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The L ,M M ,5 and L ;M M .5 Auger spectra of clean metallic copper and zinc were measured. A
theory was developed to predict the Auger energies. The theory employs experimental electron binding
energies, which were also measured, two-electron integrals, and Hartree-Fock energies. It accounts for
multiplet splitting in the d® final state, predicting multiplet structure in excellent agreement with
experiment in zinc and in very good agreement in copper. It also accounts for “static” atomic
relaxation and for static extra-atomic relaxation (screening), which is related to the Friedel theory of
alloys. The theory developed here predicts the Auger energies to within 1 eV in zinc and 2-3 eV in
copper. Since atomic integrals were used, the success of the theory implies that an atomistic approach
to Auger energies is valid for these metals. The magnitude of the extra-atomic relaxation energy ( ~ 10
eV) suggests that it may be a crucial factor in Auger energy shifts arising from chemical environment

or surface condition.

I. INTRODUCTION

The Auger effect has both fundamental interest
as a relatively simple atomic process and very
great practical importance because of its analytical
sensitivity, Nevertheless, there has been until now
relatively little work directed toward a really quan-
titative understanding of the magnitudes of Auger
energies in solids. Recently a previously neglected
relaxation effect' was combined with the final-state
intermediate-coupling theory of Asaad and Burhop®
to predict KL,L, Auger energies from empirical
oinding energies and atomic two-electron inte-
grals.® This approach has been successful in pre-
dicting the positions of all nine components of the
KLL Auger spectrum.* In the more precise mea-
surements of Auger energies that are possible in
the LMM spectra of transition metals, it should be
possible to detect subtle shifts arising from extra-
atomic relaxation of the type identified earlier in
binding-energy studies.® In this paper we report
LMM Auger spectra in Cu and Zn, and explain the
Auger energies quantitatively in terms of atomic
and extra-atomic relaxation.

II. EXPERIMENTS
The experiments were carried out in a Hewlett-

Packard 5950A ESCA spectrometer modified to
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operate at a pressure of <10™® Torr after baking.
High-purity single crystals of Cu and Zn were
cleaned by argon-ion bombardment until the sur-
faces were free of carbon and oxygen (<0.3 mono-
layer). The samples were irradiated with mono-
chromatized AlKa@ x rays and the LMM Auger elec-
trons were analyzed. One-electron binding ener-
gies were also measured. In each case the LMM
Auger spectrum had most of its intensity in three
regions of kinetic energy. We shall discuss here
only the most energetic of the three regions for
both Cu and Zn, because the other two are not yet
well enough resolved to allow unambiguous data
analysis. Thus we shall concentrate on the kinetic
energy regions 900-950 eV for Cu and 970-1030
eV for Zn,

In each case the spectral area selected consists
of two groups of lines separated by the L,- L, bind-
ing-energy difference. Preliminary analysis
shows that these can only be the L M, M,; and
L,MysM,5 groups, in agreement with earlier analy-
ses of the stronger L,M M,; group. ®

III. THEORY

The LM sM,s Auger process can be written as
the algebraic sum of three simple steps. In Zn,
for example, these may be written
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Zn-7Zn(L) +e~, E(L) (1a)
Zn—Zn(M) +e”, E(M,g) (1b)
Zn(Mys) = Zn(M3s)* +e”, EM}Y; X) (1c)

where the energy of each process is written on the
right, and X denotes the term designation of the
two-hole final state. Here steps (1a) and (1b) are
simply the ionizations of an L or M,; electron; the
energies of these steps are just the appropriate
binding energies, referred to the Fermi energy.
Our experimental binding-energy values are given
in Table I. Step (c) is more complicated. It is
also an M5 binding energy, but in this case with a
hole already in the 3d shell (the M,; shell) in the
initial state. The extent to which the first 3d hole
can be regarded as localized, and the two final-
state M,; holes coupled as if they belong to the
same atom, is a priori a moot point for open-3d-
shell transition metals. In Zn, however, the 3d
shell is filled and well below the Fermi energy, so
it should be safe to consider the 3d holes as local-
ized. The validity of this approach for Cu would
be more difficult to justify a priori, because the
3d “pand” in Cu is bound by an average energy of
only 3 eV relative to E;. The Cu 3d band is also
broader than a core-level peak would be, and it
extends up to within 2 eV of E,. The two Cu 3d
holes in the final state have nonetheless been
treated as localized in the interpretation reported
below, and this approach agrees well with experi-
ment,

The energy of (1c) can be related to that of (1b),
the one-electron binding energy E(M,;). Two addi-
tional terms are necessary, however. The first,
denoted F (M, sM,s; X), accounts for multiplet cou-
pling in the final state X. The multiplet term is
easily worked out for the d® configuration using
multiplet coupling theory’ and Mann’s Slater inte-
grals.® The general expressions for F(MM,s; X)
for the five final states that can be formed from d®

are’

(IS)=F0+%FZ+%~F4,

(3P)=F0+=]','F‘z—fiF4,

(G)=F+4F%+ g F*, (2)
(D)=F°- {F2+ {F*,
CF)=F'- § F>~ & F*.

TABLE I. Core-level binding energies (eV).?

Metal E(L,) E(Lyg) E(Myz)
Cu 952, 6(2) 932, 8(2) 3.0(1)
Zn 1044, 9(2) 1021, 8(2) 9.9(1)

2Error in tenths place appears parenthetically.
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TABLE II. Multiplet energies § (My;M,5; X) for 3d°
(ev).?
Element Xx=1s ip el ip ’F
Cu 31.4 26.3  26.9  25.9 23.9
Zn 35.2 29.4  30.2  28.9 26,7

aUsing F°, F%, F4 values from Ref. 3.

Here the orbital notation is suppressed for brevity.
The Slater integrals are F*(3d, 3d) for k=0, 2, and
4. The calculated values of F(X) are given in Table
. The use of F(X) alone would be equivalent to
making a partial “frozen-orbital ” approximation,
in which multiplet splitting in the two-hole final
state is accounted for. The dynamic relaxation
energy Ep accompanying photoemission is also
taken into account implicitly, by using the empiri-
cal 3d binding energies. By dynamic relaxation
energy we mean the amount by which the 34 binding
energy is lowered from the orbital-energy (Koop-
mans’s theorem?®) estimate through relaxation of
the passive orbitals during electron emission.
From the optimized Hartree-Fock-Slater results
of Rosén and Lindgren,® Ej has a value of 5.3 eV
for a Cu 3d electron in atomic copper.

The second term that must be combined with
E(M,5) in order to give an accurate estimate of
E(M§; X) in Eq. (1) is a correction term accounting
for an additional relaxation energy, which we shall
denote as R(M,;M,;). This is a static relaxation
energy. It is the amount by which the binding en-
ergy of the second 3d electron [step (1c)] is reduced
because its Hartree-Fock potential is made more
repulsive when the passive electrons relax toward
the hole left by the first 3d electron, in step 1(b).
In the Hartree-Fock formalism R (M M,s) would
appear as a decrease in the magnitude of the orbi-
tal energy e of the second 3d electron after step
(1b). It is therefore termed a static relaxation en-
ergy to distinguish it from the dynamic relaxation
energies Ej that occur during ionization in both
step (1b) and step (1c), as discussed above. Of
course this division into static and dynamic relaxa-
tion energies is an artifact of reaching the two-hole
state by the hypothetical two-step process [steps
(1b) and (1c)]. Other paths would give different
divisions: in a one-step ejection of both electrons,
for example, the relaxation energy would be com-
pletely of the dynamic variety. The total relaxa-
tion energy (and the Auger energy) is of course in-
dependent of the path chosen for its calculation. In
most Auger-energy calculations, including this
one, the two-step path is chosen to take advantage
of the fact that the one-electron binding energies
are known,

Having considered these two contributions to
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step (1c), we can now write E(M%; X) as
EM¥; X)= EMy5) + FMysMyg; X)-RMsM,s).  (3)

To calculate R(M,sM,;) we shall first formally
divide it into two parts,

R(MsM,5)= R(MysM5),+ R(MsM,s), (4)

where the atomic static relaxation term R(M,sM,s),
is the static relaxation energy, discussed previous-
ly, 1* that a free copper or zinc atom would have,
and R(M,sM,s), is an additional extra-atomic re-
laxation energy that arises from electronic relaxa-
tion toward the 3d hole from the surrounding lat-
tice. It is relatively straightforward to estimate
R(M;M,5), because, following the work of Hedin
and Johansson, ° this term should be twice the dy-
namic relaxation contribution E5(M,;). "*° Using
the Rosén-Lindgren value of 5.3 eV quoted above
for Cu, we therefore have

R(MM,5; Cu),=10.6 eV .

No self-consistent-field (SCF) results for a 3d-hole
state in Zn are available, to our knowledge. We
could just use the above estimate for Zn as well,
with little additional error, but it is also possible
to improve on this estimate somewhat. The atomic
relaxation energy can be divided into inner-shell,
intrashell, and outer-shell contributions., Follow-
ing Hedin and Johansson, !° we infer that the first
two should be essentially the same for Cu(3d'°4s)
and Zn(3d'°4s?). The additional outer-shell relaxa-
tion energy arising from the additional 4s electron
in Zn may be estimated from Mann’s integrals, 3
using the equivalent-cores method,!'® as

[F°(3d, 4s) - $5G2(3d, 45))sa111um

- [F°@d, 4s)- 75G*(3d, 45)],4c
=1.7eV.
We thus estimate

R(MM,g; Zn),=12.3 eV .

The extra-atomic term is more difficult to esti-
mate with any degree of reliability. This term
should be quite sensitive to the environment, and
probably the most important consequence of our
analysis is to call attention to the magnitude of this
environment-sensitive term in the Auger energy.
In the cases at hand we are dealing with metals,
and it seems safe to assume that the extra unit of
charge induced on one atom in the periodic lattice
by the appearance of a hole in the filled 3d shell
will be completely screened by the conduction elec-
trons. This assumption is the cornerstone of much
of the theory of alloys. A formal statement is
given by the Friedel sum rule!!’?

3=@2/mMXL (L+1)n,(kg). (5)
L

2389

Here 3lel is the excess charge on an impurity
atom in an otherwise periodic lattice, and 7, is
the resultant phase shift induced in the Lth conduc-
tion-electron partial wave at the Fermi momentum
kp by the impurity, regarded as a scattering po-
tential. A Zn atom with a 3d hole in a Zn lattice
has 3=1. The phase shifts 7, (k) must therefore
give a positive sum in Eq. (5), such that a total of
one state falls below the Fermi energy and becomes
occupied.

The Friedel sum rule is a general self-consis-
tency condition on the lattice potential. As such it
must be applicable to this case—a localized 3d
hole in the Zn lattice. Because of its generality,
however, the sum rule is of limited value in the
explicit calculation of R(M;M,5),. Furthermore,
the potential in this problem is more diffuse than
in most alloy problems, because of the radial ex-
tension of the 34 hole relative to a “point” charge
at the nucleus. We can, however, estimate the
screening length of an electron gas for a point
charge from the Fermi-Thomas model as'®

I~ (Eg/6me?)'? . 6)

This estimate gives I~0.5 A for both Cu and Zn.
Such a short screening length implies that the lo-
calized 3d hole must be almost totally screened by
the induced screening charge on the hole-state
atom itself. If we assume this to be the case, we
can estimate an upper limit for R(MM,;),. From
the positions of Cu and Zn in the Periodic Table, it
is expected that the s and p partial waves should do
most of the screening. In the vicinity of the 3d-
hole atom the atomic components of these screening
states should be approximately described by atomic
orbitals having principal quantum number n =4,
Thus an upper limit for R(MsM,5), would be given
by the electrostatic energy of interaction between

a 3d electron and a 4s or 4p electron,

R(MysMys), = F%(3d, 4s)- §5G*(3d, 4s)
or 7)
R(MysMys),= F°(3d, 4p) - % G'(3d, 4p) - 3, G*(3d, 4p).

Using Mann’s tables,® we find 9.6 and 11.0 eV for
the 3d, 4s interactions in atomic Cu and Zn, re-
spectively, and 9.6 eV for the 3d, 4p interaction

in atomic gallium, the first element with a 4p elec-
tron in its ground state. Since the nominal con-
figurations of Cu and Zn are d*°s and d'°s?, we
shall use the 3d,4s energy for estimating R, in Cu
and the (gallium) 3d, 4p energy for R, in Zn. These
energies are expected to be upper limits, because
the 4s and 4p conduction-electron states are prob-
ably more diffuse than these atomic states, but the
small screening lengths imply that they are not
gross overestimates of R,. Combining the two re-
laxation energies, we have
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R(MsM,5)220.2 eV (8)

for both Cu and Zn. Combining this with Eqgs.
(1)-(3), and using the energies in Tables I and II,
we have calculated the theoretical Auger energies

E(Ly,sMysMys5; X)= E(Ly,3) = 2E(M5)

- F(MysMys; X) +R(MysMys). (9)

The results are set out in Table III.
IV. DISCUSSION

Experimental Auger spectra over the regions of
interest are shown in Fig. 1, and experimental
values of the Auger energies are also listed in
Table III for comparison with the theoretical
values. Agreement between experiment and our
theoretical values is excellent. It appears that
Eq. (9) provides, for the first time, a framework
within which it is possible to predict quantitative
values of Auger energies in metals in some detail.

Our treatment of the Zn spectrum is on sounder
theoretical ground than in the case of Cu, because
in Zn the 34 shell is well below Eg, hence certain-
ly localized. In both Zn and Cu the main lines in
the L,MysM,s and L;M,sM,s groups are separated by
exactly the L,~ L; separation to within 0.1 eV. In
Zn the positions of the components within each
group are also predicted with high accuracy. The
main line in each case is interpreted as arising
from the three levels *P, !G, and 'D, which are
predicted to be nearly degenerate. Since the rela-
tive intensities of these three components are un-
known, we can only say that the experimental ener-

gy of the main L;M M, line, 991.8+0.2 eV, agrees

exactly with the predicted energy of the 'G compo-
nent (991.9 eV) and is up to 1.3 eV lower than that
of the highest-energy component, 'D(993.2 eV).
The two extreme levels of d®, 'S and *F, are also
in nearly exact agreement with experiment for the
Zn(L3Ms5M,s) group and nearly as good for the
Zn(LyM,5M,5) group, with a maximum discrepancy

TABLE IIL. L, 3M5M;5 Auger energies in Cu and Zn
(eV).

Final Copper Zinc
state, X Expt. Eq. (9) Expt. Eq. (9)
is (932, 8) 935.4 1010, 4(3) 1010.0
(934,2)
LyMyshys ip {940. 5 {1010. 8
e 937, 8(2) 939.9 1014, 9(2) 1015.0
'p 940, 9 1016.3
°F 940.6 942, 9 1017, 9(3) 1018.5
s (913. 6) 915.6 986. 6(3) 986. 9
(915. 8)
LaMyshMys ’p {920.7 992, 7
e 918. 0(2) 920.1 991, 8(2) {991. 9
'p 921, 1 993. 2
’F 920. 6 923.1 995, 2(3) 995.4
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FIG. 1. Experimental L, 3MysM;5 Auger spectra from

copper and zinc. Kinetic energy scales are given relative
to the Fermi energy. Multiplet structures from theory
described in text are shown as lines under spectra. They
have been moved down in energy relative to values in
Table III by 0.5 eV (Zn) and 3 eV (Cu) to facilitate com-
parison of multiplet structure with experiment.

of only 0.6 eV. The agreement of the multiplet
structure within each group is very good evidence
for the validity of the multiplet coupling part of this
theory. Considering thatthe relaxation correction
of 20. 2 eV could hardly be expected to be accurate
to better than 10%, the agreement in absolute ener-
gy between experiment and our theory is better than
we could reasonably expect. We conclude that the
Zn spectrum is completely explained.

Copper has more theoretical uncertainties a
priovi. The width of the d band and its proximity
to Ep weaken the quantitative validity of using lo-
calized atomic functions. Thus copper is a test
case for studying the extent to which an atomistic
approach will give reasonable results in spite of
theoretical ambiguities. In this context the agree-
ment between theory and experiment in Table III
is very good. The L3M sM,s and L,MM,s groups
have exactly the right separation, as mentioned
above. The experimental energy of the main line
in each group is lower than theory by 2 to 3 eV.
This is entirely within the range that we could ex-
pect. Delocalization of the d orbitals would tend
to decrease electron-electron electrostatic inter-
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actions, thus reducing both R(M,sM,;), and
R(M,sM,5),. This would decrease the observed
Auger energies relative to our atomistic theoretical
values, as observed. Better agreement could be
obtained if the screening charge in Cu arises main-
ly from a positive phase shift in the p wave. By
extrapolating Mann’s 3d, 4p integrals to the zinc
position, to simulate the interaction for Cu with a
3d hole, we would estimate R(MM,;), =8.2 eV,

a reduction of 1,4 eV from the estimate used in
Table III. This would reduce the discrepancy for
copper to only ~1 eV. We are disinclined to accept
this interpretation, however, because the s wave
probably does much of the screening in Cu.

The multiplet structure in Cu is very similar to
that expected for d®. If the experimental and theo-
retical spectra are brought into agreement by re-
ducing the latter by 2.5 eV [i.e., by reducing
R(M,sM,;5) from 20.2 eV to 17.7 eV], then the
main peak in each group can be assigned as the °p,
!G, 'D triad. The ®F peak falls nicely into place as
a shoulder in each case. There is also a peak at
the 'S position in each group, in perfect agreement
with the predicted energy. However, in each group
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there is also a small additional peak between the
1S peak and the main peak. The additional peaks
fall at different points in the multiplet patterns, and
they would be difficult to explain as part of the multi-
plet structure. Clearlytheydeserve further study.
In summary, this work demonstrates that it is
possible to understand the L, ,M,s;M,; Auger spectra
of Cu and Zn in considerable detail. A theoretical
approach was developed that acounts for multiplet
splitting, static atomic relaxation, and static ex-
tra-atomic relaxation (screening). The theory pre-
dicted Auger spectra in excellent agreement with
experiment, especially in the case of Zn. Extra-
atomic relaxation was found to add about 10 eV to
the Auger energies in these metals. Thus future
work might profitably be directed toward further
exploration of this relaxation energy, by studying
Zn and Cu Auger spectra in insulators, for exam-
ple. It may also be possible to observe separated
Auger lines from atoms in the surface and bulk re-
gions of a metal, or to separate the spectra of
surface atoms bound to adsorbed species from bulk
spectra, because of differences in the extra-atomic
static relaxation energy.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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