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Excitations in Dilute Magnets Using the Coherent-Potential Approximation
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A study of the excitations in randomly dilute Heisenberg ferromagnets and antiferromagnets using the
coherent-potential approximation (CPA) is summarized. It is pointed out that Tahir-Kheli's recent work
corresponds to the use of the CPA in a model where isolated bonds are cut at random. This model
gives unsatisfactory features if the neutron-scattering spectra are calculated. An attempt to include the
full scattering by a nonmagnetic impurity in the CPA is described. It also leads to an unsatisfactory
description at low frequencies.

In two recent papers' Tahir-Kheli (T-K) has
discussed an approximate treatment of spin waves
in dilute ferromagnets and antiferromagnets. In
the course of some recent work on the interpreta-
tion of experimental results on excitations in dis-
ordered antiferromagnets, 3 4 we have also consid-
ered a similar approximation to that used by T-K.
The purpose of this note is to briefly report a
somewhat different derivation of his main results
using the coherent-potential approximation (CPA)
and to give further details of certain properties.
In particular, we calculate the general response
function G(k, r~) associated with neutron scattering
and show that the results "re not those one would
expect for a dilute magnet on physical grounds.
We also briefly report our attempts to use the
CPA, including the full scattering from nonmag-
netic sites, which have also proved unsatisfactory
in some ways.

The results of T-K may be obtained by consider-
ing a ferromagnetic crystal in which a concentra-
tion e=1 —m of the nearest-neighbor exchange in-
teractions (bonds) is removed at random. The
Hamiltonian for the ferromagnet is

x=-Z'zq. „s. s„, (1)

where w has a small block of nonzero elements
given by

w=cv[1-G, (v-w)] ', (5)

and Go is the appropriate block of (G). The CPA
has also been used for bond problems by Black-
man et al.~ In our case v is given by (8), and
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i

(8}

where Gz& links nearest-neighbor sites. Since v
is a singular matrix with equal off-diagonal ele-
ments, the only possible form of solution for (5) is

(7)

We neglect the overlap of the matrices of two or
more adjacent cut bonds.

In order to find the configurationally averaged
Green's function ( G), we employ the coherent-
potential approximations (CPA). Takeno~ has
shown that this may be used in cases where one de-
fect produces an extended block of elements in ~V'

the seU-energy Z is then written as a sum over
all sites

(4)

G„=« si si » &srsi )
"'

satisfies a Dyson equation

(2a)

where the sum extends over all nearest-neighbor
pairs (mn}, and 7i „ takes the value 1 if the bond

(mn} is intact, and 0 if it is cut. The spin-wave
Green's function for this Hamiltonian

where z is a scalar function of energy. Putting
this into (5), we obtain a scalar equation

t = c[1—4JS(1 —e) (Goy —G~)]

As the denominator of G(k, ~) is now

G(k, ~)-' = -2ZS~(I —~) (1 —y„-),

(8)

G=g+gVG, (2b)

v=2JS -1 1

where g is the Green's function in the lattice with
all bonds intact, and V is the matrix describing the
scattering of spin waves by the cut bonds. Each
missing bond produces a 2 x2 block in V of the
form

we may identify J(1—&) with T-K's Z, and (8) is
identical, after some manipulation, to Eq. (7. 15)
of Ref. 1.

It is clear that T-K's result corresponds to
neglecting the correlations between scattering
processes from the z bonds of one nonmagnetic de-
fect. This coherent scattering must be treated
properly if the spin waves are to be adequately de-
scribed. In fact, he has treated an approximation
to the "bond" problem in percolation theory rather
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'(d + 2ZSz —2JSyz
2~$yj, M —2JSz

go has the same form as this with J replacing J
= J(1 —&). Equation (12) is the same as T-K's
equation (6. 5) in Ref. 3.

Using these results, we have calculated the den-
sity of states for a body-centered-cubic lattice as
shown in Fig. 3. Even for m = 0.8 there has been
a large transfer of weight to the center of the band
and only a small shift in the peak, whereas we
should expect the density to be approximately the
same shape as in the pure crystal but scaled by a
factor m. The appearance of the peak at low en-
ergy as m is reduced is similar to the peak found
by T-K in the ferromagnet (cf. Fig. 3 or Ref. 1),
although here the curve continues to fall to zero
as r&2. The low-energy peak in ImG(k, ~), shown
in Fig. 4, is more prominent than in the ferro-
magnetic case; indeed for m & 0.6 the normal spin-
wave response is seen only as a shoulder on the
low-energy peak, which is almost independent of
k. For m close to unity, the spin-wave energy
again faIls slower than m.

We have compared these line shapes with cor-
responding ones calculated by means of a theory
developed to describe antiferromagnets containing
either magnetic~ or nonmagnetic4 impurities. This
uses the CPA on the diagonal parts of v, not only
on impurity sites, but also on neighboring sites.
Thus v depends on the arrangement of impurities.
However the theory treats the off-di. agonal parts of
v in a more approximate way. The results of this
theory are shown in Fig. 5, and are physically
more reasonable than those described above. The
low-energy peak is absent, and the spin-wave en-
ergy is approximately m times its value in the
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FIG. 5. Same quantities as shawn in Fig. 4, but cal-
culated by the method of Buyers, Pepper, and Elliott
(Ref. 4) for Mn Zn& F2.

pure crystal. The total weight of the response is
proportional to m. This is expected in the site
problem but is not true in the bond theory, because
all the atoms there remain magnetic.

The unsatisfactory aspects of the results of
T-K's model stem from the failure to sum coher-
ently all the scattering from one defect. In an at-
tempt to improve upon the spin-wave calculation
of the critical concentration, we have used the
CPA in a way which includes this effect. ' The
calculation involves replacing v of (3) by the full
scattering matrix for a nonmagnetic defect, which
for the simple cubic lattice is"
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FIG. 4. Response function ImG(k, (d) for the body-
centered-cubic antiferromagnet for the values of m shown,
at the boundary of the first magnetic Brillouin zone.

w and G~ are now 7&&7 matrices; w is again given
in the CPA by (5). In order to solve for the ele-
ments of w, we use the symmetry of the lattice to
transform to block-diagonal form. ~ There are two
s-like modes with symmetric eigenvectors so w~
is a 2x2 matrix
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and two d-like modes with go~. The same trans-
formation is used on v' and G0. The components
of w are then given by

w =cv'[1-G (v,'-w )]-',

w&
= —c[1+(1+w&) (Goo —Gia)1

w, = —c[1+(I+w, ) (GM+ Gg2- 2G)g)l ',
!IS)

where G» links a pair of opposite neighbors of the
central atom, G13 links nearest neighbors on the
first coordination sphere, and
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FIG. 7. Densities of states for the simple cubic ferro-
magnet with the values of m shown calculated using the
CPA with nonmagnetic sites.
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As in (7), the form of v,' ensures that we can write
I

W~ = g)~V~ y

where now

(Is)

w, = —c[1+ (1+w, ) (7G00 —12GO, + G,2+4G~~)]
' .

(i9)
The Fourier transform of w is related to the corn
ponents by

w(k) = w, S(1 —yf)'+ w~S(I —ya)

+ w~S(I+ ya,-- 2y„-) . (20)

When k '» a, the lattice spacing, (20) becomes ap-
proximately

w(k) =$ w( a)k+w~2(ka) +O(ka) (21)

If we consider (19) in the limit of low c, by
neglecting gp, on the right-hand side, and replac-
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FIG. 6. Spin-wave dispersion curves for the simple
cubic ferromagnet with the values of m indicated calcu-
lated from the CPA with nonmagnetic sites.

ing the Green's functions by their values in the
pure crystal, we find that w, contains a factor &~ 1,

thus the fi.rst term of (21) makes a contribution
to O(ka)3. There is no such divergence in either
zp~ or gg, . The (d

' factor in gg, is an essential re-
sult of the model. In defining G in (2a) to satisfy
the Dyson equation (2b), spin-wave creation and
destruction operators have been used and S,' 3

appears in the definition. In the case of a nonmag-
netic impurity S' = 0, and this leads to an infinity
in G. However, the defect matrix (14) is indepen-
dent of $', and since it cuts all bonds from an im-
purity site, a theory using 5'0 should give the
correct treatment for the magnetic atoms, together
with free spins at the impurity sites. The Green's
function at these sites will then be proportional to
I/~ since no energy is needed to reverse a spin
there. However, the averaging process in both the
low-c and CPA theories does not adequately main-
tain the difference between magnetic and nonmag-
netic sites. The resonance in zo, is shifted away
from ~ =0 and mixed into G for the magnetic sites.
As a result an unphysical resonance appears at
low fg in the calculated quantities.

The first term in (20) does not contribute to
O(ka), and the long-wavelength spin-wave energy
is determined purely by ~~, While this is not im-
portant for large ~, it means that we cannot prop-
erly describe the spin waves with small k. It
follows from (20) that if w, does not contain a fac-
tor ~ ' the coefficient of (ka)~ in the spin-wave en-
ergy becomes negative when the real part of go~ is
less than -0.5. Numerical calculations confirm
that this is true when m & 0. 5. Figure 6 shows the
dispersion curves for several values of m, and it
is seen that for m=0. 4 the curve passes through
zero energy when k is finite. Similarly, the den-
sity of states in this concentration region extends
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to negative energy, as in Fig. 7. The effect
of the low-energy resonance can be seen in the
curves for m=0. 9 and 0. 7, which have peaks near
(g) = 0.

We have attempted to remove this low-frequency
resonance by various tricks, which are described
in detail in Ref. 10. In one, we attempted to force
G at the defect sites to retain its « ' form, but this
led to computational difficulties. In another, we
introduced a large field at the impurity site to re-
move the resonance to very high frequency. None
of these attempts produced results which were
physically reasonable at low «.

We conclude that neither of these applications of
the CPA yields a useful estimate of the critical
concentration. The site method starts from a
proper model for the dilute magnet and might be

expected to give satisfactory results, but will not
in fact do so unless the excitations can be ex-
cluded from the nonmagnetic atoms throughout the
configurational averaging. The bond approach of
Tahir-Kheli represents an interesting model in it-
self but is not really appropriate for a detailed de-
scription of the dilute magnet. Some of its predic-
tions are seen here to be at variance with the prop-
erties of dilute magnets which we would expect on
physical grounds.

[Note added in Proof Am. ore satisfactory CPA
treatment of the site problem for the dilute mag-
net has now been developed [Harris, Leath, Elliott,
and Pepper (to be published)].

We are indebted to Dr. W. J. L. Buyers, Dr. A.
Brooks Harris, and Dr. P. Leath for illuminating
discussions of this problem.
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