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The optical conductivities of single-crystal anisotropic polyvalent metals often exhibit a marked
dependence on the polarization of the incident radiation. This can be accounted for straightforwardly by
an extension of the second-order theory for the optical response of isotropic systems, and as in the case
of the cubic polyvalent metals the expressions for the optical constants can be given in closed form.

L. INTRODUCTION

The marked structure found in the optical con-
ductivities o(w) of the cubic polyvalent metals!™?
(Al is an example) is also a feature of the aniso-
tropic polyvalent metals (Mg, Zn, Cd, Hg, In,
etc. ). The physical origin of the structure is com-
mon to both classes: It is a manifestation of the
singular behavior exhibited by the joint density of
levels in the (perfect-lattice) single-particle band
structure and modified in a relatively minor way
by the effects of scattering. In particular, for
levels with energies &,z (corresponding to Bloch
functions y,z) the quantity Vi (8,z— 8,2— w) van-
ishes over a face of the appropriate zone where
for direct transitions the bands §,.; and &,z are
parallel. For radiation of energy #w the calcula-
tion of the corresponding o(w) can be accomplished
using perturbation theory provided that the valence
bands of the metals under investigation are rea-
sonably well accounted for by a weak local pseudo-
potential U(¥). With this restriction in mind, we
shall briefly sketch in Sec. II the theory given re-
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and the real part of the conductivity tensor is

cently to describe o(w) in cubic metals, modifying
it where necessary to incorporate changes arising
from anisotropy. Transport coefficients are no
longer scalar and as a consequence the polariza-
tion dependence emerges as a useful probe of the
band structure. Scattering effects may be included
in a relaxation-time approximation (Sec. III). We
also outline the modifications to the sum rules
necessary for anisotropic systems. Results are
presented for zinc and mercury.

II. DIRECT INTERBAND ABSORPTION

The absorbing power P of an anisotropic metal
of volume Q is

P=Q(E- o(w)- E), (1)

where o(w) is the long-wavelength limit of the fre-
quency-dependent conductivity tensor. If the elec-
tric field E of the incident light is polarized in the
direction €, then in the absence of scattering the
absorbing power for direct interband excitation
processes is®

2 - . =
——) T D1 A (B 88t = 8u = 1) Yt | €+ |00) o [ € ¥ |4}, (@)

2 2\2 - -
o@)=0, (1) %0 D (8,601 ~A(EwD) 8w = 6t = 1) Gt | T |0a) Gt | [0, (@

iw \2m

where the f’s are Fermi occupation factors, and
we have separated out a factor 0,=e2/24may% having
the convenient practical value of 5.48x 107! sec™?.
The primary concern here is to account for the
location® of structure in o(w) and accordingly it is
sufficient in a second-order theory to evaluate the
matrix elements appearing in (3) in a two-plane-
wave approximation. Let K be a reciprocal-lattice
vector corresponding to a member of the set of zone
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planes intersecting the Fermi surface. Denoting
the bands in the vicinity of the zone plane by n=1,
n’=2 we have
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and
z= [ df e Fy(F) (4)

is the Fourier transform of the (local) periodic
pseudopotential. If the crystal contains N cells,
each with an N, atom basis with basis vectors p;,
then

Ug=Sg &,
where Vg is the electron-ion form factor? and Sg
is the structure factor per atom:

Np -
Sg=N;1 2 e'® 71,
i=1

With this notation the reduction of (3) follows the
steps leading from Eqs. (7) to (18) of Ref. 3. For
a set of equivalent zone planes {-IE} we give the re-
sult in three parts:

0(w)=0, hw<2|Ug|
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(7w + Fiwg) (Aw, — Aw) P
X 28, hw (ZK;)3KK, hwy < fiw <hw,
(5)

where B =K/K and 8g=#?K%/2m. In Egs. (5), the
frequencies 7w, and #w are defined®, respectively,
by

wy=2(8x Ep+ | Ug |*)M %= 8g=hw, - 28y,

where & is the Fermi energy.

The anisotropy of the conductivity is apparent in
the factor } (g, 3KR (which reduces, in a cubic
system, to a unit matrix weighted by the member-
ship of the set). It is constructed from those equiv-
alent reciprocal-lattice vectors whose associated
zone planes form the zones of interest in the opti-
cal problem (for example, planes which cut the
Fermi surface). In this context we will refer to
T (K)= 3%, 3RR as a zone tensor. The zone ten-
sors clearly depend on structure but are all sym-
metric.

II. SCATTERING, OPTICAL MASSES, AND SUM RULES

Interband scattering effects are incorporated by
introducing a phenomenological relaxation time 7
and replacing (3) for the two-band model by®

2m

the sum being taken over those K for which the
lower band is filled and the upper is empty. It is
clear from the structure of Eq. (6) that the con-
tributions from equivalent planes will continue to
incorporate T as a linear factor. Accordingly the
results of Secs. IIT and IV of Ref. 3 can be taken
over completely by simply including the appropriate
zone tensor T for a given set of equivalent planes.

For a cubic metal the inverse optical mass can
be taken as a scalar. Inan anisotropic system we
are led to an inverse-optical-mass tensor
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where the integral is taken over the occupied
states, 7, being the conduction-electron density.
The two-band model gives immediately
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where the positive sign is associated with the upper
band (z=2), and the negative with the lower (z=1).

Integration over the occupied levels then gives
(for all contributing planes {K})
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with z = fw, /2 | Uy |.

Equation (9) may also be examined in the light of
the conductivity sum rule. X #, is the conduction-
electron density, then for the total transverse con-
ductivity we have®

(2/m) Jy Reoyy(w)dw= (2 e%/m) by, (10)

which implies that the oscillator strength appear-
ing in the direct interband absorption is removed
from the intraband (Drude) absorption. The latter
is calculated (as in Ref. 3) with the appropriate
optical mass given by Eq. (9).

IV. RESULTS AND DISCUSSION

There is a scarcity of published optical data for
single-crystal anisotropic metals and frequently
significant disagreement” between the sets of opti-
cal conductivities derived for a given metal. Much
of the primary data is in the form of polarization-
dependent reflectivities and it is therefore con-
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venient to present the theoretical results also in
terms of reflectivities, the latter being readily de-
rived from o(w). With only a minor loss in ac-
curacy the computational aspects of the analysis
can be greatly simplified by the use of the infinite-
relaxation-time limit of the imaginary part of the
conductivity. Although this differs somewhat from
the results expected from Imo given by Eq. (6),

the deviations are mostly at higher energies and
do not affect the conclusions. I is also worth
noting at this point that although o(w) given by

Eq. (5) is continuous, its derivative at #w, ex-
hibits a small discontinuity® reflecting the point

at which filled levels in the second band cease to
inhibit direct transitions. The resulting structure,
particularly in Img, is weak and largely eliminated
by the use of the computationally more cumbersome
form of Imo given by Eq. (6).

A. Hexagonal Systems

The zone tensors T for hexagonal metals are en-
tirely diagonal: Choosing the z axis to be parallel
to the ¢ axis they have the form

-

a(K) 0 0
TK)-| 0 a® o . (11)
0 0 b(K)

Since the absorption is proportional to T, 0;,€,
the experimentally observed anisotropy of the op-
tical properties of Mg, Cd, and Zn, for example,
is easily accounted for. In each of these three
metals, three sets of zone planes feature promi-
nently in the interband absorption structure. These
are the six planes parallel to the ¢ axis in the first
Brillouin zone and the boundary planes of the Jones
zone. ° In most cases the sloping planes of the latter
dominate the optical absorption.

Rubloff!® has given results for the optical proper-
ties of Zn which, from the point of view of the pres-
ent considerations, are in a convenient form. In
Fig. 1 we show the best over-all fit to the data
achieved by using | Uz | and 7 as adjustable param-
eters. The assignment of the | Uz | appears to be
unambiguous, and, in particular, the fact that
| Usoio | ®0 indicates why virtually no structure
arises from the six equivalent first-zone faces in
the € L€ optical conductivity. Note that the form
factor corresponding to the data implies a value of
qo/2kg[where U(g,)= 0] equal to 0. 85 in agree-
ment with the Heine- Abarenkov model potential®?
but the slope of the form factor in this region is a
little greater.

As was found in Ref. 3, the value of 7 partly de-
termines the widths of the absorption peaks and,
hence, the drop in reflectivity. Its value is com-
parable to that expected from a Drude analysis of
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FIG. 1. Polarization dependent reflectivities from
zinc. The experimental results (full line) are those of
Rubloff (Ref. 10). The calculated curves (dashed lines)
correspond to the choice |Uyjo! =0.0 eV, [Uyy,| =0.485
eV, |Uyj11=0.74 eV, and 7=0.4x10"1 sec.

the static conductivity. The inverse-optical-mass
tensor in Zn is diagonal and has components 0. 52,
0.52, and 0.62. For both polarizations we expect
(as a consequence) more than half of the absorption
to originate from intraband (Drude) processes, a
conclusion somewhat different from Rubloff’s.
Optical masses derived from extrapolation of the
reflectivity curve below the lower limit of experi-
mental observation are, however, quite sensitive
to the details of the continuation.

It is worth pointing out that for many of the rea-
sons that Al is often thought to be an ideal simple
metal in the class of cubic metals, Mg is the aniso-
tropic counterpart. Although published reflectivity
data on Mg is sparse, the optical conductivity and
its dependence on polarization should be amenable
to interpretation within the weak-potential model. *?

B. Rhombohedral Systems

By taking the pole to be along the trigonal axis,
the zone tensors T of the rhombohedral system
take the form

a(K) 0 0
T®)=| 0 a® o
0 0 »(E®)

In the case of divalent mercury (in its a-phase),
the Fermi energy appears to be above the band gap
at six of the faces of its zone' (i.e., those con-
taining the point L) and below the gap on the re-
maining eight. The absorption associated with the
latter will exhibit no edges and the optical conduc-
tivity will be dominated (in the range of interest) by
the L-face contributions.

The reported optical data on a Hg single crys-
tal** are incomplete to the extent that the orientation
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of the sample was not determined. The sensitivity
to orientation of the optical data can be gauged
from Fig. 2, where we show the polarization de-
pendence of the calculated reflectivity for € parallel
to I'X, I'Z (the trigonal axis), and 'L. The extent
of the variation precludes a fine determination of
the band gaps and the relaxation time, and we have
attempted to reproduce only the main dip in reflec-
tivity assuming that the light was normally incident
on an L face. The value obtained for the corre-
sponding pseudopotential coefficient of 0. 95 eV is
slightly larger than the de Haas-van Alphen re-
sult of Brandt and Rayne. !* Chokye et al. achieved
a partial analysis of their data by assuming a cubic
crystal structure for mercury. The calculations
that produced the results summarized in Fig. 2
yield an inverse optical mass tensor of

0. 403 0 0
0 0.403 O
0 0 0.409

The leading pair of entries on the diagonal are
equal, of course, by symmetry. That the third is
almost the same is somewhat fortuitous. The in-
tegrated total absorption required to evaluate the
tensor includes the contributions from the eight
faces exhibiting solely normal interband absorp-
tion which extends to somewhat higher energies
than the contributions from the six parallel-band
faces. The six faces contribute mainly to the 11
and 22 components, while the eight faces contrib-
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FIG. 2. Polarization-dependent reflectivities from
mercury. The experimental results (full line) are those
of Choyke et al. (Ref. 14). The calculated curves cor-
respond to the choice Uy | =0.95 eV, Uyl =0.66 eV,
and 1U;;;1=0.66 eV, and 7=0,15 X10"!¢ sec. Polar-
ization directions are (---) €=[100] (along I'X in the
zone); (*++) €=[001] (along I'Z); and (-* -+ -+) €=[0. 912,
0, 0.410] (along T'L).

ute mainly to the 33 component.

These examples illustrate that the present analy-
sis may be used quite straightforwardly for those
metals where the two-band approximation adequate-
ly represents their band structure near zone faces.
A further requirement is that the upper of the
bands be at least partially occupied.
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