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FIG. 3. Correlation between the isomer shift and the
single-ion contribution to the hyperfine field, &cpgy+&pp.
All isomer shift values are relative to Eu in Sm203.

the nucleus. However, if the polarizability of s
electrons does not vary substantially in these var-
ious materials, a correlation such as observed
may be expected. One may also notice from Table
I that the isomer shift is independent of concentra-
tion in a given alloy system. That fact, coupled
with the correlation of Fig. 3, provides experi-
mental evidence for the previous assumption that
H„ is independent of concentration.

(iii) The hyperfine field of (Eu ')La~'Alz is —205
kOe. From Ref. 6 one finds a value of —140 kOe
for (Gd')Y'Al, . The difference may be easily
understood as a repulsion of conduction electrons
by the divalent Eu ion in he trivalent matrix. Thus
H„ is decreased by 65 kOe.

(iv) The hyperfine field of (Eu ')Yb 'Alz is —235
kOe, as compared with the value of —140 kOe for
(Gds')Ys'Alz. Here the difference cannot be due to
the charge screening effect just mentioned. Instead
it is most likely due to an increase of 95 kOe in H„
due to the additional conduction electron available
when one changes from the divalent to the trivalent
matrix.

measure the same quantities. H, +H is propor-
tional to the spin density at the nucleus and the iso-
mer shift is proportional to the charge density at
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Dynamic Spin Configuration for Hard Magnetic Bubbles in Translational Motion
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The detailed model of Vella-Coleiro et al. for steady translational motion of a hard bubble (i.e. , a

cylindrical magnetic domain with axial Bloch lines distributed nonuniformly around the domain wall) is

shown to lead to essentially the same results obtained by Slonczewski and to exacly the same results

obtained by Thiele in less specific calculations. These theoretical expressions are shown to give a good
description of new experimental observations of hard-bubble dynamics.

Several theories have been reported' recently
for the dynamic behavior of hard-magnetic-bubble
domains (i.e. , cylindrical domains whose walls
contain axial Bloch lines). Steady translational
motion is considered in Refs. 1, 3, and 4, while

bubble-collapse dynamics is the subject of Ref. 2.
Substantially different conclusions are presented in
Ref. 1 than in Refs. 3 and 4. The purpose of the
present paper is to show that the basic model used
to develop the nonlinear theory of Ref. 1 can yield
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essentially the same results as those given in Refs.
3 and 4 and that we can calculate the magnitude of
the drive-field-dependent function f which was de-
termined only from experimental data in Ref. 1.
We then show that these expressions, when modi-
fied to account for coercivity, provide a good des-
cription of extensive new experimental results.

We start by writing the Gilbert equation in the
form

y8=———aP sin8,M5$ (la)

Q sin8= ——+n8mge (Ib)

e Qe8=v-x gx
ee
ex l

(2)

In (2), I is the wall width, and the steady-velocity
components of the moving wall are v„and v, . Sub-
stituting (2) into (1}yields

vv„y 5E
~ ~ Qv

l~ M5$ ~By (3a)

(3b)

The terms in (3) have a one-to-one correspondenceo
with those of the general planar wall response func-
tion. Therefore, these equations can be applied to
a cylindrical wall configuration of the type suggest-
ed in Ref. 1.

Figure 1 shoms the assumed domain configura-
tion, both in the static and dynamic states. The
bubble-domain diameter is d, and the total number
of Bloch line Pairs is n,. Consequently, 8$/By =2n/d
in the static case, since we consider only the case
for large n where this approximation has been shown7

to be reasonable. For the dynamic case we postu-
late the distribution of the Bloch lines according to

&6 2n v1+—cos$
vm

(4)

where v = v~+ v~ and v is a parameter to be eval-
uated. Note that (4) is equivalent to Eq. (10) of
Ref. 1, although for simplicity we consider only

where 8 and P are the polar angles of the magneti-
zation vector M, e is the phenomenological damping
constant, and y is the magnitude (i. e. , y & 0) of the
electronic gyromagnetic ratio. The factors 5E/5$
and 5E/58 will be discussed below. For the sake
of simplicity we will consider the cylindrical wall
to be represented by an array of planar wall seg-
ments. Consequently, we assume 8 and Q to de-
pend only on the Cartesian coordinates x and y,
where x is in the direction normal to the plane of
the planar domain mall. As was done in Ref. 1, we
focus our attention on the center of the wall (where
8 = 2v) and make the following assumptions:

At this point, we must determine if values can
be found for th~ parameters $0, $&, v, and v
which satisfy (6) for any value of t'. By neglecting
vo terms in (6), these parameters can be shown to
be

$0= tan a, (Va)

one sign for the sense of rotation within the Bloch
line.

We are now in a position to evaluate the 5E/5$
and 5E/58, which are the functional derivatives
with respect to P and 8 of the magnetic-free-ener-
gy density of the system under consideration. In
order to simplify the problem, we assume that the
bubble domain shape is not changed in any signifi-
cant way by the translational motion and that most
of the terms in these derivatives cancel out in the
dynamic case just as they do in the static case.

As was noted in Ref. 1, the only significant term
which remains in 5E/5y is 2A(8 4/By ), where A
is the exchange constant. However, two significant
terms remain in 5E/58. Reference 1 shows one
term to be -MHosin($ —$1), which corresponds to
the external-field gradient that makes the bubble
domain move. The other term arises from the
variation in the wall energy around the domain pe-
rimeter, which is implied by (4). In the theory of
bubble-domain stability, it is shown that the wall
energy o leads to an effective field mhich tends to
collapse the bubble domain. Equation (4) modulates
this field around the perimeter. The general re-
sults that v/I - Bg/By for large n (Refs. 6 and 9)
and a I = 4' (Ref. 6) enable writing the wall en-
ergy in the limit of large n as o =4A(84/By). Since
e„ is only a function of Bp/By, the variational pro-
cess denoted by 5E/58 operates only on the factor
representing the wall area, and the wall energy
appears in the effective-field expression exactly in
the conventionalo way: a /d. By using (4) for 8$/
8y, the variable term in the effective wall-energy
field is thus seen to be (8nAv/dov„) cosg.

We now postulate that the steady-state motion of
the bubble domain is along a direction such that the
velocity components for the segment of the domain
wall at angle t' (see Fig. 1) are

v„= v sin($ —go), v, = vcos(( —t'o) . (6)

Substituting the above expressions for v„, v„5E/
5$, 5E/58, I, and 8$/By into (3) results in

v[1 + (v/v ) cos(][sin(g —&o) + o. cos($ —$o)]

= (-4yAv/Mdv ) sin) (6a)
and

v[1+(v/v„) cosg][cos(g —t'o} —o'sin(g —&o)]

= (-ydHo/2n} sin(g —g~}

+ (4yAv/Mdv ) cosg . (6b)
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FIG. 1. Schematic representation
of the Bloch line distribution in static
and dynamic hard-bubble domains.
The radial bars indicate the loca-
tions of the Bloch line centers. The
field gradient is drawn for $&=-2x.

STATIC DYNAMIC

v„= -4'/[Md(1+ a')'i'],

v =+ydHO/[4n(1 + a')'~~] .

(Vb)

(Vc)

(Vd)

Comparing (4), (Vb), and (Vd) with Eq. (10) of
Ref. 1 evaluates the ffunction of thatpaper, although
it should be noted that the spin distribution in Fig.
1 ls rotated by - 90' %1th respect to that shown 1n

Fig. 2 of Ref. 1. We find f= —,'a for our linearized
solution. If this value is substituted into Eq. (15)
of Ref. 1, their ratio of the velocity components
perpendicular and parallel to the direction of max-
imum field gradient becomes w v 2 (a+ —', )/(1 ——,'a).
From (V) and Fig. 1, it is apparent that our value
for this ratio is quite different and is cot)0 = 1/a,
an expression which agrees exactly with Eq. (13)
of Ref. 3 in the absence of coercivity and Eq. (25b)
of Ref. 4. Moreover, it may be seen that our Eq.
(Vd) is equivalent to Eq. (25a) of Ref. 4.

An additional comparison can be made with Ref.
3. The quantities V, V~, and H, in Ref. 3 are de-
noted in the present paper as p, g cos&0, and 2HO.

Consequently, our results show that

2 V'/yd V, = H./4n, (8)

which differs from Slonczewski's Eq. (12) by a fac-
tor of 4. However, there is a factor of 2 difference
in the definition of n. It also appears that Slonczew-
ski has not considered the variation of Sp/Sy
around the perimeter of the bubble, which exactly
accounts for a second factor of 2 in our calculation.
While footnote 10 of Ref. 3 indicates that a more
rigorous calculation introduces a correction factor
of 2, it should be borne in mind that Slonczewski
uses a constant-twist expression in deriving Eq.
(8) of Ref. 3. Use of a constant-twist expression

here, rather than (4), would make it impossible to
find a nontrivial solution for (3a).

Modification of {V) to include coercivity is re-
quired in order to compare our results with exper-
iment. Our approach is ad hog and is similar to
that followed by Slonczewski. 3 Subsequently, we
use the notation H, —= 2HD to define the product of the
maximum field gradient with the bubble diameter.
From (V) and Fig. 1, it may be seen that the com-
ponents of H, parallel and perpendicular to the di-
rection of the bubble domain velocity are

and

H„= H, sin(0= + Snva/yd

H, =H, cos(,=+Snv/yd .

(9a)

(9b)

We now postulate that the domain coercivity H,~ is
added to H„and that the vectorial sum of Hii+ Hgg

and H, be just equal to the applied field:

(+Snav/yd+H, ~) +(+Snv/yd) =H, .
If we define a velocity v, to be

(loa)

then we see the angle between the velocity direction
and the direction of maximum field gradient is —,w

—$„, as in Fig. 1, where

t~g„=- (H, +H„)/H, = a+v, /~ v~ . (loc)

Plotting measured values of tang„as a function of
I/I v I therefore yields a straight line whose slope
is g, and whose intercept is n. These values are
useful to calculate a quantity V„, which is obtained
after rearranging (loa):

V„=-[(1+a'){v/v, )2+ 2a~ v
~
/v, + I]'~~= H, /H„.

(lod)
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A plot of V„as a function of H, is thus expected to
be a straight line through the origin with inverse
slope H,„. Direct measurement of the bubble diam-
eter gives d, so that values of v, and H,„deter-
mined from the slopes yield n from 10(b).

New hard-bubble dynamic measurements have been
made with an epixtaxial film of Y&Gd& Tm&Gao 8Fe4 &O&~.

Two different hard bubbles, 4. 5 and 5. 8 p, m in di-
ameter, were used, and these measurements are
plotted according to (10c) and (10d) in Figs. 2 and

3, respectively. It is seen that the plots are weQ
described by straight lines in all cases. The pa-
rameters extracted from the plots are (for the 4. 5-
and 5. 8-pm bubbles, respectively) n=0. 014,
0. 040; H,„=0.73, 0. 67 Oe; n=52, 57. Prelimi-
nary data, obtained from Ref. 1, were plotted in a
similar fashion previously in Ref. 3.

These values for n are typical of values reported
for static measurements of hard bubbles in this
material, and values from 0. 9 to 1.0 Oe are mea-
sured for the minimum H, required for bubble mo-
tion. Although these values of a are lower by about
a factor of 10 than the damping constant extracted
from the normal bubble-domain wall mobility, mea-

surements of the resonance linewidth' at 13.15
GHz on two different samples of these epitaxial
films have given values for the Gilbert damping
constant of 0. 03 and 0.04. While there appears to
be some uncertainty as to the exact interpretation
that should be placed on the value of the intercepts
on the plots in Fig. 2, a surprisingly good descrip-
tion of these dynamic hard-bubble measurements
would be provided by (10b)-(10d) by making only
minor fitting adjustments to the parameters ob-
tained from resonance linewidth and other indepen-
dent measurements.

Two final comments are of interest. First, the
values for the damping parameter (n = 0. 014 and n
= 0. 040) which were obtained from the data shown
in Fig. 2 resulted from a least-squares fitting of
these data to (10c). However, only a minor adjust-
ment of the slopes of the two lines shown in Fig. 2
would lead to a common value for the extrapolated
intercepts, and these data certainly cannot be taken
as unambiguous proof that twas definitely different
for the two bubble domains in the same material.

The second comment concerns the fact that Eqs.
(7) were obtained by neglecting v/v with respect

0
0.7

0.01 0.0 2 0.03 0.04

0.6
0

0.5

0.4
FIG. 2. Plot of experimental

hard-bubble measurements accord-
ing to Eq. (10c):+ and 0 for the 4.5-
and 5. 8-pm bubbles, respectively.
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FIG. 3. Plot of experimental
hard-bubble measurements ac-
cording to Eq. (10d); + and Q for
the 4.5- and 5. 8-pm bubbles,
respectively.

Hp (Oe)

10

to unity. For the data shown in Figs. 2 and 3 and
in Ref. 1, v/v ~ 0. 1. Consequently, a higher-or-
der solution would be of some interest, particular-
ly for the larger velocities. In this context, we
note that an exact solution of (6) would result from
(7) if we had taken

=—exp (—cos$
~

(1la)v„]
H, = —,'(Hocost')([1+ v„/vcosg]

&&exp[(v/v„)cos$] —v /vcosf), (lib)

where H~ is the field gradient. [Note that expanding
(11)and keeping only the first-order terms in cos$
leads to the expressions used originally for 8$/sy
and H, . ] However, (6) would still not be exact,
since approximations were made in evaluating 6E/
6Q, 6E/6e, and l . The validity of these approxi-
mations, particularly with regard to higher-order
terms in v/v, has not been determined.
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