodic lattice and (b) periodic lattice with impurity
at the center. (€, is the binding energy for the impurity
bound state. )

lowest band, »=0, and from here on drop the sub-
script #. To simplify our proofs, we assume that
the perturbing potential is not too strong. Specif-
ically we assume that only one bound state exists
below the lowest band; that no bound state is split
off from the second band; and that the distance of
the bound-state pole from the real % axis is small-
er than that of the branchpoints connecting the
lowest two bands of the perfect lattice. (See
Appendices A and B.) Then, as v is switched on,
the lowest-energy state of the original band splits
off downwards and becomes a localized impurity
state ¢, of energy €,. See Fig. 2(b), for N=6.
When N—-°, ¢, tends to the bound state ¢z, and
€, to the isolated bound-state eigenvalue €5. The
other (N -1) states, ¢,, become scattering states
whose energy shifts approach zero as N—~«.”

It is our primary aim to prove that the bound
state ¢ and scattering states ¢,, arising from
the Bloch states of the lowest band of the perfect
lattice, are equivalent, through a unitary trans-
formation, to a set of real well-localized Wannier-
like basis functions a,(x) with the properties de-
scribed in Egs. (1.2) and (1. 3).

III. PROJECTION OPERATOR

Our procedure for constructing and establishing
the properties of the new localized basis functions
will make use of an earlier study by one of us?
of the analytic properties of Bloch waves and
Wannier functions, and of the concept of a pro-
jection operator as introduced by Des Cloizeaux®~3
in his work on Wannier functions.

To relate the present impurity problem to this
earlier work on periodic lattices, we repeat the
one-impurity system of Sec. II over the entire x
axis, resulting in a superlattice of unit-cell di-
mension d. This superlattice has the energy-band
structure shown in Fig. 3. All levels which are
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FIG. 3. Schematic plot of the splitting of the n=0 and
n=1 energy bands of the perfect lattice, due to the ad-
dition of impurities. (d=6b). The notation 0* refers to
the + side of the band m =0, etc.

shown arise out of the original =0 and 1 bands

of the periodic lattice.” The periodic array of
impurities produces a well-separated and narrow
impurity band as well as a sequence of other
minibands separated by minigaps which tend to
zero as the impurity spacing d- <. The fundamen-
tal zone for the superlattice is

—n/d<k<u/d . (3.1)

Figure 4 shows the energy-band structure of Fig.
3 continued periodically.

We now follow Des Cloiseaux* in the construction
of localized basis functions. First we define the
projection operators P, (k) corresponding to each
of the minibands » (including the impurity band)
which make up the band complex arising out of the
original #» =0 band:

Po(R)=| O, @, ¥ |, (3.2)

where & runs over the fundamental zone (3.1). The
®¥m,r are normalized eigenfunctions of the super-
lattice satisfying the relations

(@ * | Omraer) = O e 8( = ). (3.3)

If % is real, the asterisks in (3. 2) and (3. 3) are of
course superfluous. However, by using them as
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indicated, the matrix elements of P, (k) can be
analytically continued into the complex k& plane up
to the branchpoints which connect the miniband m
to its neighbors m +1. (See Appendix A.)

Next we construct the projection operator for the
entire band complex arising out of the original
n =0 band,

P(R)= 25 Pok),

m=Q

(3.4)

where m runs over all minibands. It is shown in
Appendix A that P(k) is analytic at all branchpoints
connecting the minibands » and that the singular-
ities nearest to the real axis are the branchpoints
connecting the highest miniband belonging to » =0
with the lowest miniband belonging to n =1 [the
points (*) in Fig. 5]. As d-=, clearly the dis-
tance #, of these branchpoints from the real &
axis approaches h°, the distance of the branch-
points connecting bands 7z =0 and 1 in the unper-
turbed lattice.

We now construct the total projection operator
on all states of the band complex:

T/d
P= dkP(k)

-1/d

r/d
=5 [ dkl on N omarl. (3.5)
m -r/d

As shown in Appendix B, by shifting the % integra-
E(k)
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FIG. 4. Energy-band structure of Fig. 3 continued
periodically.
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tion to appropriate contours in the complex plane
and then letting the distance d between impurities
become infinite, P takes the form

P=pPB, pSC, (3.6)

Here P? is the contribution from the isolated nor-
malized bound state ¢g,

PP=|oX05; (3.7)

and PC is the contribution from the scattering
states associated with the lowest band,

psC- f:;: dk PSC(k)

= [0, dk [o%e . (3.8)
(+)

The scattering functions ¢, and <p_(;) are defined
by the following conditions:

@3 (x) = [t (R) IV 203 (x),
PR ) = [t R) 200 (x), x=-730

where #,,(k) is a diagonal transfer matrix element
of the impurity. We wish to point out, with refer-
ence to (3.8), that contrary to what might have
been expected, even for real k, ¢ *# ¢},

We now consider the matrix elements of P in co-
ordinate space, {(x|Plx"). It is shown in Appendix
C that these have the following short-range prop-
erties: If h<K’,

xzéb
(3.9)

lim e"** x| P|x") =0, (3.10)
| x=x’ | =
and also, for fixed x - x/,
lim eZhl(x+x’)/23
(1/2)Ix+x" | =
x (x| P|x"y = (x| P’|x)) =0, (3.11)

where P° is the projection operator for the lowest
band of the perfect lattice.

Equations (3.10) and (3.11) are the most impor-
tant mathematical theorems of the present work.
They state that (x| P|x") decays exponentially like
¢! and that P~ P as e 22°' <) /21 ' Here the
exponential decay constant is the same as that of
the Wannier functions in the perfect lattice, i.e.,
it is entirely unaffected by the presence of the
impurity. We should also note that, for a weak
attractive potential, where the bound state has a
large orbit, the part P? of P in Eq. (3.6) will have
a much longer tail, but this tail is canceled out
by a long-range part of PC.

The short-range properties, (3.10) and (3. 11),
of P will enable us in Sec. IV to prove correspond-
ing short-range properties of the new localized
basis functions.

IV. PROPERTIES OF LOCALIZED BASIS FUNCTIONS

In this section we shall use the projection oper-
ator P of Sec. III to construct the localized basis

functions a,(x) equivalent to the eigenfunctions
arising from the lowest band.

We consider first the perfect lattice. In that
case, since the corresponding Wannier functions
a}(x) are linear combinations of the Bloch waves
¥%x), it follows immediately that

al(x) = P°a%(x). (4.1)

Now, using the projection operator P of the per-
turbed lattice, Eqs. (3.6)-(3.9), we construct the
functions

a;(x) = Pa(x). (4.2)

As shown at the end of Appendix B, the projection
operator P is a continuous function of the localized
perturbation. Since the a%(x) are orthonormal

and hence independent, a comparison of Eqs. (4.1)
and (4. 2) and the principle of continuity shows

that the a;(x) are also independent. Since they are
linear combinations of the eigenfunctions of the
perturbed lattice arising out of the lowest band,
and since they are equal in number to these, it fol-
lows that they span the same function space.

Now, as seen in Eq. (1.1), a3(x) has an expon-
ential decay determined by the distance 7° from
the real %2 axis of the branchpoint connecting the
lowest to the second band. Combining this with
the exponential properties (3.10) and (3. 11) of the
projection operator P and the definition (4. 2) of
a;, shows that these functions have the following
properties:

lim eM*®'gl(x)=0, h<h®, (4.3)
| x=1b] =
and that for fixed x - 1b,
lim e®'*'®[q;(x) —=aS(x)]=0, R<AO. (4.4)

11l =

Equation (4. 3) shows that the functions a; are ex-
ponentially localized with the exponential being

the same as for the unperturbed Wannier functions.
Equation (4.4) shows how a;(x) approaches a(x)

as one moves away from the impurity.

Now the functions a;, while constituting a set of
localized functions equivalent to the eigenfunc-
tions, unbound and bound, arising from the lowest
band, are not orthonormal. Normalization can,
of course, be obtained by multiplication with the
correct constant. Orthogonalization is slightly
more complex and is discussed in Appendix D.
There it is shown that the resulting orthornormal
set of functions a;(x) has the same properties (4. 3)
and (4.4) as the nonorthonormal functions a;; i.e.,

lim eM*®lg (x)=0, h<h’ (4.5)
| x=1b| ==

and, for fixed x —1Ib,

lim e®'*'% [q,(x) = al(x)]=0, h<H. (4.6)
TS



8 WANNIER FUNCTIONS IN A SIMPLE NONPERIODIC SYSTEM

These two properties are the chief results of our
analysis.

V. ABINITIO VARIATIONAL CONSTRUCTION OF
LOCALIZED BASIS FUNCTIONS

Now that we have established the existence of a
localized basis for the eigenfunctions arising from
the lowest band, it is easy to construct these
functions from the energy variational principle.®
Suppose we have altogether N cells, and hence N
eigenstates arising out of the lowest band. Con-
sider now the ground state of N spinless noninter-
acting fermions moving in this potential. It is
given by the following equivalent expressions:

&= (N1)V2det| ¢, (x,)|

= (N1)2det|ay(x))|, (5.1)

where the ¢; are the eigenstates arising out of the
lowest band and the a; are our localized functions
arising from them by a unitary transformation.
We now use as trial functions

&t = (N1)2det|al(x)) |, (5.2)

where the a! are exponentially localized ortho-
normal functions approaching a%(x) as 11| -,
The corresponding energy is

E! =L“ (at, Ha! ) (5.3)
and attains its minimum when the set af is a cor-
rect set of localized functions. Of course this
set is not unique, since any given set of a; can be
replaced by another set which is a suitable linear
combination.

The simplest approximation is to take

ai(x)=al(x), 1#0
(5.4)
al(x)#ad(x),
and then use (5. 3) to determine af. If one starts
with a trial function b§(x) which is not orthogonal
to the a}(x) for I#0 this can be immediately cor-
rected by taking instead,

atx) =A, (b:,(x) -2 (i, ae(x»a‘:(x)) . (5.5

Thus we see the important feature that one can
construct the localized function ab initio, without
first having to know the eigenfunctions of the sys-
tem. In fact we think that, particularly in three-
dimensional problems, it will be much easier to
calculate, in the first place, these localized func-
tions rather than the eigenfunctions; for, of the
latter, the scattering states extend throughout the
system and loosely bound states are also much
more extended than our localized basis states.
However, once the localized basis states are known,
one can, as shown in Sec. VI, obtain the eigenfunc-

2489
tions by solving a relatively small set of linear
algebraic equations.

VI. APPLICATIONS

A. Eigenfunctions

The eigenfunctions ¢, arising out of the lowest
band are linear combinations of the @;. Thus we
may write, on suppressing temporarily the index
Js

(p=ZE cia;. (6.1)
Substitution into the Schrodinger equation gives

Z‘—{‘ Hy.cp=Ecy, (6.2)
where

H,. ={a,, Ha,.). (6.3)

The well-known Slater-Koster theory° expands the
eigenfunctions ¢ in terms of the unperturbed
Wannier functions ag, 1, where 7n is the band index.
In their theory the exact solution requires a sum-
mation over the site index 7 and the band index 7.
This latter summation is avoided in the present
formulation at the expense of using the perturbed
functions a;.

To illustrate the solution of (6.2) we take H in
the form given by Egs. (2.1)-(2.4) and further
assume that we can take

Hy;p =0 for |1-1"|>1 (6.4)
(tight-binding approximation), and that

a,(x)=ajlx), |I|=1. (6.5)
Then (6.2) can be written as

Z,; (Hyy - E6ypley = =25 (H,y - M)y,

! 5 (6.6)
where

K, =(a3, H°a}.) (6.7)
and

Hy - HY =0 if |I] or |1'] > 1. (6.8)
If we now define the Green’s function

G (E)=(l|1/(H° - E)| 1Y, (6.9)
then (6. 6) can be rewritten as

C;+ Z/ G?lu(E)(H,u,:— ,n,l)Cp =0. (6.10)

L,

In view of (6. 8) the right-hand side involves only

¢y and c,;. Hence, setting ! successively equal to
0, +1, and -1 gives three homogeneous linear
equations. The determinental consistency condition
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determines the eigenvalues E and coefficients c,
¢y, and c_;. The other coefficients are then ob-
tained directly from (6. 10).

The Green’s function needed in (6. 10) is given
by
iR (1-1)0

G‘},-(E)=-2Q1—r f 2tco";(kb)_(E_E) de,  (6.11)
where

E={a}, H'a%) (6.12)
and ¢ is the transfer integral

t={(al, H%$,,). (6.13)

B. Total Electron Density

Consider a system with a defect in which all
states arising from the lowest band, including any
bound states, are singly occupied by spinless
fermions. If ® is the ground-state wave function,
the electron density is given by

n(x) =N [ ®*®dx, - - - dxy. (6.14)

On using the two alternative forms (5.1) for &,
one obtains

nlx) =20 | @,(x;) |2
]

=2 |a,(x1)[2. (6.15)
1

For electrons with spin there is a factor of 2.

Thus we see that for a calculation of the total elec-

tron density a knowledge of the a; is sufficient;

the eigenfunctions ¢; need not be solved for. The

electron density is of interest for the inclusion of

approximate exchange and correlation potentials, 1o

for calculation of electric field gradients, etc.

C. Moments of Density of States

Let n(E) be the density of states associated with
the eigenfunctions, including any bound states,
arising from the lowest-band. Clearly

n(E)=2, 8(E - E,), (6.16)
F)

where the E; are the eigenvalues of H. The mo-
ment of order s is given by

M,:f E%(E)dE=)] E}
)

=25 G| By =23 1| 8|0y, (6.17)
J 1
where
| H|1) ={ay,, Ha,,). (6.18)
Since
(6.19)

Ha, =25 a, (U |H|D),
"
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we can use closure in (6.17) without leaving the
space spanned by the N functions a,; and also write®
M= 2 G|H[L

Liljreenrloy

X | H|1y -+ (U |H|D.  (6.20)

From either the last form of (6.17) or (6. 20),
we see that moments of the density of states can
also be directly obtained from a knowledge of the
a, without having to construct the eigenfunctions
¢;. From the moments the density of states n(E)
can be reconstructed. !

APPENDIX A: REALITY, SYMMETRY, AND
SINGULARITIES OF PROJECTION OPERATOR P(k)

For 7eal k the projection operator P, (k)35 as-
sociated with the mth miniband can be written in
the conventional form

Pp(k) = [ @, 2 @mal, (A1)
where ¢,, , are orthonormal Bloch waves,
(P, sl Pt 1) = O S = ). (A2)

In the coordinate representation these equations
read as follows:

(| Pp(®)| %) = 0, o) 0% o(x"), (A3)
[ Ok AP, (%) dx = 8, B = R, (Ad)

It is evident from (A3) that P, (k) is independent of
the phase of ¢,,,. For the following discussion it
is convenient to choose this phase so that!?

Om, 1(0) = @% (0) = real and positive. (A5)
Then we clearly have the following relations:

O, p(x) = QX L(x), (A8)

Om,a( = x) = 0% 4(x). (A7)

Using Eqs. (A3), (A6), and (A7) we can now
immediately prove the symmetry and reality prop-
erties of the projection operator for the entire
mth miniband,

(x|P,,,|x')Ef_:;:dk(lem(k)ix'). (A8)
Clearly we have

(le,,,(k)|x')*=(x|P,,,( —k)lx'), (A9)

| Ppll) | %) = (x| Pu(=R)| 27, (A10)

(=x|Pp(k)| = x"y ={x| Pa(=R)|x"). (A11)
Hence

(x| Pp|x" Y% = (x| Pu|x") (reality), (A12)

(x'| Pp|x) =(x| P|x") (symmetry), (A13)

(=x|Pp|-x")=(x| Pp|x")

(inversion symmetry). (A14)
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The same properties evidently hold also for the
total projection operator P corresponding to all
(M +1) minibands arising from the »=0 band,
b
(x|P|x"y =20 (x| Pplx"). (A15)
m=0
We now wish to examine the singularities of the
total projection operator
M
(x| P(R)|x"y = 23 (x| Pu()|x"). (A16)
m=0
The form (A3) for {x|P,(k)|x’) is not suitable for
this purpose since <p;',‘,,,,(x') is not an analytic func-
tion of £ (because of the *). However on the real

k axis we can use the identity (A6), and rewrite
(A3) and (A4) in the form

x| Pp®) | %) = @, o) P, )
and
f Py nX) Do o () dix = By 8 (R — k).

Now it was shown in Ref. 2 that ¢,,, when con-
tinued analytically into the complex plane, is reg-
ular except for branchpoints at the complex branch-
points of the multivalued energy function E(%).

For example, at a branchpoint k,, where bands m
and m +1 are joined, @, ,(x), has, for given x, the
following form:

Omyp=[1/(k = ,) " *][A + Bk = k)2
+Cl=ky)+---],

(A17)

(A18)

(A19)

and ¢, ., has the same form. From this it follows
that, for fixed x and x’, the projection operator
P, (k) of (A8) has a square-root-type branchpoint,

P,(k)=[1/(k =k, 2][A"+B'(k - k,)2

+C'(k=kyp)+---]. (A20)

When the projection operator P,,,,(k) of the next-
higher miniband is analytically continued to the
vicinity of the same branchpoint, it has the same
form (A20), except with the opposite sign for all
square roots. Hence the sum has the expansion

P, (k) +Pp, (k) =2B"+2D (k- ky)+- - -, (A21)

and is analytic at %,,.
From this it follows that the fotal projection op-
erator corresponding to the original band » =0,

M
P(k)= 23 P,(k),

m=0

(A22)

is analytic at all branchpoints &, (m=0, ...,

M 1) joining the minibands m=0, 1, ..., M. Its
singularities nearest to the real axis are the
branchpoints &, joining the highest miniband be-
longing to »=0 with the lowest belonging to n=1.
As the distance d between impurities tends to in-
finity, these branchpoints have a distance &y from

the real axis which approaches the distance #° of
the corresponding branchpoints connecting bands
n=0 and 1 of the perfect lattice.

APPENDIX B: PROJECTION OPERATOR FOR A LATTICE
WITH A SINGLE IMPURITY

In this Appendix we make the transition from a
lattice with a periodic array of widely spaced im-
purities, to a lattice with a single impurity. This
limiting process is somewhat subtle. We have
seen that for finite impurity spacing d, the total
projection operator associated with the original
lowest band # =0 of the periodic lattice has the
form

P=f_:;: P(k) dk, (B1)
where
M
P(k)=2 P,(k). (B2)
m=0

The function P(%) is periodic, with period 27/d,
and analytic in a strip enclosing the real axis
whose boundaries, as d- =, approach those of the
perfect lattice. We shall show in this Appendix
that, in the limit where d ==, P can be written in
two alternative forms. One of these is

P=pP% 4P, (B3)

where P? is the projection operator on the bound
impurity state, which in the coordinate representa-
tion has the form

PB=¢a(x)‘P3(x')*, (B4)

and P5C is the projection operator on the scatter-
ing states associated with the lowest band,

P*C= [ P(k)dk. (B5)

Here PC(k) is a projection operator associated
with scattering states characterized by momentum
2 and has periodicity 2w/b; it has poles at
k=+ihy, where E°(ihp) = €5, the bound-state en-
ergy, and branchpoints at the branchpoints of the
perfect lattice. The integral in (B3) is along the
real axis from — /b to m/b or any other equivalent
line C which does not lie beyond the poles. (See
Fig. 5.)

The second form is

p=[ P€()dk, (B6)
o

where C' is a contour such as shown in Fig. 5,
lying between the pole ity and the branchpoint 2°,
The form (B6) can be derived directly from (B1)
and (B2); it can also be obtained starting with (B3)-
(B5), and displacing C to C'. It is then found that
the residue from the pole at ik precisely cancels
the bound-state contribution P2,

From the form (B6) we shall deduce in Appendix
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Im k
x K ‘C'
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8 C
< >~ Re k
"X x
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* *

FIG. 5. Singularities of PS°(%) are poles at + ihg and
branchpoints (*) at the branchpoints of the perfect peri-
odic lattice (("=+m/b+4k%. C and C’ are integration
contours in Eqs. (B5) and (B6).

C the short-range properties of (x|Plx’), with
characteristic length (2°)"! (see Fig. 5), the same
as for the underlying periodic lattice rather than
the range of the bound state hz'.

Derivation of the Form (B3) of P

We start with the projection operator for an ar-
ray of impurity potentials with spacing d, Egs.
(B1) and (B2). We have seen in Appendix A that
P(k) is analytic in a strip of width 2k,. We may
therefore use the integration contour C, (see Fig.
6) in Eq. (B1). This contour is chosen beyond the
branchpoints %,, %5, ..., ky.;, connecting the mini-
bands other than the impurity bands, whose dis-
tance from the real axis behaves as d"'/2, 1t is,
however, taken in front of kg, the branchpoint con-
necting the impurity band with the next miniband.
As d— =, the distance of this branchpoint from the
real axis tends to a finite limit 2z given by the

Imk
kMx * kM
¢ T
Ko x « Ko Y
¢ ¥
k2 ki xk &
X E * ¥ Rek
-m/d w/d
* *
* %

FIG. 6. Branchpoints (*) of the miniband projection
operators P, (k).
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equation E°%(ihp) = €5, where E%k) refers to the
perfect lattice and €5 is the energy of an isolated
bound state.

Along the contour C and its extension, the mini-
bands m=1, 2, ..., M are all connected in the
sense that, e.g.,

Ey(n/d +ik) = Eq(n/d +ih), B7)

etc., and similarly for the eigenstates. In an ex-
tended zone scheme, E(%) plotted along the line
k=g +ih has the character, shown (for the sake of
convenience) for ReE(®) in Fig. 7.

Thus, in complete equivalence to (B1) and (B2)
we can write

/b)=(27/d) -
P=f(:b " plg+in)dg
-t

S P (g i) de,  (B8)

where P’ is constructed with the functions asso-
ciated with the upper band in Fig. 7, while P® is
constructed from the functions associated with the
lower (impurity) band.

Keeping k and x and x’ fixed, we now take the
limit of (B8) as d— . Then (B8) takes the form

pP= f_:;: P5C(g +ih)dg + P®, (B9)

The second member is
P2=gp(x) gf(x’), (B10)

which comes from an evaluation of the second in-
tegral in (B8) in the tight-binding limit, justified
because d—~ . In the coordinate representation
the integrand in the first term of (B9) has the form

P(R) =0 (x93 ("), (B11)

where ¢§* and ¢7’ have the following forms out-

side the impurity cell:

ReE (g+ih)

-w;d
S

FIG. 7. ReE along the line k =g +ih with h=F (see Fig.
6). The notation 3* corresponds to the + side of the band
m =3 in Fig. 3, etc.
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(0;(:) (x) = [taz(k)]-llz {‘P‘,’.(x),
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x=3b, (B12)

tan () 0(x) + 15, () 0% (%), x=<-13b,

xs—%m
) 0% (0) + 1y (B)@3x), x=%b, (B13)

o3 )=t e {40

[Note that @& (x) = ¢,” (- x).] Here t;(k) is the
left-to-right transfer matrix of the impurity in the
representation of ¢ and ¢?,, the normalized Bloch
waves in the perfect crystal. Its elements satisfy
the following relations:

det|?,,(0)] =1,
tiplk) = — tyy (),
tzl(k) =t12( _k)r
by, (B) = t55( — &),

The transfer matrix elements #;,(k) are analytic
functions of 2, except for branchpoints at the
branchpoints of E(k). Therefore the projection
operator P5¢(%), Eq. (B11), is analytic in a strip
enclosing the real axis of width 2x° [the strip of
analyticity of E°(k) of the perfact lattice], except
for poles at the points 2 where

1 (k) = 0. (B15)

Thus, in particular, the integral (B9) can be per-
formed over the real & axis where ¢;’ and ¢

represent physical scattering functions. The con-
dition (B15) is satisfied at values of # correspond-

ing to a bound state, %k =x+iky for which
E°(ihg) = €5,

(B14)

(B16)

the bound-state energy (see Fig. 5). In view of
the analyticity of P5S(%) in a strip bounded by sin-
gularities at +ihp, one can show that the projec-
tion operator (x| P5¢|x’) has exponential localiza-
tion properties with characteristic length #3, just
like (x| P®|x"), Eq. (B10). For weak perturba-
tions this can be a very great length. However,
in the following paragraphs we shall see that the
sum of P°° and P® has short-range properties of
the same scale as (1°)"!, which determines the
degree of localization of the unperturbed Wannier
functions a}(x), and is of course independent of the
strength of the perturbing potential.

Derivation of the Alternate Form (B6) of P

This form is most easily derived by starting
from Eqs. (B1) and (B2) for the regularly repeated
impurities. Then using the analyticity and periodi-
city properties of P(k), we extend the integration
over k over the contour C’, Fig. 6, which lies be-
tween the branchpoints &, and £,. Now let d—- =,
Then, along the line k=g +ik’, E(g+ih’) has the

same general nature as E%(g +ik’) for the perfect
lattice (see Fig. 8).
Now we let d—~. Then we obtain Eq. (B6),

P= [ P(k)dk, (B17)

where C' lies between the pole i%p and the branch-
point £°, and P5€ is defined by Eqs. (B11)-(B13).

This result can also be confirmed by starting
with the form (B3) for P and replacing the integral
along C by the corresponding integral along C’
plus the residue at the pole iz, The latter can be
shown to cancel precisely the bound-state portion
P53 of the projection operator. For the interested
reader we mention that this proof requires the
following two identities:

diy, o 05 ,
td }gE) - é/(» P3(x)dx ) (B18)
E=E0 Ging) Puings Ping
and
dE° o 0
Fry k=ih5=—2mW((p-MB’(me). (B19)

Here @5 is the bound-state wave function with am-
plitude determined by the following asymptotic
condition:

(B20)

and W(f,g) denotes the Wronskian of the functions
fand g. B

Continuity of (x|P|x") as a Function of the Perturbing Potential

@px) = <p‘,’,,B(x), x=3b

In Sec. IV we used the fact that P is a contin-
uous function of the strength of the localized per-

Re E(q+|§‘l

FIG. 8. ReE along the line k=g +ih with k=%’ (see
Fig. 6).
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turbation. This will now be easily demonstrated.

For this purpose we use the form (B17) of P.
On this contour the functions ¢} (x) which are de-
fined by the differential equation and the first
asymptotic condition of Eq. (B13) are analytic
functions of the strength of the impurity potential,
say A, for 0<, <1, provided no zeros or sin-
gularities of E%&) cross the integration contour
C’. But this latter fact is assured by our assump-
tions (Sec. II) that the perturbing potential is not
too strong. ¢$;'(x) is similarly regular. It then
follows from (B17) that P is an analytic function
of A,, and hence of course continuous.

APPENDIX C: SHORT-RANGE PROPERTIES OF (x|P|x")
We start from the form
P= [, P*(k) dk, (c1)

where k£ runs over the values
k=g+i(h®-0),
-n/b=g=m/b,

(see Fig. 5), and P5C(k) is defined in Eqs. (B12)
and (B13).

We shall now consider {x|Plx’) for x>x’. From
(B12) and (B13) we see that ¢4” and ¢'; can be
majorized as follows on the contour C’:

|02 )| <A™, (c3)
| (x")| <Ae™, (c4)
where A is a constant.
[<x| P|x")] < (2n/b)AZe == (c5)

But since we have shown that (x|Plx’) is sym-
metric in x and x’, Eq. (A13), we can conclude that

(c2)

Hence

lim e"**'(x|P|x"y=0, h<h. (cs)
| x=x?| =
Thus the projection operator is exponentially short
ranged, the range being the same as for the un-
derlying periodic lattice.

Next we wish to establish how rapidly {x|Plx")
approaches the projection operator of the perfect
lattice, {x|P°|x"), for fixed (x—x') as 3 |x+x’l
~©, We take first x, x'=3b. Then we can write

(x| PSC(k)| x") = (x| P°(k) | x")

. 5::% RWe). (€7

The second term may again be majorized by

it P2 | < Aleh (c8)
Lo (k)

Hence, we have for the total projection operator,

|| P|x"y — (x| P x")| < (2n/B)A e =5 co)

W. KOHN AND J.

R. ONFFROY

|

Finally, using the inversion symmetry (A14) we
can write that, for fixed x —x’,

lim eZhl(xﬂc')/ZI
1(1/2)(x+x") | =

X(x|P|x"y =(x|P°| ")) =0, h<K’. (C10)
Thus we see an exponential convergence of P to
P° as 13 (x+x")| ==, Again, it is interesting to
note that the characteristic length, (24%), isa
property of the underlying lattice and not of the
impurity.

APPENDIX D: ORTHOGONALIZATION OF LOCALIZED
FUNCTIONS

The localized functions ag; ay, aly; etc., ob-
tained in Sec. V, while they span all eigenfunctions
arising out of the original band #»=0 and are nor-
malized, are not orthogonal except very far from
the impurity. For some purposes this fact is of
no consequence. But for other applications an
orthogonal set is more convenient. We therefore
need an algorithm for orthogonalization. "

In order that the following algorithm work we must
start with functions which have sufficiently small
overlap integrals. This may require simple pre-
liminary rotations such as replacing

ag~ Aglag (0| 1)(a; +aly)), (D1)
where we use the notation
|1y =(as,a (D2)

and A, is the appropriate normalization. We shall
assume that this has been done so that

(=1

(1"y<1, 121", (D3)

All overlap integrals will be formally treated as
quantities of the first order in smallness, and
this will be made visible by affixing the coefficient
A to them (which actually has the value 1):

@lery=xq|r"y, 11", (D4)

Now consider the following linear transforma-
tion:

b:’=2 (5”51 +)\S,,.)a,'u. (D5)
’l'

To first order in A we have
By, by =AKL|L") +(S1ye +S530) ]+ OO3). (D6)
To remove first-order overlap we choose
Spe==3|1"Y1-08,p). (D7)

We then renormalize the functions to give us the
next generation of functions

n n 124
ay =mby,
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for which evidently
(a, )al ) 1 (Ds)
(a;’,a;’)y=002), 11, (D9)

Now we repeat this process. Clearly, after suc-
cessive steps the remaining overlap integrals are
of order 1, A%, A*, A% etc., so that the process is
very rapidly converging.

Returning now to the first stage of our procedure,
we have

a)’=n; ( —Z' {]1'a ,.) , (D10)
where
ny'=(1-2 el
ATl ain) ™. @i

We have seen previously that the functions a,' have
the important exponential properties (1.2) and

(1.3). [The replacement (D1) leaves these un-
changed. ] By (D10) and (D11) it can now be easily
verified that the same is true of the a;”s. By
induction the same exponential properties pertain
equally to all higher approximants, the al®”’s and
hence also to the limiting fully orthonormalized

functions
a,—a{”) . (Dlz)

In practice, variational calculations may use

a;=al, 1>1, (D13)

a;#a3, 1=lI,. (D14)

In this case one first exactly orthogonalizes all
a;(I=1,) to the a,;(I>1,) as follows:

2o 2|1""ab.,

l">l

b =a; - 1=1,, (D15)

and then orthonormalizes in an elementary fashion
the finite number of b;’(l =1,) among themselves.
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