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Magnetic systems of lattice dimensionality d are considered, with interaction strength J in d lattice
directions and R J in the remaining (Z-d) directions; recent experimental work on
quasi-one-dimensional and quasi-two-dimensional systems are germane to the cases d = 1, 2, respectively
(and d = 3). Rigorous relations are established for the first few derivatives with respect to R of the

susceptibility X (R), the second moment of the correlation function p.,(R), and the specific heat

CH(R). These results permit detailed statements about the coefficients in the expansions of x (R),
p,,(R), and CH(R) in Taylor expansions in R about the d-dimensional limit (R = 0), and thus

permit estimates concerning the temperatures at which each of these functions exhibits significant

departures as T T+ from its high-temperature d -dimensional behavior. These are the first estimates

of the "crossover temperature" at which the system crosses over to d-dimensional behavior from its

limiting high-temperature behavior (at which the weak interactions R J are ineffective compared to the

strong interactions J in the d lattice directions). In particular, they emphasize the fact that the
crossover temperature depends upon the function being considered as well as upon the system and the
value of R. These results also give strong support to the generalized scaling hypothesis in which R is

scaled.

I. INTRODUCTION

An extremely large number of real magnetic ma-
terials' are not directionally isotropic" in the
sense that the coupling strengths in all lattice di-
rections are not identical. Many systems display-
ing such lattice anisotropy are described by special
cases [e.g. , Eqs. (1.2), (l. 3) and Fig. 1] of the
general interaction Hamiltonian

3C(d, d)= — Z J;gs; ~ Sg —R Z J(gs; ~ S;
ui =u) Ui Al)

(l. 1)
Here the d-dimensional lattice vector r = (x„x2,...,
x;) is partitioned into a (2-d)-dimensional vector

~ ~u= (x„xz,..., x~~) and a d-dimensional vector v
= (x„-~„... , x&), and r = (u, v). The first summation
is over pairs of magnetic sites whose relative dis-
placement vector r;& = (u; —u&, 0) has no component
in the directions v = (xg~„,... , xr), while the second
summation is over pairs of sites for which v; &v&.
The "spins" S; ' of (1.1) are D-dimensional unit
vectors, so that D=1, 2, 3, and ~ correspond to
the S =

& Ising, classical planar, classical Heisen-
berg, and spherical models, respectively. '6

Although many of the theoretical results of this
paper are valid for the general Hamiltonian (1.1),
a principal motivation of the authors has been in-
terpretation of the plethora of recent experiments'
(pioneered by Birgeneau, Shirane, and others), on

quasi-two-dimensional and, most recently, on
quasi-one-dimensional systems. These cases,
sketched in Figs. 1(a) and 1(b) respectively, corre-
spond to d=2 and d= 1, respectively, in (1.1), with,

Z(2 3)= —JSS '
~ S ' —RJ ZS. ~ S

&i j& &ij&

and

(1.2)

X3i

x(I, 3) = -J Z s,"'
~ s,"' -RJ Z s ~' sP ' .

&if& &i j& (1.3)
For the sake of simplicity, some of the proofs pre-
sented below are carried out in detail for the Ham-
iltonian (1.2) rather than for (1.1). Note that (1.2)
reduces to (1.3) when J-J/R and R -~.

A most dramatic finding of the earliest detailed
neutron scattering experiments' "' (which were on

of course, d= 3. Four particular examples are the
following:

(i) Quasi-two-dimensional magnets, ' many of the
K~NiF4 structure, have d=3, d=2, and R-10" or
smaller.

(ii) The very recently discovered quasi-one-
dimensional magnet (CD~)4NMnCls has d = 3,
d =1.

(iii) The familiar three-dimensional" Heisen-
berg ferromagnet CrBr, actually possesses con-
siderable lattice anisotropy, with d= 3, d= 2, and
R-0.06.

(iv) It has recently been proposed~ that the meta-
magnet FeC12 is describable by a spin 8= 1 Ising
Hamiltonian with d = 3, d = 2, and R = —0.05.

For a simple cubic (sc) lattice, if we further as-
sume that one can neglect all coupling strengths ex-
cept those between nearest-neighbor pairs of sites,
then the Hamiltonian (1.1) reduces for quasi-two-
dimensional [Fig. 1(a,)] and quasi-one-dimensional
[Fig. 1(b)] systems, respectively, to
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FIG. 1. Schematic representations of (a) quasi-two-
dimensional lattice {d= 2, d = 3), and (b) quasi-one-dimen-
sional lattice (d = 1, d = 3). Here the solid lines indicate
interaction bonds of strength t', while the dashed lines in-
dicate bonds of strength RJ with R ((1~ For the graphs
in Figs. 2-5, the RJ bonds are indicated by a heavy solid
line rather than a dashed line.

systems with d= 2 and small R) was that well above
the critical temperature T, = T, (R), the system dis-
plays behavior that is essentially d dimensional.
This is intuitively plausible since well above T,(R),
the correlations between the moments are governed
by the stronger interactions J so that the order will
begin to appear in these directions first; only as
one gets close to T, (R) will the correlations arising
from the weaker interactions RJ (in the remaining
3 —d lattice directions) begin to manifest them-
selves, and accordingly the system will cross over
from d-dimensional to three-dimensional behavior
as T T',(R).

This crossing over is of course not infinitely
sharp, and hence the frequently used term ' cross-
over temperature, " T„(R),is somewhat of a mis-
nomer. In fact, the crossover from d-dimensional
to three- dimensiona1 behavior begins, literally, at
infinite temperature and is not complete until T
= T', (R). However, we shall see that it makes sense
to speak of a crossover region T„(R)~ T» Ts{R)
defined such that within it "most of the crossing
over" takes place. Clearly T„(R)and T&(R) will
depend upon the accuracy of one's measuring in-
struments and, as we shall see, upon the function
being measured. (See the discussion in Sec. VI C. )

The crossover behavior has been a well-estab-
lished experimental fact, '~ but apart from scaling-
type arguments, little has been done to attempt
to understand this fact. Actually, the crossover
region has never been defined precisely. A first
purpose of this work is to provide a practical and
useful definition of this region. This purpose is
achieved by considering the expansion with respect
to the anisotropy parameter R of the function in
question. For example, for the reduced suscepti-
bility )((R) = )({R)/)(c f (R),

In Sec. II we shall show that X,(0)=)(&, the d-
dim ensional susceptibility. At high temperature,
as well as at small R, the d-dimensional approxi-
mation is satisfactory and )((R)-=)(~. Thus if we
could get the magnitude of the first few "coefficients"
X„{0),we should be able to estimate the tempera-
ture at which the d-dimensional approximation is
no longer satisfactory. This temperature is the
crossover temperature"~0 T~(R) at which the effect

of the RJ interactions (and hence the three-dimen-
sional behavior) becomes experimentally noticeable.

A second purpose of this work concerns testing
the scaling hypothesis in situations such as this
for which the parameter R that changes the univer-
sal class of the system is scaled like an external
field. In this case when R = 0, we have d-dimen-
sional exponents and when R & 0 we have a 2-dimen-
sional system and, sufficiently close to T, (R), have
d-dimensional exponents. Scaling with a parameter
has been strongly questioned by Oitmaa and Enting, "
whose numerical results indicate a failure in pre-
dictions of scaling for the sequence of exponents
y„characterizing the behavior as T- T ', of the
quantities )(„(R=0). We shall see that in fact many
of the numerical results of Oitmaa and Enting are
contradicted by the rigorous relations that appear
to exist among certain of the y„.

In Secs. II, III, and IV we consider, respectively,
the first, second, and third derivatives with respect
to R of certain thermodynamic functions and of
quantities related to the pair correlation function.
For simplicity and clarity of derivation, we shall
consider the Hamiltonian of Eq. (1.2) with D= 1;
specifically, we shall consider a S =

& Ising model
situated on a sc lattice with coupling strengths J in
the x and y directions and RJ in the z direction.
Many of the results are of more general validity,
and we shall indicate when this is the case. In Sec.
V we tabulate our results and examine their pos-
sible range of validity, and the reader not inter-
ested in the details of our derivations is urged to
skip directly to Sec. V. Finally, in Sec. VI we
demonstrate various applications of the results of
Sec. V, showing, in particular (i) how to predict
when the system crosses over from d dimensional
to d dimensional [i.e. , what is T„(R)]and (ii) how
our results lend strong support to the scaling hy-
pothesis for scaling with respect to an active pa-
ram et er.
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X=X0+RXr —mH Q s.
u~g

(2.1)

where X0 and RSC, are, respectively, the first and
second terms of Eq. (1.2) for D= 1, s; =Sr ', and
m=gp. &, where g is the g factor and p, & is the Bohr
magneton. The 'quasi-two-dimensional" lattice is
sketched in Fig. 1(a); analogs of all of the results
of Secs. II-IV can be obtained for the "quasi-one-
dimensional" lattice of Fig. 1(b) [cf. Eq. (1.3)].

In Sec. V we discuss the generalization, where
possible, to the arbitrary spin Ising model, to more
complex lattices (e. g. , the square to fcc cross-
over), and to arbitrary spin dimensionality D.

Note that 3C0 is in fact an assembly of two-dimen-
sional (noninteracting) aqua. re lattices; i.e. ,

II. FIRST-ORDER DERIVATIVES WITH RESPECT TO R OF
THERMODYNAMIC FUNCTIONS AND OF QUANTITIES
RELATED TO THE PAIR CORRELATION FUNCTION

In this section we derive relations for the first-
order derivatives with respect to the anisotropy
parameter R of various thermodynamic functions
(Sec. II A) and of various quantities related to the
two-spin correlation function (Sec. II B). In Secs.
III and IV analogous relations are considered for
second and third derivatives, respectively.

The system which shall be considered in this and
the following two sections is the spin- & Ising model
for the case of a simple cubic (d= 3) to square (d
= 2) crossover. In the presence of an external field
H, the system is described by the Hamiltonian

One similarly observes that Xr is an assembly of
one-dimensional linear chain lattices.

Before commencing with the derivations, we ex-
plain in detail two sorts of thermal averages to be
utilized. The first sort of thermal average, de-
noted by the symbol &

~ ~ ~ &rr, is the average appro-
priate for the three-dimensional" system described
by the Hamiltonia, n X of Eq. (2.1); thus

&
~ ~ ~

&rr
= Tr( ~ ~ ~ e )/Tr(e ) (2. 3)

where P-=I/kT, k is the Boltzmann constant, and
T is the temperature.

The second sort of thermal average, denoted by
the symbol &

~ ~ ~ )„is the average appropriate for
one of the two-dimensional layers described by the
Hamiltonian X~(z) of Eq. (2. 2),

~ ), = Tr( ~ ~ ~ e ~)/Tr(e ') . (2.4)

Thus &
~ ~ ~ ), is a conventional average for a two-

dimensional system.
Frequently we shall consider the system described

by the Hamiltonian of (2. 1) for the case R = 0. Thus
the symbol &' ~ ~ )0 is defined through the relation

(2. 5)

Note that the thermal average & )0 is quite differ-
ent from the thermal average &

~ ~ ~ &~, although they
are related by the following theorem.

Theorem Tl. Let f, (z, ) denote products of spina
in one of I layers with z=z&. Then

(2. 2)X, -=-ZE Z s s, -=EX,(z),

where u, u' are two-dimensional lattice vectors
with Cartesian coordinates u= (z, y). Each layer,
described by X,(z), is a conventional two-dimen-
sional Ising lattice, although our notation looks
more complex because we must perforce carry
along the component z of the lattice vector.

(2. 6)

The proof of Theorem T1 follows directly from the
observation that at R = 0, there is no interaction
amcng different layers; hence the three-dimension-
al system for R = 0 is in fact an ensemble of (infinitely
many) statistically independent two-dimensional sys-
tems. Hence from (2. 1) and (2. 2) it follows that

Tr II fr(zr)exp —PXO —mPHZs. = Tr fr(zr)exp —PX, (zr) —mPRQ s„,
„

t~1 u~g u

I
=II »r fr(zr)exp —pX~(zr) —mpH+s.

&=1 u

(2.7)

where the notation Tr denotes a trace over all spins en the three-dimensional lattice, and the notation Tr&
denotes a trace taken over spins on the layer with z = z&. A similar relation may be derived for the denom-
inator of Eq. (2. 3) by choosing the operator fr(z, )=1 for all I in Eq. (2.7). Thus it follows from the defini-
tions (2. 3) and (2.4) that

II Trr (fr (zr)exp[ —PXe(zr) —mP~ „-s„-„]}
r 1 l r Tr, (exp[ —PX~(zr) mPHQ s ] ]

rzr 0

u llr gg

(2. 8)



L. L. LIU AND H. E. STANLE Y

and the proof of Theorem Tl is complete. [In the
last expression of (2. 8}we dropped the coordinate
z1 because ( ~ ), is the conventional average for a
two-dimensional lattice and hence is independent of
zr ].

As a useful illustrative example of the application
of Theorem T1, consider the thermal average
(sp, s~ &s of the product of two spins on sites r& and

r~ of a. three-dimensional lattice [r1= (u1, z, )]. Then
at R=O we have

(s-s- )=
r& r& O

(S&&1S)&1&)& if Z1 = Zg (2.9a)

G (T, H, R) = —kT lnZ

where

Z=—Tr(e ")

(2. 10)

(2. 11)

is the partition function. Hence from (2. 1)

G (R)
sG(T, H R) Tr(K1e~)

( )SR Tr(e zz)

(2. 12)
Since 3C& consists only of products of pairs of spins
on different layers l, we may use Theorem Tl [cf.
Eq. (2. 9b)] to obtain

(s&)1 &)& (s)&~&2 = (s2)2 if z1 &zg . (2.Qb)

We should emphasize that in Eq. (2. 8) we assume
the existence of the thermodynamic limit, and we
assume that the thermodynamic limit can be ex-
changed with the limit R -0. We cannot justify
these assumptions, and hence we must be satisfied
with this degree of rigor.

We are now prepared to derive, in Secs. IIA and
II B, relations concerning the first derivatives with
respect to R of thermodynamic functions and quan-
tities related to the two-spin correlation function.

A. Gibbs Function, Magnetization, and Susceptibility

The Gibbs potential 6 at temperature T and mag-
netic field H for a system with anisotropy param-
eter R is given by

magnetic field,

h = m—H/kT

reduced magnetization,

(2. ie)

X(R) =- " = Z ((s,sp&s —(s,&a (s;&„}
X Curie r

-P +G(T&H&R) sM(R)
aI~

=
ag

Differentiating (2.13) with respect to h and using
(2. 17) and (2. 18), we have for the first derivative
of the reduced magnetization

M (R)=-
'

(2. 19)

the relation

(2. 20)

where M~ and X& are the d-dimensional reduced
magnetization and reduced susceptibility, respec-
tively.

For the first derivative of the reduced suscepti-
bility,

—
( )

sX(R)
XqR (2. 21)

we have, on differentiating (2. 13) twice, the result

-I 8 G1(R= 0) 2 sx2X1(R=O)=N Sh2
—-2l X)&+M)& Sh

(2. 22)

Equations (2. 13), (2. 20), and (2. 22) relate G, (R
= 0), M, (R = 0), and X1(R = 0) (the first derivatives
with respect to R of the Gibbs potential, the mag-
netization, and the susceptibility) to the d-dimen-
sional quantities Q& and X&. The utility of these
three equations, the principal results of this sub-
section, will become clear in Secs. V and VI.

M(T, H, R)
( ) P aG(T, H, R)

M(T=O, R} ' z N sh
(2. 17)

and reduced susceptibility,

=-ZQ (s„-),' . (2. 13)

B. Two-Spin Correlation Function, Correlation Length, and
Structure Factor

Thus in the thermodynamic limit, we have

The two-spin correlation function

C2(T H r R) (so s &s (so &s (s &R (2. 23)

G1(R = 0) = —N)l (sg &2 (2. 14}

J/kT— (2. 15)

where N-=K L is the total number of lattice sites
in the full d = 3 lattice.

To simplify the subsequent manipulations, it is
useful to introduce the dimensionless exchange en-
ergy,

is of both theoretical and experimental interest.
In particular, the correlation length $(T, H, R) is
directly related to C ( 2,THr, )R, where g(T, H, R)
is conventionally defined as

$(T) H, R) = [ }12(T&H, R)/t1O(T& H, R)], (2. 24)

where the moments p of the correlation function
are defined through



QUASI-ONE -DIMENSIONAL AND QUASI- TWO-DIMENSIONAL ~ . ~ 2283

p (T, H, R)=~ lrl CQ(T, H, r, R) (2. 25) I(a) c =- ",". o z= 1

and, in particular, from (2. 18) it follows that the
reduced susceptibility is simply the zeroth moment
of the pair correlation function (b) c

o z=O

o z=2

g(T, H, R) =
i10 (T, H, R) (2. 28a) Ic x o z=1

The static structure factor, measured in scat-
tering experiments, is also related to the correla-
tion function

z=0

I(c) c x o z=1

S(T, H, »I, R) —= Z Cz(T, H, r, R)e" '

In particular, E»ls. (2. 25)—(2.27) yield

(2.27)
0 o z=0

z

X(T, H, R)= S(T, H,-O, R)= Q Co(T, H, r, R) .
r

(2. 26b)
The first-order derivative with respect to 8 of

Co(T, H, r„R),

c w p\ gg

j
Ic

Z= Zj

o z= 1

(4) c o z=zj+~

SCQ(T, H, r», R) (2. 28)
x - - " o z=0
0

is given directly from (2. 1):

Co»(r;, R)= —P((sos;Z, &»»
—(sos &»» (&»&»»

—&80&»»[&s»z, )»»
—&8» &»» &x»&»»]

—&8;&8[&80&1&s—&80&8 «1&s]1 .
(2. 29)

We are interested in the behavior of Cz 1(r„R)
for 8= 0; to this end, it is helpful to introduce the
diagrammatic considerations outlined in Fig. 2.
Each horizontal thin line of Fig. 2 represents a
layer, so that all lattice points on the same line
have the same value of the Cartesian coordinate z.
The two special spine so and s, of (2. 29) are situ-
ated at the origin and at r&, respectively; these two
sites are indicated by crosses in the diagrams of
Fig. 2. Since X, consists only of products of pairs
of spins situated on adjacent layers, it is conve-
nient to denote each such product by a vertical bond
(the thick vertical lines of Fig. 2).

Thus, for example, in Figs. 2(a)-2(d) we show

situations in which the vector r; extends to the layer
above the layer containing the origin, (i.e. , z» = 1).
In Fig. 2(a) there is one vertical arrow, corre-
sponding to the term s„-,Qs„-,of 3C, . In Fig. 2(b),

l

FIG. 2. Possible configurations obtained from placing
one R bond on the lattice, with spins pp and s& being on
the zp=0 and z&=1 layers, respectively. The spins pp

and s& are denoted by X, while the small circles denote
lattice sites. Each horizontal line symbolizes a layer
whose z coordinate is given in the right-hand margin.
The vertical dark line is the R bond coming from + in
Eq. (2. 24). These conformations are those which must
be considered in evaluating C2 &(T,H, r&, R=O) for z&=1.
See also the discussion in Sec. II.

the spins sp and s& are at the same positions as in
Figg 2(a), but the vertical bond connects another
pair of neighboring layers (s„-,s-„0of K,). Sim-
ilarly, the conformation shown in Fig. 2(c) corre-
sponds to the term s„. ,s„- 0 of 3C, . Figure 2(d)
represents the final topological possibility for the
vertical bond, given the location of the crosses for
sp and s& —namely, the vertical bond connects neigh-
boring layers, neither of which has z=0 or 1.

Utilizing the diagrammatic representations of
Fig. 2 for terms in X„wecan evaluate the first
derivative of the correlation function, (2. 29), at
8= 0, for the case in which z& = 1 (i.e. , the two cor-
related spins are so and s„;,). The contribution to
(2. 29) due to configurations of the same topological
type as Fig. 2(a) is given by

gI(( osg» 18g ~ Qsg» 1)Q (BQsg» 1 )Q (Sg Qsg 1 )Q 0 0 [ g» 1 g»po g»y» 0

—(sg» 1)0 (sg» 0sgpi)0] —(Bg. 1)0[(sosg» 0sg» 1)0 —(80)0 (sg»Iosg»~1&0] ) . (2. 3 )

The right-hand side of (2. 30) may be decoupled"
using Theorem T1, with the result

a = u/&oq & &fq &
- (0& (f ) &~ & &f &

-(o) &~&[(f~& —&f&(q)]

-(f&(z& [(oz&-(o) &f &]j, (2. 31)

where we have introduced the notation
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(s,s-„s-„,&,
=- (Oij) (2. 32) obtain, for r, = (u„0),the result

for the two-dimensional average. Making the ob-
vious cancellations in {2.31), we have

~=a(&Oj& -&0& &j&] ((ij&- &i& &j&)

=4 Cz (u&) Cz (u q
—

u& ) (2. 33)

where

Cg (u) = (sp 8u)g —(so &g (su &g (2. 34)

Cm ~ {rq, R = 0) = g Q C~(u&) C~ (~ —u&)
Uy

(2. 36)

From symmetry arguments, it follows that (2. 36)
also holds for r, = (uq, -1).

For z& = 0, the only configurations which have a
nonzero contribution to (2. 29) are those shown in
Figs. 3(a) and 3(b). The contribution of Fig. 3(a)
is

is the correlation function of the takeo-dimensional
lattice.

The contribution due to configurations of the type
shown in Fig. 2(b) is now

R=-4(&0& &ij&(j& -(» &i& &j) (j)
- &0) [&ij & &j &

—&i& &j & &j &]

- &i&[&0)&j& &j &- &0& &j& &j&]), (2. 35)

which sums to zero. Proceeding in exactly the
same fashion, one can easily see that the contribu-
tions corresponding to Figs. 2(c) and 2(d) are also
zero. In other words, for z; = 1, only those vertical
bonds (from K, ) which have the topological config-
uration of Fig. 2(a) will have a nonzero contribution
to (2. 29), and the contribution is given by (2. 33).
Thus for the case that r& = (u&, 1) we have the final
result

Cz, (r„R= 0) = 2f)Mq Z[(Oij) —(Oi) (j)

—&ij& &0&- &Oj& &i&. 2&i& &j&&0)]

28M, Cd(~) (2. 38)

= 24 Q C2(uq) C~(~ —uq)+ 2/M~ —QC~(ug)
Uf yUf

d yg d

=»X'+»~d»' (2. 39)

which is exa,ctly (2. 22).
To consider the second moment, we utilize the

identity

r; =g xz=usk+ (u, —u)

Hence

(2.40)

lr~l'=1+ lul'+ l~-ul'+2u «~-u) {2 4')
for the case that z& = + 1. Substituting (2. 36), (2. 38),
and (2.41) into (2.25), we have for

For z; 40, 1 one can easily see that C2, , (r&, R= 0)
=0. In terms of the graphs of Figs. 2 and 3, this
result corresponds to the fact that with only one 8
bond from X„it is impossible to draw a connected
graph from one spin so to another s;& if s;,. is further
than one layer away.

Thus Eqs. (2. 36) and (2.38) are sufficient to ob-
tain the first derivative of the pair correlation
function for all site separations r; when B=0. As
a check on these expressions, we use the fluctua-
tion-dissipation result (2. 18) to find

Xq(0) = Q C2, (rg, 0)

&j&[&0 j&-&Oi) &j&-&ij&&0&

—(Oj)(i&+2(i&(j)(0)) . (2. 37)

sp, (T, H, R) (2.42)

The contribution of Fig. 3(b) is the same, since
Figs. 3(a) and 3(b) are symmetries about the @ = 0
layer. Summing over u& and observing that in
(2. 37)(j)=- (Sy &~=&, is independent of uz, we finally

the expression

P2 t(R= 0)= 24Mu
sh pm(0)+ 24 [Xa+ 2 Xukm(0)]

(2.43)
Similarly, it follows from (2. 27) that for the first
derivative of the structure factor,

(a) c = ",". o sS(T, H, q, R)
qq, B = (2. 44)

0 I J

0 I(b) x ™~ x

that

S~ (q, R = 0) = 24 Mz —S~ (q)

Q W P% kt Q

FIG. 3. One-R-bond configurations which have non-
zero contributions to C2 &(r&, 0) for z~= 0 (i.e. , so and s&

lying in the same layer z&= 0). See definitions in caption
to Fig. 2 and discussion in Sec. II.

+ 2J cos(q ~ z) S„(q)S~( —q) . (2.45)

Note that (2.45) reduces to (2. 22), in accordance
with the fact that S(0,R) = X(R).

In summary, we have seen that Theorem Tl,
Eq. (2. 6), permits straightforward expressions to
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be obtained for the first derivatives with respect to
R of various thermodynamic functions and quanti-
ties related to the pair correlation function. The
following expressions are thereby obtained: Eq.
(2. 14) for the free energy, Eq. (2. 20} for the mag-
netization, Eq. (2. 22) for the susceptibility, Eqs.
(2. 36}and (2. 38) for the pair correlation function,
Eq. (2. 43) for the second moment, and Eq. (2.45)
for the structure factor.

III. SECOND-ORDER DERIVATIVES WITH RESPECT TO R
OF THERMODYNAMIC FUNCTIONS AND OF QUANTITIES

RELATED TO THE PAIR CORRELATION FUNCTION

A. Gibbs Potential, Magnetization, and Susceptibility

1. Gibbs Potential

—Gp(R=0)=2NPJ Q(S 0d)l(sosu&d &So&d]

+ NP J'Q [(sos„.&,
' —(sii )', (s-„),']

(3.2)
After some rearrangement, (3.2) becomes

Gp(R=O)=4-NpJ Md)(d+NpJ Q [Cd(u)] . (3.3)

2. Magnetization

Differentiating (3.3) with respect to h yields, for
the reduced magnetization, the expression

&MT HR4+ Mp(0) —=4
a=o

r, ll rG, (R= 0))
N &h

= Zg+ SMqy, q+ 4M'-2 2 ~Xd (3.4)

where Z~ denotes the summation:

X[(SOSgS„"&d
—(SOSS)d (Spr )d —(SOSpr )d (Sp&d

—(s„"s„-)d (sp)d+ 2 (so)d (s„-)d(s„-.&d] . (3.5)

Although (3.4) is an exact expression, the summa-
tion Z& is too complicated for us to estimate even
its order of magnitude. Therefore, we shall pro-
ceed to find the upper and lower bounds of Z& in
terms of quantities which are more familiar. Spe-
cifically, we shall show that

The second-order derivative of the Gibbs poten-
tial with respect to R is

G,(R)-=, ', ' =-P[(16'& -(16 )']8G(T HR

(3.1)
Hence for R= 0, we have —in analogy to Eq. (2. 13)-
the result

(3.6a)
and Z„—4M, y,' . (3.6b)

If we can prove (3.6), then we can combine these
results with Eq. (3.4) to obtain bounds on Mo(0):

8Md &(d+ 4Md ~ 4 Mp(0) (3.7a)

M, (0}—4M, (X' M,
&h

(3.7b)

The proof of (3.6a) and (3.6b) is based upon three
rigorous inequalities, which we denote by G1, G2,
and G3a, b; they were proved, respectively, by
Griffiths, Ginibre, ' and Griffiths, Hurst, and
Sherman.

Theorem Gl. (See Ref. 12. ) If s„,sB are spins
on sites A, B or if they denote arbitrary products
of spins, then

(Sgss ) —(Sr3 ) (SB ) —0 (3.8)

In particular, we shall utilize the following special
cases of Theorem G1:

C (T, H, u, R= 0)= (s s„-)—(s ) (s-„)—0 (3.9)
and

(SPS srrSsror ~ )d (Sp Sir)d (Sz ~ Szr )d r~ 0, (3, 10)

Theorem G2. (See Ref. 13.) If s~, ss, sd denote
single spins or arbitrary products of spins, then

Z (Sd) (SgsBSP) —(Sgsd) (SBSO) ~ 0, (3.11)
{sp}

where the summation ranges over all elements (so}
of a set, whose elements form a group under the
operation of mult'plication. In particular, if sz
=sos"„,and ss=s„"., and lsd} is a set consisting of
two elements, (sd}=(l,s„},then Theorem G2
yields

(Sp sir Sir r &d (Sp sir)d ( S)drrr+ (Sir)d (Spso ~ )d

&sp&d &s„s"„~) —0 (3.12)

or, equivalently,

3( i u ) &So Su sir r &d &So Sp)d (SIT r &d & Sif)d (Sp Sar &d

—(Sp)d (S S ~ )d+ 2 (Sp)d (S )d (S ~ )d

~ —2(s„-)d[(sps„" )d —(sp)d (s„)d]
(3.13)

where C3(u, u ') is of interest because it is the three-
spin correlation function that will appear in our
subsequent analysis.

Theorem G3a. (See Ref. 14. ) If sq, s&, s& de-
note three arbitrary spins, then

0 —(sgsyso) —(sisy) (so) —(siso& (sd)
—(s,s, ) (s, ) + 2 (s; ) (sd ) (s, ) . (3.14)

In particular,
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0~ Cp(u, u') (3.15)

Theorem G3b. (See Ref. 14. ) If sp, s», sj, sp
denote four arbitrary spins, then

that the summand of (3.20) is the product of two
positive factors and hence we have a lower bound on
Z2,

0) (sos»s jsp) —(sos» ) (sjsp&
) 0 (3.21a)

Xp(R=O)= 2Zp+4Xp

where

p=ZEZ (sos.„),[(sos„-s„-.s„--&,
u us uss

(S.19)

—(Spsp&» (S~ ~ So&& &p] (3 20)

From Theorem Gl [Eqs. (3.8) and (3.10)] it follows
I

(SpSj ) (S»sp& (Sp $$ & (S»Sj) (3.16)

To apply Theorems Gl-GS in proving (3.6), we
begin by observing that the summand of the quantity
Zj» [defined in (3.5)] consists of products of two
factors in square brackets. The term in the first
square bracket is known by Eq. (3.9) to be positive,
while the term in the second square bracket is pre-
cisely the function Cp(u, u') [defined in (3.13)]which
was shown to be negative in (3, 15). Thus each
term in the summand of Zj» is negative, and (3.6a)
is proved.

To prove (3.6b), we first substitute the inequality
(3. 13) into (3.5) with the result

Z» ~ —2 Z Cp(u} (s„&»Cp(u ) (S. 17)
u, u'

We may now use the fluctuation-dissipation relation
(2. 26b) to see that the right-hand side of (3.17) is
simply —2M, X,'. Thus (3.6b) is proved With.

both (3.6a) and (3.6b) established, (3.7a) and (3.7b)
follow at once.

3. Susceptibility

Although one may differentiate (3.4) with respect
to h to obtain an exact and general expression for
X,(R) = (SP X/SRP), the result is too complicated for
one to extract any useful information. However,
for H= 0 and T ~ T,(R = 0), thermal averages of
products of odd numbers of spins vanish:

(s» )» = ($»s jsp)» = ($»sjsps»s~&= ~ ~ ~ = 0, (3.18)

Thus it is straightforward to see that

2[X»1'- Zp . (3.21b)

Combining (3.19) with (3.21a), we obtain a lower
bound on y~,

Xp(0}—4&'[Xp]' (3.24a)

while on combining (3.19}with (3.21b), we obtain
the upper bound

Sy'[X,]' X,(O) . (3.24b)

B. Two-Spin Correlation Function and Correlation Length

The second-order derivative with respect to 8 of
the correlation function Cp(T, H=0, r», R),

»j Cp(T, H=o, r», R) (3.25)

is obtained in a relatively simple form for H= 0 and
T ~ T,(R = 0) by using Eq. (3.18), with the result
[cf. (2. 29)]

C, ,(r„R=O) -=P'[(s, s, Z,'&, ,
—&so s» &s-o (S6 » &s-o] ~

It is now straightforward to show, with the help
of Theorem Tl and (3.18), that the only graphical
configurations making nonzero contributions to
(3.26) are those corresponding to the topological
forms shown in Fig. 4. Thus for Fig. 4a, we have

An upper bound may be obtained by observing that
Theorem G3b [Eq. (3. 16)] implies

(Sp Sufi &» (Sz SPTit &d + (Sp SPx" &» (SPTSPTi &p

—(sos„s„~s„-~ ~ &p
—(sos~&» (s~ ~ s„""),, (3.22)

and substituting (3.22) into (3.20),

Z Z Z (sos-„)p[(sos"„~)» (s„-s„."&»
u us u"

+ (sps„~~ &p ($„$„~~ )» ~ Zp (3.23}

Finally, on using (2. 26b), we have the desired up-
per bound,

Cp p(u», z» ——2, R=O)= Z [5(zj=o)6(zp= 1)+5(zj-—l)6(zp=o)] Z (sps„"&»(so~s„„&»($„$„»&»
Sg, gy Ug, Uy

=2 Q (sps„)(s„s„;)(s s„;)
Uyp Uy

(S.27)

For Fig. 4(b), with z» = —2, the contribution to
(3.26) is the same as is given in (3.27) for the case
zj —+ 2o

For Figs. 4(c) and 4(d) we have z» =0. For both

configurations, we have

4 PCp p(r», R=0) =2K (s"„s„,&»

"Jp "A
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C 4 k ~ ~ Q

x c

(b) x
]

C

c x
I k

Ir»I'= lu»I'+ Iu. -u»l'+ l~ —u. l'+4

+ 2[u» (ua —u»)+u» ' (u» —Ua)

+ (u, —u») ~ (u» —u,)], (3.32)

where z denotes a unit vector in the z direction (so
that z is orthogonal to all vectors lying in a layer).
It is now straightforward to find from (3.32) and
(3.27) the contribution to )»a a(R = 0) of the config-
uration shown in Figs. 4(a) and 4(b) with z» = a 2,
which we denote by the symbol Z,'2. We get

j k I

(d )
0 j k i

E'a=- ~ Ca, a(r» 0}lr»l'
r~( S.sag)i

= 4&'

[Sup�(0)

Xa+ 4 Xa] . (3.33)
C /\ k4 4 ~ Q

FIG. 4. Two-R-bond configurations which have non-
zero contributions to Ca a{r», 0) at T)T„B=0 for (a} z»
=2, (b) z&=-2, and (c) and (d) z&=0. See definitions in
caption to Fig. 2, and discussion in Sec. III.

X[(sps S S )» (Sps &a (S S )»]
(3.as)

where the factor of 2 arises from the fact that
z»(= z, ) may be either zero or —1.

As a check on (3.27) and (3.28), we note that they
may be combined with the fluctuation-dissipation
relation to recover (3.19).

The second derivative of the second moment of
the correlation function is given by

»»a a(R=O)-=sR, = 5 c, ,(r», 08»»a(R) - - a

(S.29)
There are only three possible values of z&, for z~

=0, we have simply

(3.30)

while for z&=a2, we have

In obtaining (3.33) we have used the fact that since
u», (u, —ua), and (ua —u») are independent of each
other and since g „u(sp s„&a= 0, we can virtually
neglect all the inner products on the right-hand
side of (3.32).

We next obtain the contribution to p,a a(R = 0) of
the configurations of Figs. 4(c) and 4(d) with z» = 0,
which we denote by Ep. We note that (3.28)-(3.30)
yield

z, = ~ cap(r-„0)lr»l'
r] (s]=Q)

pl ~ 0 (S.35)

To obtain an upper bound, we use Theorem Gsb
[specifically Eq. (3.22)] to show that

= 24' 2 (jk) [(Oijk) —(Oi) (jk&] lu» I',
ufpuk (3.34)

where the notation (jk) is defined in Eq. (2. 32)
above. We can obtain a lower bound on Zo from
Theorem Gl, Eq. (3.10),

r; = uf + u& —uf k 2 z + ~ —u&,

so that

(3.31)
2i) Q &jk&[(oj&(ik)+(ok&(ij&]lu»la zp'.

(3.36}
Observe that

Z (jk)(oj)(ik) Iu»l'= Z Z Z (Oj&&jk&&ki&l(u, —u, )+(u, —u»)+u»l
fu& (u~-uk) (u0-uf) uf

= 3i»a(0)X»+ 2Z Z Z(oj) (jk) (ki)[u» ~ (u, —u»»)+u» ~ (u, —u»)+ (u» —ua) ~ (ua —u»}] .
(3.37)

Since ~ —u&, u& —uf, and uf are all independent
variables, the three cross terms inside the square
brackets of the last expression of (S.37) make no
contribution to the final summation. Hence from
(3.36) and (3.37) we find the upper bound on Zp,

Corresponding to the lower and upper bounds on
Zp of Eqs. (3.35) and (3.38) there are lower and

upper bounds on the second moment. Thus on sub-
stituting (3.33) and (3.35) into (3.29), we find the
lower bound

& 4 3»»a(0)X» —Ep ~ (S.38) »»a a(R=O)) 12»»a(0)X,'+16X», (3.39a)
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while on using (3.38) instead of (3. 35), we find the
upper bound

(0) c x—cI

c p\ p

(b) x
0

c 4 L w o

24»»o(0)xo+16xd» 2, 2(R= 0)& (3.39b) c c
IV. THIRD-ORDER DERIVATIVES WITH RESPECT TO R OF

THERMODYNAMIC FUNCTIONS AND OF QUANTITIES
RELATED TO THE PAIR CORRELATION FUNCTION

In this section we shall consider only the super-
critical region, T & T„andthe case H'= 0. The
magnetization is zero for this region and hence we
shall begin our discussion with the pair correlation
function. The third derivative with respect to R,

x

{c) c

x

0 j

(e) x
I

k

o

k

c x
i 1

(d) c

0 k

(f) - o

S Co(T, II= 0, r», R) (4. 1) 0 j
c o '™J

k 1

x

c & &i 4J

k 1.

Co, o (r, R = 0) = 3! Z «(u») + Z~(u»)

where

Z„(u»)=- E &sos„",), ( s-„„s-„»&o
Qgqllkotlg

(4. 4)

x [(s"„,s„s„"s„)o—(s„»s„)o(s„s„)]
(4. 5)

represents the contribution to the correlation func-
tion for z» = 1 from diagrams 5(c), 5(e), and

Z (u») —= Z ((sos„-s„-s„-)o (s-„.s„-s-„os-„»&o
upQkottg

is given by an expression analogous to E»l. (3.26)
and to the II=0, T &T, value of (2. 29),

Co 3(r», R=0)= —P'[(sos»X»&»». o

—3 &sos»Z»&»»-a &aC»&»»-ol ~ (4 2)

The only configurations with nonzero contribu-
tions to (4. 1) are of the topological types shown in
Fig, 5. As before, it is convenient to consider dif-
ferent values of zg seriatum.

Case I: z;=+3. From Fig. 5(a) for z, =3 and

Fig. 5(b) for z;= —3, we have

8 oCo o(r», R=0) =3! Z (sos„-»&o
ll g o Uk q ll g

x(s„-,s„-,), (s„;s„-,), (s„-,s„-,), , (4. 3)

where the factor of 31 is analogous to the factor of
2! in (3.27) and arises from the permutation of the
three vertical bonds (representing the interactions
of strength RJ').

Case II: z, =+1. From Figs. 5(c}, 5(e), and
5(g) for z»=1 and Figs. 5(d), 5(f), and 5(h) for
z;= —1 we have

(g) x I::: (h)

x x
0 j i j k l

FIG. 5. Three-R-bond configurations that have non-
zero contribution to C2 3(rg, R=0) at T&T„H=0for (a)
zg=3, (b) zg= —3, (c), (e), and (g) zg=1, and (d), (f), (h)

zg = —1. See the definitions in caption to Fig. 2 and the
discussion in Sec. IV.

—3(so s„-)o(s„-,s-„)0(s-„„s"„,)0 & s-„s-„,&0)
(4.6)

represents the contribution from diagram 5(g).
A lower bound on Z«(u;),

Z, 0 (4. 7a}

follows immediately from Theorem Gl [E»l. (3.10)],
while an upper bound,

Z &Oq&&ki&[&ij&&ik&+&ii&&jk&] Z,.(u,),
tljo tlko tl g (4.7b)

arises from Theorem G3b [cf. E»l. (3.22)].
The bounds for the summation Z, (u;) are some-

what more complicated to derive. We begin by de-
fining the function A(i,j,k, l),

A(i,j,k, l) —= (ij ) (kl ) —( ik ) (jl ) + ( il) ( kj ), (4. 8)

and the function B(u»},

B(u») =—Z ( [(Ojkl) A(0,j,k, l)]—
2 fkg

x [(ijkl)+A(i, j, k, l)]+0—ij (4. 9)

where the symbol 0 i in (4. 9) denotes the terms
obtained by exchanging the symbols so and s-„,.
everywhere. To relate Zo(u;) to B(u;), we note
that

B(u») = 2 {&Ojkl&(ijkl) -A(0,j,k, l)A(i,j,k, 1))
fokog

= + I& Ojk I & & ijk I ) —( Oj ) ( ij ) (kl )o —( Ok & & ik & (jl &o —
& Ol ) (i l ) &jk )o + 2( Oj ) (jk ) ( k l ) ( li )j .

)oko g

(4. 10)
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From (4. 6) it follows that

Z, (u;} =—Z (& ojkl ) & zjkl ) - 3& Oj ) & zj ) & kl ) }
jkl

=B(u, ) —2Q (Oj)(jk)(kl)(li) . (4. 11)
jpky1

To obtain lower and upper bounds for B(u;), we
make the following four observations:

Observation (i). From (4.8) we have for the
second quantity in square brackets in (4. 9),

( ijkl ) + A (i,j, k, l ) = ( ijk l ) + ( ij ) (kl )
—(lk) (jl)+&il) (kj) . (4. 12)

On using the result of Theorem 61 that quantities
of the form of (ij) are always positive,

(ijkl)+A(i j,k, l) ~ (ijkl) —(ik) (jl) & 0,
(4. 13a)

where the last inequality follows from (3.10).
Observation (ii). Using a relation analogous to

(3.22) to "eliminate" the expression (ijkl) —(ik)
(j l ) in (4. 12), we get the following upper bound for
(4. 12):

2(ij)(kl)+2(il)(kj) ~ (ijkl)+A(i, j, k, l) .
(4. 13b)

Observation (iii}. The quantity appearing in the
first curly brackets of (4. 10),

upper bounds on Cz,s of (4. 4); for the case of z,
=+1,

8 'C, ,(r;, R =0) ~ —2 Z (s,s„,) (s„s„,),
gjs gke gf

x&s„~s„,)~ &s„,s„,)~ (4. 17a)

18 Q (sos„),(s„s„„),(s„s„,), (s„,s„,)
gje gks gg

Cz, z(r(R =0) . (4. 17b)

Using (4. 3) for case I and the bounds of (4. 17a),
and (4. 17b) for case II, we can in principle pre-
sent bounds on all functions obtainable from the
zero-field pair correlation function. While in
Secs. D and III we derived all statements about the
susceptibility derivatives first from differentiation
of the field-dependent Gibbs potential, here we ob-
tain bounds on the zero-field susceptibility deriva-
tive for T & T, by direct summation of the correla-
tion function,

( )
sX(T H 0 R}~i

XS ggS Cz, s(r;, R=0) .
,
s=o rg (4. 18)

Combining (4. 18) with (4. 3) and (4. 17a) and (4. 17b),
and using (2. 26b), we have the lower and upper
bounds

( ijkl ) A(i, j-, k, l)

=(ijkl) —(ij)(kl)+(ik)(jl) —(il)(kj), (4. 14)

obeys the inequality

xe(0} -8& x ~

48& X~.- Xs(0}

(4. 19a)

(4. 19b)

( ijkl ) —A(i, j, k, l) ~ 0 (4. 15a)

This inequality follows from Theorem G2 by choos-
ing s„—= s;s;, ss=—s~s, , and fs~]=]1,s&sg .

Observation (iv). From (4. 14}we have, on us-
ing the same reasoning as in (ii), that

To discuss the third-order derivatives with re-
spect to R of the second moment,

s'q, (T, B=O, R}
R=O

2(ik) (jl) ~ (ijkl) A(i, j, k, l)-. (4. 15b)
= ~ lr*l'C, ,,(r, ,R =O), (4. 2o)

Note that (4. 13a), and (4. 13b) and (4. 15a), and

(4. 15b) are also valid when i is replaced by 0.
Thus from (4. 13a), (4. 15a), and (4. 9), we have the
desired lower bound on B(u;),

B(u;) & 0 (4. 16a)

Substituting (4. 13b) and (4. 15b) into (4. 9), we ob-
tain the desired upper bound

2 Z([&ij) &ki)+&it) &kj)]
jk1

x(ok) (jl) + i —0)~ B(u,),
or simply

8 Z (Oj) (jk) (kl)(li) ~ B(u,) . (4. 16b)
jkl

Finally, we utilize the bounds (4. 16a) and (4. 16b)
on B(u, ) together with (4. 11) and the bounds (4. 7a),
and (4.7b) on Z„to obtain the desired lower and

z+ (u~ ul}+ (ul uk) + ( 0 J}+ (4. 23)

Combining (4. 23) with the lower and upper bounds
of (4. 17a) and (4. 17b), we get

5"lr~l'Czz(ri, R =» - -4 ~' [x~+4xd F2(0}1
(4. 24a)

one must carefully distinguish cases I and II. For
case I (z; =+3),

Ar =Sz+u.

= 3z+ (u, —u, ) + (u, —u, ) + (u„-u, ) + u, . (4. 21)

Combining (4. 3) and (4. 21), we obtain

g'l r; l' c...(r„R=0) = 2 ~ 3!8'[9x', +4x,'p, ,(0}].
(4. 22)

For case II (z, =+I}, Eq. (4. 21) is replaced by

r;=z+u;
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488'[3X,'+4X', p, (0)]- q, ,,(O) . (4. 25b)

U. SUMMARY OF RESULTS AND POSSIBLE
GENERALIZATION TO OTHER SYSTEMS

In Secs. II, III, and IV we have examined, re-
spectively, the first, second, and third derivatives
with respect to R of various thermodynamic func-
tions and quantities related to the two-spin corre-
lation function. Our principal results are sum-
marized in Table I, using notation defined in Table
II. As emphasized above, these results were de-
rived only for the special case of a system of spins
situated on a simple cubic lattice (d=3, d=2} and
interacting with their nearest neighbors through
a S= & Ising interaction. This system [cf. Fig.
1(a)] is appropriate for the recent numerical cal-
culations concerning the square- sc crossover.

In this section we shall discuss how certain of
these results may be easily generalized to other
systems. Specifically, we shall treat the general-
ization to (a) lattice pairs other than the square and

sc, (b) systems for which the perturbation term
~[cf. Eq. (2. 1)] contains other than nearest-
neighbor interactions, and (c) systems in which
the spin-spin interaction is other than that de-
scribed by the S= 2 Ising model. Finally, we shall
comment on the plausibility of extending our re-
sults to higher-order derivatives (and in the Ap-
pendix we shall present a rigorous analysis of the
self-avoiding walk problem for general nth order
derivatives).

It is important to emphasize that the range of
validity of our results is not necessarily restricted
to the special systems considered here; for exam-
ple, if Theorems Gl, G2, and 63a, b were to be
valid for a wider class of Hamiltonians than the
class for which they have thus far been proved,
then certain of our results would be corresponding-
ly generalized.

A. Lattice Pairs Other Than Square and Simple Cubic

All the theorems used in our analysis are lattice
independent and therefore analogs of a11 the funda-

3&.&'[Xl+4Xl ~3(O)]~ Z Ir~l'C, ,(r, , R=0),
(4. 24b)

where, as noted in Sec. III, the new summation
variables are (u&-u, ), (u, -u~), (u~-u&), and u&.
The inner products between any two of these sum-
mation variables will be zero after taking the sum-
mation.

Finally, on combining the results (4. 22) and
(4. 24a) and (4. 24b) for cases I and II respectively,
we obtain the desired lower and upper bounds for
the second-moment derivative defined in (4. 20),

P m, s(O} - & [104Xa+ 32X u P2(0} (4. 25a)

X2(0) - 4A'gaix',

[g21+g22] X d X2(o}

(5. 1a)

(5. 1b)

Finally, we consider the case n = 3 (third-order
derivatives). Here the argument is entirely analo-
gous to the case n = 2, except that there are three

mental relations proved above may be obtained for
other lattice pairs that can be related by some an-
isotropic term RfC, in the Hamiltonian [cf. Eq.
(2. 1)]which connects an assembly of d-dimension-
al systems to form a d-dimensional system. The
final formulas are altered only by the multiplica-
tive factors shown in Table II.

To appreciate the origin of these multiplicative
factors we consider first the case n = 1 (first de-
rivatives with respect to R). Let g, (x- X) be the
number of "RJbonds" at a lattice site —i.e. , the
number of additional nearest neighbors that a site
acquires when the lattice anisotropy term in (2. 1)
transforms the lattice X from being d-dimensional
to a lattice X which is d-dimensional. For the
sake of convenience, we shall denote g, (X-&) by
simply g&. The total number of nearest-neighbor
bonds with strength Rd is ~(gz)N; this number is
&(2N} =N for the square - sc crossover system.
Thus Eq. (2. 14) for Gz-and hence each equation
for quantities obtained by differentiating G&—should
be multiplied by a factor &g&. To explain the oc-
currence of the factor g, in the quantities derived
from the correlation function, we note that for each
of the topological configurations shown in Figs. 2
and 3, there are g& ways to place the single "RJ
bond", and for each way of drawing this bond the
contribution to the correlation function is the same.

Consider next the case n = 2 (second derivatives).
The generalization here is somewhat more subtle
than an over-all multiplicative factor, and we must
consider in some detail the topological configura-
tions of Fig. 4. In Figs. 4(a) and 4(b) the two KT
bonds are connecting three consecutive layers,
while in Figs. 4(c} and 4(d) they are connecting the
same pair of layers. There will be different mul-
tiplicative factors for each configuration. The
factor ga, (X- 7) =gz, associated with the graphs of
Figs. 4(a) and 4(b) is equal to the number of ways
of placing two consecutive RJ bonds without return-
ing to the original layer. In particular, note that
for the linear chain - sc crossover, gz, (lc- sc)
= (4)(3) = 12 is just the two-step self-avoiding walk
problem on a square lattice.

Similarly, the factor g» associated with Figs.
4(c) and 4(d) is the number of possible ways of
placing two consecutive RJ bonds in such a fashion
that one returns to the original layer.

Using these considerations, the formulas for
n = 2 become somewhat more complex. In particu-
lar, the bounds on Xa(R = 0) become
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TABLE II. Expressions for the lattice factors gP. X) for several possible pairs of lattices
X and X in order that the reader can use Table I to easily calculate the upper and lower bounds
for a wide variety of lattice crossovers X X). (Square, sq; simple cubic, sc; linear chain,
lc).

Conformations

Figs. 2 and 3

Figs. 4(a) and 4(b)

Figs. 4(c) and 4(d)

Figs. 5(a) and 5(b)

Figs. 5(c), 5(d), 5(e), and 5(f)

Figs. 5(g) and 5(h)

sq~sc sq fcc

32

128

128

128

lc ~sc

12

36

12

lc sq

factors instead of two. Thus the factor g» corre-
sponds to Figs. 5(a) and 5(b) and is the number of
ways of placing three consecutive RJ bonds without
returning to any layer, and again for the particular
case of a linear chain - sc crossover, g3& is the
self-avoiding walk on a square lattice [g„(lc- sc
= (4)(3)(3)= 36 for a three-step self-avoiding walk].
The factor gs2 corresponds to Figs. 5(c)-5(f) and
is the number of ways of placing three consecutive
RJ bonds such that the second and third bonds join
the same pair of layers. Lastly, the factor g»
corresponds to Figs. 5(g) and 5(h) and is the num-
ber of ways of placing three RJ bonds such that
they all join the same two layers.

B. Interaction Hamiltonians Involving Other Than Nearest
Neighbors

The second generalization of the above results
concerns interaction Hamiltonians that incl xde oth-
er than only nearest-neighbor interactions Since
changing the unperturbed Hamiltonian X, c'.oes not
change any formal results, the only terms which
affect the results are those in the perturbation
Hamiltonian K&. For example, if X& contains g
nearest-neighbor pairs of spin products with cou-
pling strength RJ and g' second nearest-neighbor
pairs with coupling strength RJ, then multiplica-
tive factors of 2J for the first-derivative results
of Sec. D are changed to multiplicative factors of
(gJ+g J ). The appropriate changes in the results
of Secs. III and IV are also easily obtainable using
similar reasoning.

C. Interaction Hamiltonian Other Than S =
2 Ising Model

The third direction of generalization is to con-
sider models other than the S = 2 Ising model.
Clearly the results of Sec. II-IV apply for any
model Hamiltonian for which the theorems utilized
in deriving that result are valid. Therefore, we
have included in the last column of Table I a listing
of which theorems were utilized in obtaining each
result.

(5. 3)

similar changes affect the other results of Sec. II.
Here D is the dimensionality of a classical spin
vector 5=- [S ",S'2', . . . , S'~']; for the fsotroPic
limit of (5. 2) in which J„=J for all p= 1,2, . . . , D,
then (5. 2) reduces to the S =

& Ising, S =~ planar,
S = ~ Heisenberg, and spherical models, respec-
tively, for D=1, 2, 3, and ~.

Many of the results of Secs. III and IV for the
higher-order derivatives necessitated for their
proofs Theorems G1, 62, and 63a, b. Theorem
61 is knowns to be valid for the general spin Ising
model, and so are G3a and G3b. However, to
the best of our knowledge Theorem G2 has been
proved only for the S = 2 Ising model. Thus the
specific ranges of validity of our results may eas-
ily be known by consulting the last column of Table
I.

It is worth emphasizing that to the extent that the
certain of theorems are plausible assumptions for
a wider range of model Hamiltonians, our results
can be regarded as being as plausible as the theo-
rems underlying them.

D. Possible Validity of Relations for Derivatives of Order Higher
Than Three

The last, and probably the most difficult, gener-
alization is to the case of derivatives of order n

higher than three. Although we have not succeeded
in finding bounds for n & 3, it is not difficult to find
both upper and Lower bounds for general n of a
closely related system, the self-avoiding walk

All of the results of Sec. D for first derivatives
with respect to R require for their proof only
Theorem T1. This result holds for an extremely
wide class of interaction Hamiltonians. In particu-
lar, if our perturbation Hamiltonian is

36&=-Z ZZ„S',»S',"', (5.2)

then we should have
D

Gg(R = 0) = —N Z J„(S'"')
oaf,
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(SAW) problem. This analysis is carried out in

the Appendix.
We shall see in Sec. VI that the scaling hypothe-

sis, when stated in its weakest form, implies the
validity of the results for general n, and this pre-
diction has been confirmed numerically through
n = 5 for the S = 2 Ising model for both the suscep-
tibility and second moment, and through order n

=8 for the specific heat. "
VI. DISCUSSION AND APPLICATION OF RESULTS

R'

R}

(o)
Tc(Q) Tc(R})

x=-
Xcurie

T4(R})

To o}( R ) = T4 ( R )

d=2
region

In this final section, we shall briefly discuss
some of the possible applications of our results.
In Sec. VIA we illustrate the application of our re-
lations for first derivatives as a checking method
for high-temperature series. In Sec. VIB the im-
plications of our results in providing a check of
scaling theory are considered. Lastly, in Sec.
VI C we consider possible applications of the pres-
ent results to experimental systems. In particular,
we shall discuss (i) the concept of a "crossover
temperature, " (ii) how our results may possibly
be used to determine the upper bound for the an-
isotropy parameter R, and (iii) the plausibility of
observing an exponent change as T- T, (R,) in a
system with a fixed (small} value of R, R =R, [cf.
Fig. 6(a}].

A. Checking Procedure for High-Temperature Series Expansions

Most of our information concerning critical phe-
nomena in model systems (except those few that
can be solved exactly) has come from extrapola-
tions based upon exactly calculated coefficients in
series expansions. For example, the high-temper-
ature expansion, in powers of 4=- P J=J/kT, of the-
zero-field reduced susceptibility for the simple
cubic lattice (R =1) is of the form

I

(b) Q I I

0 Tc(O) Tc(R})

I

T4(R})

(0)

)
= O.OI

log X"
yd = l.25

=R,

(c)
Ts(R, ) T4(R})

yd = l.75

c(R,)1

FIG. 6. Schematic diagram of the crossover behavior.
(a) The crossover region (shaded area) is bounded by
Tz(R) and Tz(R). [T&(R)= To 0&(R) is the temperature at
which the system differs appreciably (1%) from being two
dimensional. ] T,(R) is the critical temperature. The
generalized scaling hypothesis predicts that all curves
should approach T~(0) via the power law R ". (b) De-
pendence of reduced susceptibility f upon T for R = 0 and

for R =R&, indicating the definition of T&(R). Note that
this drawing is not to scale, (c) Sketch of hypothetical
experimental data, plotted in the conventional log-log
plot, for a s~ tern which is described by the Hamiltonian
with R = R&.

(6. 1)

where the coefficients in the expansion A, may be
related to the number of graphs on the lattice con-
taining l "Jbonds. " For an anisotropic lattice
(R & 1), each graph may have 0, 1, 2, . .. , n bonds

in the R direction ("RJbonds"). Thus each coef-
ficient a, in (6. 1) is, in general, a polynomial of
lth degree in R, A, =a,Q+a»R+ ~ ~ ~ +a»R and

(6. 1) becomes

have checking methods available. To our knowl-

edge, the methods we present below are the only
checks usable on the series (6.2).

1. Limiting Results at R= 0, , and 1 (First Column, 14'ain

Diagonal, and Sum ofEach Row)

For R = 0, the system is d dimensional and the
series are generally known. Hence we have

(6. 2)
X(0) = + ato } = Xa

t=Q

(6. sa)

1=Q m=Q

The coefficients a, in (6.2) have recently been
obtained through order l = 10 and 11 various Ising
model lattices (D= 1),""'~through order l =10
for the planar model (D = 2), I and through order
/=10 for the Heisenberg model (D=3).30 Since the
calculation of the coefficients has historically re-
sulted in numerous errors, ' it is important to

X( ) = Bag/(R}}'=X„
1~Q

(6. 3b)

Finally, for R = 1 we have the isotropic case of
(6.1) and hence we have the "sum rule"

Similarly, for R =~ the lattice reduces to a known

case. For example, the sc lattice reduces to un-
coupled linear chains, and we have
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(6. Sc)

Thus if the coefficients a, are arranged in a tri-
angular array with the rows labeled by the index l
and the columns by m (m =0, 1, 2, . . . , I) (cf. Tables
I-IV of Ref. 19), then {6.Sa) permits one to check
the first column, (6. 3b) the main diagonal, and

(6. Sc) the sum of the terms in each row.

2. First-Derivative Results (Second Column)

R (s.4}

to two interpenetrating regular Ising systems
coupled together by a four-spin interaction term
R+1i 1/~2 ~2& where s1~ ~1& are spins on one lat-
tice and s2;, s2& are spins on the other lattice. At
R = 0, these models decouple into two independent
regular Ising systems. Hence it is not difficult to
show for the Baxter-model susceptibility y&(R)
that

CO OO 2

Z Qg, gael =gl E Qg, p
'}

2=1 E=p

(S. Sd)

As R- ~, the sc lattice reduces to uncoupled linear
chains and we can also check the diagonal just be-
low the main diagonal,

(6. Se)

To check the second column of the second mo-
ment series, one needs the somewhat more com-
plicated result of line 4, Table I.

We have used the recently calculated series ex-
pansion coefficients to verify this relation for the
second moment-together with relations (6.Sa)-
(6.3e) for the susceptibility —for the Ising, planar,
and Heisenberg models (D = 1-3).

From Sec. II and the general-lattice discussion
of Sec. V (cf. Table I), it follows that the first-or-
der derivative of X(R) at R = 0 is exactly g, (~) .
Hence we have a very powerful check on the entries
of the second column of Tables I-IV of Ref. 19:

where in this equation y and U are, respectively,
the susceptibility and internal energy (i.e. , the nn

correlation function) for the R = 0 system. '

G(X'&r, X'"H, X'~R) = X G(r, H, R} (s. 5)

where G is the singular part of the Gibbs potential,
v = T —T„andII is the magnetic field. In particu-
lar, we note that (6. 5} implies that

T,(R) —r, (0) CR""-
where

(6. 6)

B. Scaling with Respect to Anisotropy Parameter R

1. Thermodynamic Functions

Historically the scaling hypothesis has proved to
be a valuable qualitative guide in our attempt to un-
derstand critical phenomena. Recently this hypoth-
esis has been extended to treat systems that de-
pend upon a parameter (the anisotropy parameter
R in this case). T In the formulation of Ref. 9, we
assume that there exist three numbers a„aH, and

a&, such that for all positive X,

3. System with Both First- and Second-Neighbor Interactions
& =sz/sv (6.7)

Another example is a system with both nearest-
neighbor (nn) and next-nearest-neighbor (nnn) inter-
actions. Consider a magnetic system on a square
(sq) lattice with nn distance c and with nn coupling
strength RJ and nnn coupling strength J. In the
limit R- 0, this system reduces to two interpene-
trating independent sq lattices, for each of which
the nn distance is &2c and the nn coupling strength
is J. Thus for this system the first-order deriva-
tive relations of Table I apply with g1 = 4. General
R series for systems with arbitrary nn and nnn in-
teractions have been obtained for various systems,
and these relations corroborated numerically.

4. A pplication to Baxter and A shkin- Teller hf odels

Lastly, it is worth mentioning that similar rela-
tions are always obtainable providing there exists
a certain RJ bond that couples two (or more) inde-
pendent lattice systems. One such example was
given above in Sec. VI AS. Another example is
provided by the eight-vertex model 3 (Baxter mod-
el) and the four-state Ising model (Ashkin-Teller
model). These have been shown to be equivalent

is the "crossover exponent. " On differentiating
(6. 5) twice with respect to H and n times with re-
spect to R, we have

xn(»H=0 R =0) =
H, T

with

~n=Yp+&0 ~

(6.s)

(6. 9)

we have

Y1 2pp

(6.10)

(6. 1la)

Combining the rigorous relation (6. 11) with the
scaling prediction (6. 9), it follows that if scaling
with R is valid, then

0 ='Yp (6. 12)

Two questions arise at this point: (i) Is the hy-
pothesis (6. 5) of scaling with respect to R valid?
(ii) If it is valid, what is the value of p =a„/a,? In
view of our rigorous relation
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Thus (6. 12) provides a "rigorous" answer to ques-
tion (ii).2'

We have not succeeded in answering question (i)
in any rigorous or even semirigorous fashion.
However, we can verify rigorously certain of the
predictions of the scaling hypothesis (6.5). Specif-
ically, for the Ising model lines 7 and 10 of Table
I imply that

ya 3yp (6. lib)

y3 = 4yp (6. 11c)

respectively, in accordance with the scaling pre-
diction (6.9). Equations (6. lib) and (6. llc) are in
conflict with Ising model (yo= l. 75) estimates of the

y„from Ref. 11, where it is reported that for the
sq- sc crossover, y~ = 5 ~ 0 + 0. 1 and y3 = 6. 5 + 0.2.
However, they are consistent with the much more
extensive work of Ref. 17 and with the remarks of
Ref . 26 and the extensive calculations on both the
sc- sq and the fcc- sq crossovers presented in
Ref. 17. Thus one application of our rigorous re-
lations (6.11) is to show that the extrapolations of
Refs. 11 are not valid.

2. Two-Spin Correlation Function

p~„(r, HO, R=0)
~

T
~

with

2v~ = 2vp + Gyp

{6.14)

(6. 15)

From lines 4, 8, and 10 of Table I the validity of
the scaling prediction (6. 15) follows at once for the
cases n = 1, 2, and 3, respectively. Thus these
results suggest that not only thermodynamic func-
tions, but also the two -spin correlation fuctions,
scale with the anisotropy parameter R. Indeed,
the predictions of both (6. 5} and (6. 13) are borne
out for the sq - sc and the sq - fcc crossovers for
p2 and C» (the specific heat) by the work of Ref. 17.

It is interesting to point out that although our re-
sults for the zero-field high-temperature suscep-
tibility X(T, H = 0, R) and the second moment
{Ja(T,H = 0, R) seem to support the hypothesis that
both T and R scale, this result does not imply that
all thermodynamic functions scale in R. The fol-
lowing counte rexam pie illustrates this point. As
proved above, if X(T, H=O, R=0) & "0, then the

One can make a scaling hypothesis, analogous
to (6. 5), for the two-spin correlation function,
namely that there exist four numbers b„bH, b„,
and fs&u hcthat for all positive X, C2(v, H, r, R) is
a generalized homogeneous function

Cz(X~'v, X»H X &r, X RR) =XC2(T, H, r, R}
(6. 13)

From (6. 13) it follows that

second-derivative function varies as X2(T, H=0, R
=0) - r ~"o; this result is consistent with the scaling
prediction coupled with the result y = yp. Thus if
the sam& scaling hypothesis holds for the Gibbs
function and the specific heat, one would expect
that Gz(T, H = 0, R =0) diverges with exponent o.'o —2

+2yo and that C„a(T,H= 0, R =0) diverges with ex-
ponent QIp + 2yp. However, as one can easily see
from Eq. (3.3} at H= 0 and T & T,(0), the first term
on the right-hand side vanishes. If we assume that
the correlation function Ca(T, H, r) for the d-dimen-
sional system scales, then one can show using ar-
guments of Sec. IV of Ref. 9 that the second term
on the right-hand side of Eq. (3.3) diverges at T(0)
with exponent —dv + 2yo = no —2+ 2yo —[dv —(2 —no)].
Hence if d» & 2 —ao (as many workers believe to be
the case for d= 3}, then our results would indicate
that the scaling hypothesis in R [which works for
X(T, H 0, R) and p2(T, H = 0, R) ] may not work for
G(T&H=O, R) and C„(T&H=O,R).

where

Rll
+ ~ ~ ~ +X (0)—+ ~ ~ ~

n (6 ~ 16)

x.(0) -=sR.
~ x«)

B=p
(6. 17)

and Xo(0) = X„is the susceptibility of the two-dimen-
sional system. From Table I, it is clear that for
systems described by (1.1), we have

X(R) = X&[I+2R'X~+ (2R.')X~)'f2(~)

+ (2RA X ) f ( ) ) + 0(R') ~ ~ ~ ], (6. 16)

C. Precise Meaning and Approximation Determination of
Crossover Temperature

The anisotropic system described by (1.1) is in-
te re sting because critical -point exponents, accord-
ing to the universality hypothesis, should depend
only upon lattice dimensionality; and hence when
R - 0 (and the lattice "crosses over" from d dimen-
sions), we expect anomalous behavior. This cross-
over behavior would be observable if we could vary
R continuously to zero.

Another interesting property of the weakly cou-
pled layers is that even for R 4 0 the system is es-
sentially two dimensional at high temperature.
Yet when it is sufficiently close to the critical tem-
perature T,(R), it is three dimensional. Hence
there is a crossover region T„(R)& T & Ts(R} where
the system transits from d= 2 to d= 3 (cf. Fig. 6) ~

The crossover region is only a loosely defined
concept. To be quantitatively precise, we shall
consider the reduced susceptibility X(R) for the
Hamiltonian (l. 1). If we consider the coupling in
the weak direction as a perturbation, then we may
expand X(R) in a Taylor series about R = 0:

Ra
x(R) =-xo(0)+x (0)R+ x (o}2,
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where 2 ufo()) & 1 and 6o fo(l})& l.
The effective crossover temperature is now de-

termined by the following argument. If y(R) versus
T were known exactly, for a given R, there would
be no sudden transition from two-to three-dimen-
sional behavior; rather, as the temperature ap-
proached T,(R), higher-order terms in Eq. (6. 18)
would gradually become more significant. Thus
we can define a P-percent crossover temperature,
To.o»(R), as that temperature at which the second
term in Eq. (6. 18) causes a P-percent deviation of
X(R) from the two-dimensional value )f, :

2R P J)jq = 0 01P (6. 19)

4R PJ X, , (J, T, S) ~ 0.05 (6. 20)

for T~1.1 K, where y, , is the linear chain sus-
ceptibility, known exactly, and evaluated at J
= —6. 3 K and S = —,'. From this relation we obtain
an upper bound on R, R ~ 10

(iii) Equation (6. 18) may be used in making
quantitative estimates for the experimentalist. For
example, as we have discussed earlier, current
theory predicts that for any given value of R, the
critical behavior should be d dimensional at high
temperature and three-dimensional near T,(R). A

schematic illustration of the expected behavior is
shown in Fig. 6(c) for hypothetical susceptibility
data on a "quasi-two-dimensional Ising system. "
Data similar to these hypothetical experiments
have been reported, and subsequently challenged.
However, from the theoretical point of view, it

where the left-hand side is expressed as a function
of T, and the equation is then solved for To.».

Experimentally, this means that if one's confi-
dence limits are P percent, the two-dimensional
susceptibility y~ should be a good enough approxi-
mation to )((R) down to To o». Note that To.o» is
the temperature at which the first-order correction
term on the right-hand side of Eq. (6.18) equals to
0.01p. This temperature may be slightly different
from the true p- percent temperature for which

(y(R)/)(o) —1 = 0.01P. However, from (6.18), one
may reasonably expect that these two temperatures
are essentially identical.

Equation (6. 19) is the major result of this sub-
section. It is useful in the following respects:

(i} It may be used to estimate the crossover
temperature, since it is generally easier to obtain
theoretical information about )f~ than about )f(R).

(ii) By inverting the above procedure, Eq. (6.18)
may be used to estimate R when R is not known,
the crossover temperature To o»(R) being obtained
from a plot of )f(R) vs T. As an illustration, con-
sider the antiferromagnet (CDo),NMnClo (TMMC), o

known to be a spin-& quasi-one-dimensional system
for T ~ 1.1 K, with J= —6.3 K. Assuming the ex-
perimental error to be 5%, Eq. (6) requires that

)f„(T)= s.[(T T,)/T, j 'i-'

we have

0 ~ 1=2R PJ')f o(To ~)

(6. 22)

o- 2R e,(lo-o)-"4-10'RJ
nT, (0) '

10 )R (6. 24)

(b) To be able to observe three-dimensional ex-
ponents with any confidence, one Probably will have
to reduce e by two decades or more (one decade for
the transition to three-dimensional behavior, and
one decade in order to accurately measure the
slope of the linear three-dimensional behavior}.
Hence the experimental apparatus should at least
be able to achieve the minimum reduced tempera-
ture

T ), —T,(R) T ), —T,(0)
T.(R) T,(0)

Combining (a} and (b), we conclude that the most
optimistic situation to observe the dramatic behav-
ior of Fig. 6(c) would be to use a system with R
on the order of 10" and to use apparatus capable
of making measurements down as low as E „=10
If R were much bigger, the two-dimensional ex-
ponent might not be measurable, while if R were
much smaller, the three-dimensional region may
be too small to observe.

We conclude by remarking that the crossover
temperature (more precisely, To) should be depen-

would be interesting if we could estimate under
what conditions it would be feasible to observe this
kind of dramatic crossover behavior. To achieve
this aim, we proceed in two steps

(a} To be able to observe the two-dimensional
exponent, the system must be well above the criti-
cal temperature T,(R). Let us assume for the sake
of argument that the two-dimensional behavior does
not set in until T —T,(0)/T, (0) is less than about
10 —i.e. , above this temperature, there is no

meaningful exponent behavior. Then in order to
reliably estimate the two-dimensional exponent,
let us assume that we need at least a decade in
temperature (i.e. , from 10 to 10 ) before the
system deviates from the d-dimensional behavior
by, say, lo%%d . Thu sw erequir e that

To.xo
—Tc(0) -o

T.(o)

where To 0&~ represents the temperature at which
the deviation from two-dimensional behavior is P
percent; e.g. , T, pyp

= To gp if the deviation is 10%.
Since To o» is given by Eq. (6. 19) and since for the
d=2 Ising system,
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The authors wish to thank their colleagues R. V.
Ditzian, F. Harbus, D. Karo, and R. Krasnow for
useful discussions throughout the course of this
work, and they wish to express particular thanks
to Professor R. B. Griffiths for several illumi-
nating remarks. In particular, D. Lambeth has
kindly verified the results of Sec. II for the planar
(D = 2) and Heisenberg (D = 6) models.

APPENDIX: UPPER AND LOWER BOUNDS FOR GENERAL
nTH DERIVATIVES FOR SELF-AVOIDING WALK

PROBLEMS

As mentioned in Sec. V D, although we have not
succeeded in finding bounds for n & 3, we show in
this appendix that there exist both upper and lower
bounds for arbitrary n for a closely related system,
the SAW problem. 3o

For simplicity, we shall consider a SAW problem
on an anisotropic square lattice; the susceptibility
is defined by

—sAw(v) Q Q C((o 1 m

S=O e=O

where the expansion variables are u =- tanh4/hT and
v= tanhRJ/hT, and C—,

' is the number of self-avoid-
ing walks with l horizontal bonds ("u bonds") and
m vertical bonds ("v bonds").

The nth derivative with respect to v=- tanhRJ' is

(o)»"x"'( )

)X nI ev"

=QC1u)u' .
S 0

(A2}

dent upon the quantity being measured; i. e. , for a
different physical quantity, Ts.s)s may well differ.
One example of this is the specific heat. At high
temperature [T& T,(R), H = 0] it is clear from line
3 of Table I that the first-order correction term
(6/sR)C„(R) is zero, and the second-order deriva-
tive may be diverging less strongly than }is(0) (cf.
the discussion in Sec. VIB). Hence, the cross-
over into the three dime-nsional region for the
sPecific heat may occur for a much smaller value

of e.
Note added in proof. Very recently L. J. de

Jongh (private communication) has confirmed the
utility of the relation (6. 19) for the quasi-two-
dimensional ferromagnetic compound
(C„Hs„,,NHs)sCuC14 with n= 2. This work is de-
scribed in L. J. de Jongh and A. R. Miedema,
Adv. Phys. (to be published). This work also re-
ports "crossover behavior" described by consider-
ations such as those that governed the construction
of Fig. 6(c).
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(with n vertical bonds) go from one "layer" to an-
other without ever returning to any layer that has
been passed; an example is shown in Fig. 7(a).
Others of the SAW paths will return to a given lay-
er or layers, as shown in Fig. 7(b). If we ignore
all paths of the second type, we can obtain a louver
bound on C „andhence a lower bound on }t ""(R
=0). However, the paths of type one are simply
the set of paths which, starting from the origin,
take a self-avoiding walk of mo steps in the layer
a=0, then takes a step to the second layer a=+1,
and takes another self-avoiding walk of m, steps,
then another step to the next layer, and so on. Note
that the number of steps in each layer mi, might
be zero, and that the first step out of the layer z = 0
can be to either of tzoo layers. Thus we have the
simple inequality, for n & 1,

00 40 n

)('."'(o=o) o r . .. r o c.'" ') .
mo=o m&=O i=o

where C'".' is the number of self-avoiding walks of
m; in the d-dimensional lattice forming the "lay-
ers" (here d = 1). Since the number of SAW steps
taken on the ith layer, m;, is independent of the
number of SAW steps on the jth layer ( i' ), it is
straightforward to evaluate the expression of (A3),
with the result

(AS)

x

FIG. 7. {a) and {b) are contributions to the SAW prob-
lem where {b) does not contribute to the lower bound.
{c)and {d) are contributions to the upper bound of Eq.
{A6) that represents overcounting of configurations {neither
walk is self-avoiding). See the discussion in the Appen-
dlX.

Now some of the SAW paths contributing to C "„' —SAW(0) & 2[
—SAW

]
n+1

(A4)
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To obtain an upper bound for )(„""(R= 0), we shall
consider the following type of path. Starting from
the origin, we first take a SAW of ~0 steps in the
zs =0 layer, then take a single step (through a v

bond) to either the layer above (z, = z, + 1 =+ 1) or
the layer below (z, =zs —1 = —1). In the layer z; we
take another SAW of m& steps, and then we proceed
to another layer —either the Layer above or the Lay-

er below. We take another self-avoiding walk in
the new layer, but we assume we lost all memory
of previous self-avoiding walks in that layer. We
thereby overcount the number of self-avoiding
walks, in the sense that although we include all
SAW's contributing to (Al), we also include numer-
ous paths that are not allowed. Thus we obtain a
rigorous upper bound to y„",

00 00 n

a" r. " I: IIc'" ')- ' (a=oI, tAg
m0=0 m„=0 &-0

where the factor 2" arises from the fact that we may
have two choices for each step from layer z, to the next
layer. Evaluating the expression on the left-hand
side of (A5), we finally obtain the desired result:

2n[ 1sAw]n 1) )(sAw(R 0) (A6)

One can compare the results for )('„""(0)in (A4)
and (A6) with the results tabulated in Table I for
)(„(0),and the forms of the upper and lower bounds
are similar to each other. In particular (A4) and

(A6) yield the exponent equality
SAW

y
SAW +~y SAW (AV)

consistent with the scaling predictions.
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