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A detailed theoretical investigation has been made of the manner in which the electronic density of states
of copper changes with the introduction of dilute nonmagnetic impurities. The formalism used is exact for a
single impurity in a system of muffin-tin potentials, and takes into account the detailed character of the host
band structure. The impurity potential is calculated through a self-consistent procedure utilizing a
generalized Friedel sum rule. The results show a marked difFerence from the predictions of the rigid-band
model. We find that the changes in the single-particle electronic density of states are not sufficient to
account for the measured changes in the linear component of the specific heat. But due to the
comprehensive nature of the calculations, it is possible to conclude that the discrepancy is due to other
physical efFects.

I. INTRODUCTION

The electronic structure of dilute copper (and
other noble-metal-based) alloys have attracted
considerable interest during recent years. The
primary experimental tool has been measurement
of the coefficient of the linear term in the electronic
specific heat, a quantity which in the independent-
particle approximation (IPA) is directly propor-
tional to the electronic density of states. The ob-
ject of primary interest in the early experimental
studies on the alloys was in fact the pure host ma-
terial, since it was thought, on the basis of the
rigid-band model, "' that the density of states in
the alloys would be closely related to that of the
host. In particular, the rigid-band model predicts
that the change in the electronic density of states,
as a function of the concentration of impurities in
the alloy, would be proportional to the energy de-
rivative of the host density of states, evaluated at
the Fermi level of the pure material.

It is well known that even the sign of the rigid-
band prediction is frequently not in agreement with
experiment. The coefficient y of the linear term
in the specific heat increases upon alloying of small
amounts of polyvalent impurities with Cu, whereas
the electronic density of states in Cu is a decreas
ing function of energy in the vicinity of the Fermi
level. ' Several authors'5 ' have attempted to
go beyond a rigid-band model of these alloys.
Jones, "Dawber, ' and Haga' have attempted to
construct more detailed theories of the electronic
properties of these alloys. They argue that the
density of states could be increased by impurity
scattering. If the density of states in the pure
metal has special features (e.g. , a peak) lying be
low the Fermi surface, these features will not af-
fect the low-temperature electronic specific heat
of the pure metal, but they could affect that of the
dilute alloy because of the smearing effect produced
by impurity-induced scattering.

Jones and Dawber noted that there was a hump
in the density of states just below the Fermi energy,
which exists in noble metals where the energy sur-
face first touches the edge of the first Brillouin
zone. They both used a nearly-free-electron
model for the energy bands and density of states,
and completely neglected the d band. The free-
electron basis of the Jones and Dawber calculations
can be strongly criticized, since Cu is known to
have significant d character at the Fermi surface.

Haga, "on the other hand, completely neglected
the critical points in the Cu band structure that
were the motivation behind the calculation of Jones
and Dawber and assumed that the effect of impurity
scattering was to broaden the d band, thereby in-
creasing the density of states at the Fermi level.
In his model the half-width of the broadened d band
was left as an adjustable parameter, which was
then fit to the data. No attempt was made to derive
the value of this parameter from first principles.

It is quite possible that no Independent-particle
model will be able to account for the data. In nor-
mal metals it is known that y is proportional to
(1+X)p(E~), where p(Er) is the band density of
states at the Fermi energy and X is the many-body
enhancement factor. For copper the enhancement
is of the order of 18%.'9 It is now apparent that
there are at least two effects to be considered;
the change in the enhancement due to alloy ' ' and
the change in the band density of states. This now
makes the interpretation of measured changes in
specific heat more difficult, since it is not pos-
sible to separate the two effects. On the other
hand, an accurate calculation of either effect would
help to clarify the issue.

The purpose of the work described in this paper
is to make a quantitatively accurate calculation of
the change in the electronic spectrum upon the ad-
dition of dilute amounts of impurities to copper.
To do this we make a model of the alloy which,
while necessarily approximate to facilitate calcu-
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2 8Q
= ——Im Tr —V(l —GV)eE

where we have used the relation

The prefactor of 2 arises from a summation over
spin degrees of freedom. The last expression for
&p can be written symbolically as

2
&p = —Im Tr —ln(1 —GV),

g dE

which stands for the equation

&p = —Im Q In(p, ),
2 d
7T

(2. 1)

lation, does appear to contain the essence of the
problem. The unperturbed host is treated in the
muffin-tin approximation, which is certainly ade-
quate for cubic materials like Cu. The introduc-
tion of the impurity is assumed to perturb the
crystalline potential only within the muffin-tin
sphere, which is centered on the impurity site.
The calculation is then exact within this frame-
work; in particular the complicated band structure
of the host is fully incorporated into the calcula-
tions.

The structure of the paper is as follows: The
relevant formalism is developed in Sec. II, which
is followed by a discussion in Sec. III of the prin-
ciple computations and in Sec. IV by a discussion
of the representation of the impurity potential.
Sections V and VI are concerned with our results
for various Cu-based alloys and how they relate
to specific-heat data.

II. FORMALISM

In this section of the paper we develop a set of
relatively simple formulas which will allow us to
calculate the difference between the electronic
density of states in the alloy and the perfect-host
material. The calculation proceeds in the follow-
ing wsy. Let G be the Green's function (operator)
for the perfect host, and 8 the analogous quantity
for the alloy. As was discussed in Sec. I, in our
model the crystalline potential in the host and
alloy differ only within a spherical region of radius
R surrounding the impurity. If np(E) is the dif-
ference between the alloy and host density of states
at energy E, then

~p(E) = (2jv) im T r(g - G).

Using

8 =6+ GVQ,

where V is the perturbation, leads to

&p = —Im TrGV(1 —GV) 'G

where the numbers p, ; are the eigenvalues of the
operator 1 —GV. For the appropriate choice of
the branch of the logarithm the quantity

&Z(E) = —Im Q ln(p, ;)
2

i
(2.2)

where

V, =R ( iyya~)

Ag = 5 Xg(r) y(r)dr,
&r I

G
I
I &

= f &r
I
G

I
r '&xi&r ') ~~'

Multiplying by X~.(r) and integrating leads to the
algebraic eigenvalue equation

Z (~„,—&L,
l Gl 1.'&v, ,)y, , = p.y„

which is the principle formula employed in our
calculations.

The calculational procedure is therefore as fol-
lows: Determine the relevant matrix elements
&L I GlI- & of the exact host Green's function. We
note that one needs to know this Green's function
only for values of its arguments on a single muf-
fin-tin sphere. Determine the logarithmic deriva-

is the difference between the total number of states
in the interval [ —~, E] in the alloy and the host
mate rial.

The easiest way to evaluate this expression is to
recognize that the central-cell potential in the host
(which is replaced by the impurity when the alloy
is formed) and the impurity potential in the alloy
can be replaced by the energy-dependent 5-shell
potentials introduced previously. ' The total num-
ber of states in a finite energy interval is, by
definition of the amplitudes of the 5-shell poten-
tials, the same in some actual system and in a.

hypothetical system in which some or all of the
spherical potentials are replaced by the 5 shells.
Furthermore, the Green's functions are identical
in both systems for values of their arguments ex-
terior to the region of the potential. Using the
notation of Ref. 23, the host and impurity 5-shell
potentials take the form

V =R'Z X~(r)(y„, -y, ,)X~(r'),
L

where o. = (i, h) for the impurity and host, respec-
tively, and y, &

is the exact logarithmic derivative
for the potential in question. The 5-shell potential
representing the perturbation is therefore

V=R'»i(r)(y&, i y, , ,)X~(-r')
L

Now let P(r) be an eigenfunction of 1 —GV and p,

the associated eigenvalue. The eigenvalue equa-
tion takes the form
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nZ(E) = —Q 8,(E); (2. 3)

the phase shifts being defined by the expressions

&i(E) = Im ln(l —(I
I
G

I
I ) I' ).

This particular model of an alloy has been con-
sidered by both Beeby ' and Harris, ' who also
derived formulas for the change in density of states.
However, their formalism is designed to yield only
that part of ~p associated with the volume interior
to the impurity sphere, whereas ours yields the
complete quantity. More formally, let p(E, r) de-
note the energy and spatial density of states. Our
np(e) is the change in this quantity integrated over
the entire crystal, whereas the other authors deal
with the same quantity integrated over the interior
of the impurity sphere. The latter procedure
would be entirely inadequate in our case, since
the states in question are by no means confined to
the mentioned volume.

III. CALCULATION OF GREEN'S FUNCTION FOR COPPER

The bulk of the numerical work in our problem
consists in the evaluation of the matrix elements
of the host Green's function. The only saving fea-
ture is that for a material such as copper and the
sort of impurities we envision "inserting" into
copper, one need consider only the s, P, and d
logarithmic derivatives. Hence there are only
four matrix elements of G to be calculated.

The procedure we follow is simply to solve the
basic equation

G=P+~G,
which yields the host Green's function in terms of
the free-electron Green's function P and the host
crystalline potential 'U. One uses the Bloch the-

tives for the impurity and host potentials, and
solve the matrix eigenvalue equation given above.
nZ is then given by (2. 2), and &p by taking the en-
ergy derivative.

The algebraic eigenvalue equation is very easy
to solve in many cases of practical interest. As
is the case in the analogous Slater-Koster for-
malism, one need only work with the sub-block
of the matrix corresponding to values of L for
which V, is nonzero. If we assume that the V, are
negligible for / & 2, then in cubic materials the rel-
evant matrix elements form a diagonal matr gr. .
There are, in fact, only four independent elements,
corresponding to the I'g, I'gg, I'~, and I'gs rep-
resentations of the cubic group. One then has the
very simple formula

KZ(E) = —ImZ In(I -(I'I Gl I) I r)~
2
7l

which can be written in a Friedel" form as

orem to simplify the problem, and also the fact
that we only need to know G "on" the muffin-tin
sphere. The derivation of the relevant formula is
set out in detail in Ref. 23. Our starting point
here will be Eqs. (48) and (49) of that paper, which
show that

GII, = xj,(j,C, —q, ) —s(j,Cg —Rg)'g„ (s. 1)

where x =gE, the Bessel functions have the argu-
ment ~R, and C, = cot5„5, being the phase shift
for each copper potential. The quantity g& is given
by

RI, ~ ~ (C+B )I,L (s. 2)

where 0 is the diagonal matrix formed from the
(Cg), and B» is the matrix introduced by Kohn-
Rostoker.

The evaluation of Eq. (3.2) is the most difficult
part of the calculation. g& has both real and im-
aginary parts; the imaginary part arises from the
poles of the matrix inverse and in fact in propor-
tional to 5[det(C+B )], while the real part is given
by the Brillouin-zone integration of the principle
part of the inverse. We avoid doing the three-
dimensional principle-part integration by invoking
the analytic properties of the Green's function:
the imaginary part is determined by its explicit
definition in terms of 5 functions, and the real part
by doing a Kramers-Kronig transformation on the
imaginary.

To evaluate ImgL, we diagonalize the real sym-
metric matrix C+ B". I.et U' be the transformation
matrix and X be the diagonal matrix formed from
the eigenvalues; then

(c+B'),=Z
l v, ,, l'(~, ) '.

Since the energy E has an infinitesimal negative
imaginary part, and the eigenvalues X~ are real
for real energies, one has the relation

Im(x, ) '=wsgn
d

' l5(x»)
dh, l
dE ]

which leads to the expression

where X~ is the particular eigenvalue of (C +B")
which vanishes for the energy eigenvalue E„~ and

U& &„» is the associated eigenvector.
Introduction of the diagonal matrix X considerably

reduces the numerical problems in finding the
poles. A plot of the eigenvalues for some arbitrary
wave vector is given in Fig. 1(b). The point to be
noted is that any branch is a smooth monotonically
decreasing function in the neighborhood of its
zero. It is this feature which facilitates calcula-
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I IG. 1. Energy-dependent determinant for an arbi-
trary k point. The energy eigenvalues are indicated by
open circles. The full determinant is displayed in (a)
and the components of the diagonal form in (b). The
advantages of the latter form are apparent.

tion of the weight of the 5 function. This is true
even if this is near a free-electron singularity. ~'

fn»gs. 1(a) and 1(b) we compare the behavior of
det(C+8") as a function of energy to that of the X's
and the advantages of the latter are apparent. A

point not shown on these plots is that there is also
no need for special treatment of degenerate roots
when the X matrix is introduced.

The only troublesome singularities are those
due to the cotangents of the phase shifts. To find

G~, ~ in such a region we reformulate Eqs. (3. 1)
and (3.2) in terms of the tangent of the phase shifts.

For our actual calculation for copper we used
the potential of Chodorow and a lattice constant
of 6. 8309V Bohr radii. We divided the energy
scale into three regions: For the lower region,
0. 02-0. 50 Ry, and for the upper region, l. 0-1.9
Ry, we did calculations for 89 4 points within ~48 of
the Brillouin zone; for the region about the Fermi
energy we used a set of 505 0 points in ~48 of the
zone or 16 384 points in the full zone.

The X's were evaluated on an energy mesh of
0.04 Ry and the zeros were found by a four-point
polynomial fit of each g about its zero. The slopes
were found using the same polynomial. At the
interpolated zero, X„g, was evaluated to find UL„&„»

at this eigenvalue. This also gave an error check
on the interpolated E„„. This error was no larger
than 0.002 Ry. Our eigenvalues for copper were
in agreement with the augmented-plane-wave cal-
culations of Burdick.

Once we have E„„,dX„gdE, and Ul„&„~~ for our
set of wave vectors, we can calculate the imaginary
part of the Green's function and the density of
states for copper using the histogram method. In
Fig. 2 we compare our calculation for copper's
density of states to one by Faulkner et a1.3' This
represents a good test of our histograms and our
choice of k mesh. It is apparent that we have not
used a sufficient number of points to obtain the
resolution of Faulkner, but still the general agree-
ment is good.

Once we know ImG» we can calculate the real
part using the Kramers-Kronig relation

(E)
1 )t~ ™~~(ud
m &, (o-S (3.3)

4g = cos5gy g
—sining ng

cos~gtlg+ sin~g jg ~

The form of h& is generally very complex for a
multiple scattering problem. However, if one had
only a single scatter, then h~ = i. We will assume
that the single scatter limit is a reasonable rep-
resentation of G»~& at high energies. We then
have the expression

1 ImG~~((o) —(g(o'g', ((u)
4(d

v Q co —E

+ (gE}St,(E)8,(E).
In fact, this approximation is valid since our cal-
culated ImG» is closely approximated by
(/E)4&(E) about the neighborhood of the cutoff en-
ergy E~.

IV. IMPURITY POTENTIAL

We now turn to the more difficult question of
finding a reasonable approximation to the impurity
potential within the constraints imposed by the
muffin-tin model. The perturbation introduced by
the impurity must vanish outside of a spherical re-
gion of radius R, and consequently can influence

In practice our knowledge of ImG» is limited to
some relatively low-energy region. We need some
approximate representation of ImG» at high en-
ergies in order to do the integral in Eq. (3.3). To
this end it is convenient to introduce Anderson's
representation of Gl, z, (E):

Gzz(E) =«(8g&i+hlA)&

where
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neither the neighboring host potentials nor the
constant potential between the muffin-tin spheres.
In other words, to stay within the model we must
assume that the perturbation introduced by the
impurity is entirely screened within its own muf-
fin-tin radius.

Meyer et al. have shown that, because of the
relatively short screening length in metals, the
perturbation is roughly of the required form. They
show that the impurity potential can be written as
the sum of a bare potential U plus a constant term,
arguing that a screening charge is drawn in around
the impurity creating a spherical shell of charge
about the impurity, thereby producing a constant
potential term inside the shell. In this approxima-
tion the impurity potential can be expressed as

V= U+ Us

where U is the unscreened impurity potential in a
copper environment and Us is the above-mentioned
constant. The bare potential U is constructed using
the usual methods of band theory; i.e. , it is con-
structed from Herman-Skillman ' atomic potentials
using the Slater approximation where the total
Coulomb potential and charge density at an im-
purity site is represented by atomic terms of
the impurity plus the spherical terms due to
copper potentials at all other lattice sites. An

exchange factor of ~ is used for all impurities
potentials.

The constant term Us can be found self-consis-
tently using Eq. (2. 3), i. e. , U~ can be chosen so
that at the Fermi energy of the system the re-

suiting impurity phase shifts satisfy the sum rule
where ~Z is the total change in the number of
states due to an impurity.

This model for screening, along with the sum
rule, also enables us to approximate the influence
of local lattice displacements due to the impurity.
Blatt, ' Harrison, "and Ziman ' have suggested
that the effect of local lattice displacements about
the impurity may be accounted for, at least in
large measure, by a suitable modification in Eq.
(2. 3). This modification incorporates the effect
of lattice distortions in an approximate way
through the use of an effective valance change &Z,
namely,

nZ =Z' —Z (1+5V/V),

where 5V/V is the average change of volume in a
unit cell due to the impurity, and Z' and Z are
the valence charges of the impurity and host,
respectively.

This approximation has proved useful in ration-
alizing residual resistivity data in copper alloys. '
The use of this approximation to calculate our po-
tential stretches the bounds of this model. Recall
that our formalism assumes the impurity is com-
pletely screened within a sphere of radius R,
while any displacement effects extend well beyond
this sphere. In order to get some estimate of the
effect of displacement we will calculate the poten-
tials using this model and compare the results
with potentials that do not include displacement
corrections. For 5V/V we use values given by
Blatt.
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V. RESULTS

In Table I we list the calculated phase shifts
5, (E},their energy derivatives 5,'(E},and the change
in density of states &p for various dilute alloys
of copper at the Fermi energy E&. The d phase
shifts are defined from the representation I'~ and

r25' as

5g p= g (25r +35r, ).
This allows Egs. (2. 1) and (2. 2) to take the form

hp(E) =Z hp, (E), (5. 1)

where

hp, (E) = (2/1r) (2l + 1)5,(E)

0.4—
0 2 — (o)

CuCu. -
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-0.4—
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Xa -08-
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t-w -12
C

-1.4-
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-1.6-
U

4J -18-
-20—

uGI

hZ = —Q (2f+1)a,(E,).2
1T g

(5. 2)

For each alloy we list two sets of numbers, one
calculated using the actual 4Z in the self-consis-
tency requirement [Eti. (5.2)], the other using
Blatt's modified values &Z'.

In Fig. 3 we have plotted the change in density
of states &p as a function of effective ~. Curve
(a), which passes through the origin, indicates
impurities which belong to copper's row of the
Periodic Table. Curve (c) shows the same for the
silver row and curve (b) represents the rigid-band

odel. 11 12

Clearly, the curves show a dependence upon the
row of the Periodic Table and a dependence upon
valence change within a row of the Periodic Table,
The period effect shows relatively little depen-
dence on valence difference, since the curves are

-2.2—
-2.4—
-2.6—
-2.8—
-3.0—

uSn

approximately the same except one is shifted from
the other.

The rigid-band results, curve (b), have little

2
AZ'

FIG. 3. Change in the density of states of copper per
impurity atom. Curves (a) and (c) indicate the results
for impurities from the copper and silver rows of the
Periodic Table, respectively, while curve (b) displays
the results of the rigid-band model. Within each mate-
rial the two solid dots indicate impurity potentials with
and without corrections for lattice displacement referred
to in the text.

TABLE I. Calculated values for the effective phase shifts 6(E) and their energy deriva-
tive f5'(E) for different dilute alloys of Cu. The Fermi energy is 0.56 Ry.

Alloy ~(Ez) (E~) 6,(Ez) 60 (Ep) 6)(Ep) 5 f (Ey) b2(Eg) 62 (Ep)

CuAl 2, 00
1,87

-1.02
-0.87

0.53
0.50

—0.87
—0.81

0.50
0.46

0.73 0.22 -0.58
0.73 0.21 -0.55

CuZn

CuGa

1.00
0.89

2.00
1.84

0, 17
0.17

-0.35
—0.19

0.41
0.37

0.70
0.66

—0.68
—0.61

—1.15
-1.08

0.28
0.24

0.58
0.52

0.53
0.49

0.65
0.69

0.07 -0.13
0.06 -0.12

0.14 -0.27
0.14 —0.25

CuGe

CuCd

CuSn

3.00
2.81

0.0
—0.32

1.00
0.54

3.00
2.42

0.0

—1.04
—l.43

—0.42
—0.54

-3.00
—1.56

—1.52

0.99
0.95

0.10
0.02

0.38
0.24

0.85
0.74

0, 14

—1.43
—1.39

-0.28
—0.13

—0.79
—0.51

—1.55
—1.38

—0.38

0.94
0.86

0.01
—0.06

0.29
0.14

1.01
0.78

0.00

0.08
0.28

-0.03
—0.21

0.44
0.24

-0.44
0.17

-0.06

0.18
0.18

—0.03
—0.07

0.06
0.04

0.17
0.15

—0.03

—0.42
—0.40

-0.25
—0.30

-0.24
—0.21

—0.37
—0.32

—0.36
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resemblance to our calculations. The greatest
qualitative discrepancy is for Ag in Cu for which
the rigid-band model shows no effect while ours
shows an appreciable change.

To gain some understanding of the valence de-
pendence within a row of the Periodic Table it is
convenient to look at &pa and &pa+ &p& of Eq. (5. 1)
separately. Let us first look at the l = 2 component
of our change in density of states, &p2. Consider
a hypothetical system where the l =0 and l =1
logarithmic derivatives for the impurity are equal
to those of copper. How do we expect the density
of states to change? First, if we consider cop-
per's d band as a simple tight-binding band whose
bandwidth is a function of the number of copper
atoms, then the removal of an atom results in a
narrowing of the band. Replacing this vacancy
with an impurity having d states lower in energy
than those of copper introduces either a virtual
state or a localized state. For an impurity state
below the conduction band of copper, e.g. , Sn or
Ge, we have a true localized state. On the other
hand, for Zn and Ag the d levels fall within the Cu
bands giving a virtual state of a finite half-width.
If this were the complete picture there would be
no impurity effect at the Fermi energy. But of
course it is not the complete picture, since we
have not included the effect of s-d hybridization.
In pure copper the states above the nominal d band
have a large d component due to hybridization, the
effect of which is to increase the density of states
at E&. When some d states are lowered in energy
the density of states at energies above the nominal
d position is reduced.

In Fig. 4(a) we have plotted Ape vs E for Zn in
Cu as the solid curve. The dotted curve is the
density of states per atom for pure copper. ' All
of the features may be interpreted. The large
positive peak is the virtual bound state associated
with the d states of Zn. Except for Zn and Ag all
other impurities for which we have done calcula-
tions have localized impurity d states. The gen-
eral negative character in the bulk of the d band
reflects the removal of states from the continuum
formed by the d states of Cu, since there is in
fact one less Cu atom in the alloy than in the per-
fect crystal. The rapidly varying region of posi-
tive and negative &p~ reflects the fact that the
tight-binding type of band formed from the remain-
ing Cu d states is narrower than that of pure Cu,
since the hopping possibilities for a d electron
have been reduced by the shifting down in energy
of one set of atomic d levels. The very small
negative region near E~ reflects the reduction in
hydridization discussed above.

In Fig. 4(b) we plot &p2 at EF for different im-
purities. We see a decrease as the d bands be-
come lower in energy with increase in &Z. All
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impurities show an approximately linear behavior
within their row of the Periodic Table with the excep-
tion of silver. This may indicate an error in our
potential for silver. This is to be expected since
band theorists have not been able to calculate a
reasonable d band for silver from Herman-Skill-
man potentials without going to a self-consistent
calculation.

We turn to the change in density of states pro-
duced by the difference between the impurity and
host logarithmic derivative for l =0 and l =1. The
general nature of the results is illustrated in Fig.
5(a), in which the dotted curve is again the density
of states per atom for pure Cu, while the solid
curve is &pa+ &p, defined in Eq. (5. 1). One sees
that there is a general tendency for this quantity
to be negative in the center of the nominal d-band
complex and positive near the wings. The size
and sign of &pa+ &p& near E& will obviously be
strongly impurity dependent.

There are various effects which could be caus-

I i I i I i I i I

0 1 2 3 4 5
Z

FIG. 4. Change in the l =2 component of the density of
states of copper per impurity atom. In (a) the solid
curve is 2 for CuZn as a function of energy, and the
dotted curve is the density of states per atom for Cu.
In (b) me display this component at the Fermi energy for
different alloys of copper and different potentials for the
same impurity.
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FIG. 5. Change in l=o and /=1 components of the
density of states of copper per impurity atom. In (a)
the solid curve is bpo+ bp& for CuZn as a function of
energy, and the dotted curve is the total density of
states for Cu. In (b) we display this component at the
Fermi energy for different alloys of copper and dif-
ferent potentials for the same impurity.

Fermi energy, the behavior is not rigid-band-
like. In Fig. 5(b) we have plotted &pn+ &p& at E~
for different impurities. For small &Z we have
a positive value for &pp+ &p& which becomes nega-
tive as &2 becomes large. This does not reflect
any simple model behavior but presumably reflects
the detailed nature of the energy bands of copper
and how they interact with an impurity.

VI. COMPARISON WITH SPECIFIC-HEAT DATA

The motivation for our calculation was the exis-
tence of unexplained specific-heat data for several
dilute copper (and other noble-metal-based) al-
loys, the feature of particular interest being the
increase of the coefficient of the linear term upon
the addition of pentavalent elements.

The quantity of interest is

where the c- 0 limit reflects the fact that the data
refer to the extreme dilute limit. The total con-
centration derivative may be divided into two
parts:

d lny 8 lny & 8lny d lnV

The second term refers to the mean volume change
produced by adding impurities to the system. The
factor s 1ny/S lnV is evaluated at c = 0, and is there-
fore a property of the perfect host. This deriva-
tive, the low-temperature electronic Griineisen
constant, has been measured for Cu by Carr et al.
and found to have the value 0.63+0.06, essentially
the same as the free-electron value 0.67. The
factors S 1nV/Sc have been measured for a variety
of alloys. ' Consequently, the second term can

ing the shape of &pp+ &p, in the d-band region, all
of which are inextricably mixed. For example,
in the language of the combined interpolation
scheme, "the general effect of alloying on the plane
waves (mostly s and P) would be to lower the en-
ergy of these states. If we hypothetically fix the
l = 2 logarithmic derivative we are effectively con-
structing an alloy in which the tight-binding states
are unchanged, but for which the plane-wave con-
tinuum is lower in energy than it is for the perfect
host. This will tend to have the effect of making
a somewhat broader tight-binding-plane-wave d-
band complex. Furthermore, the nominal d tails
of pure Cu contain a significant s-P component.
Impurity scattering through these parts of the d-
band wave function will tend to broaden the peak in
the unperturbed density of states.

In our particular region of interest, near the

Alloy

CuZn
CuGa
CuGe
CuAg
CuSn

Experimental
Volume corrected

p y3a p. y6b p. 25c
0.56
0.69

—0.35
0 35

Vi

0.045
—0 052
—0.448
—0.392
—0, 430

Theory
VZ

0.046
—0.097
—0.584
—0.290
—0.828

Rigid-band

—0.301
—0.602
—0.903

0.0
—0.903

Reference 10.
Reference 7.

'Reference 2.
Reference 6.

TABLE II. Comparison of the calculated change in
density of states with the measured change in the coef-
ficient of the linear term in the low-temperature specific
heat. The measured values Olney/Sc have been cor-
rected for volume changes as described in the text. V&

and V2 are, respectively, the theoretical values for
81np/Bc for the present work with and without correc-
tions for the lattice displacements referred to in the
text; the last column is the rigid-band results for the
theoretical value of 8 lnp/ec for comparison.
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be computed, and subtracted from the experi-
mentally measured total derivative.

The first term in the decomposition (6. I) is the
fractional rate of change in y that would occur if
the volume per atom of the alloy were the same
as that of the undisturbed host. In the simplest
model —the independent-particle picture in which
electron-phonon and residual electron-electron
interactions are neglected —the coefficient y is
directly proportional to the density of electronic
states at the Fermi energy. Its derivative, there-
fore, would in this model be given by the expres-
sion

d lny 1
dc Pp

where po is the Fermi-level density of states per
atom in the host.

However, a considerable discrepancy still exists

(see Table II). In spite of the fact that we have
made some simplifying assumptions in constructing
a tractable model of the alloy, the model is suf-
ficiently detailed that it seems unlikely that further
refinement of an independent-particle model will
bring theory very much closer to experiment.
One must then look for other mechanisms, the
most likely of which is the change in the electron-
phonon enhancement factor upon the addition of
the impurities to copper.
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