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A linked-diagram perturbation expansion of the linear half-filled-band Hubbard model is
developed and carried out through seventh order. The zero-order Hamiltonian is taken to be
the intrasite Coulomb repulsion terms, and the perturbation is taken to be the intersite in-
teraction. The degenerate perturbation theory applied here results in an effective Hamilto-
niandefined on a simple spin space, and is found to consist of terms involving nearest-neigh-
bor, next-nearest-neighbor, and biquadratic spin operators.

I. INTRODUCTION

The Hubbard Hamiltonian has been employed as
a model for the investigation of conditions for fer-
romagnetism ' and for the metal-insulator transi-
tion. More recently the model has been employed

1

in the description ' of the magnetic, electrical,
and optical properties of a variety of aromatic
donor-acceptor and aromatic free-radical salt
crystals. The simplest form of this Hubbard
Hamiltonian for a linear chain is

H=H +V,

where
00 —=I~ a an+ ans ans

ff

(l. 2)
n a

Here a„, and a„, are ferrnion creation and annihila-
tion operators for an electron of spin o on siten.
The parameters I and T may be identified as intra-
site Coulomb repulsion and intersite charge-trans-
fer integrals. Although this Hamiltonian is quite
simple in appearance, accurate solution for the
thermodynamic properties has proved difficult.

In the organic crystals referred to in Refs. 3 and

4, the aromatic rnolecules are planar and form
linear stacks. Since the intrastack-charge-trans-
fer matrix elements are much larger than inter-
stack ones, a one-dimensional treatment is in or-
der. A number of different cases arise. For free-
radical salts each site may have a single unpaired
electron and the half-filled-band (i.e. , "valence"
electrons and sites equal in number) Hubbard mod-
el applies. For the case of sufficiently strong
donors and acceptors the ground state may primar-
ily consist of alternating donor cations and ac-
ceptor anions; in this case the half-filled-band
Hubbard model also applies, although an "orbital
energy" alternating down the chain should be intro-
duced. In other cases, not of interest here, par-

tially filled Hubbard models apply. Further, evi-
dence indicates" that the magnitude of the charge
transfer interaction T is typically a small fraction
(- ~~) of the Coulomb repulsion I.

Here we consider a perturbation expansion for
the linear-chain Hubbard model with the same num-
ber of electrons as sites. We treat the intrasite
repulsions of H as the zero-order Hamiltonian
and the electron-hopping term V as the perturba-
tion, so that the expansion applies in the case
IT I «I. The zero-order ground state with one
electron per site has a high permutational degener-
acy. For small intersite interactions T and low
temperature (as compared to I) we then expect low-

lying states arising from the zero-order ground-
state eigenspace to describe accurately the thermo-
dynamic properties. Thus we apply degenerate
perturbation theory to only those states arising
from this ground-state separated-atom limit. This
perturbation formulation should be adequate for the
description of molecular crystals referred to above,
though it will apparently give information only on
the insulator side of any metal-insulator transi-
tion. Further, this perturbation expansion does
not provide conditions for ferromagnetism, since
as seen below it always predicts exchange inter-
actions of antiferromagnetic sign in its region of
applicability,

Here we employ a perturbation expansion which
is described by des Cloizeaux' and Klein and which
is equivalent to those described by Buleavski and
Primas. The perturbed eigenvalues are to be ob-
tained through the diagonalization of an effective
Hamiltonian defined on the zero-order eigenspace.
Expansion of this effective Hamiltonian through a
given order and truncation yields, after diagonaliza-
tion, eigenvalues accurate through the given or-
der. Through second order this effective Harnil-
tonian is of the form of the Heisenberg spin Hamil-
tonian with nearest-neighbor interactions, as is
evident from Anderson's superexchange derivation.
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Through fourth order this effective Hamiltonian is
of the form of a Heisenberg spin Hamiltonian with
nearest- and next-nearest-neighbor interactions.
Here we develop the perturbation-expansion tech-
niques and carry out the expansion through sixth
order where a Heisenberg spin Hamiltonian with
nearest- and next-nearest-neighbor interactions
along with three types of biquadratic spin inter-
actions is obtained.

The perturbation expansion of the Hubbard
Hamiltonian thus provides a model treatment of
weakly interacting sites and the derivation of a
Heisenberg spin Hamiltonian. A variety of tech-
niques applicable to spin Hamiltonians can hence
be applied in approximating the thermodynamic
properties of the Hubbard Hamiltonian at low tem-
peratures and small intersite interaction. In par-
ticular, numerical solutions may be carried out
on longer finite chains since the dimension of the
spin Hamiltonian space is much less than the di-
mension of the full Hubbard space. Thus it is
anticipated that finite chain calculations on Hub-
bard models which have been carried out for
cyclic chains of six and fewer sites may be ex-
tended to chains of up to 12 sites via the perturba-
tion expansion given here. Although' "it is not
easy to unambiguousIy extrapolate these results
for finite systems [of six and fewer sites] to the
infinite system, "the calculations of Bonner and
Fisher" indicate that results for chains of 12 and

fewer sites should be quite adequate to make use-
ful extrapolations. We then expect such an extrap-
olated perturbation technique to yield reliable re-
sults for small T/I at temperatures much less than
I. Indeed such a perturbative treatment may yield
more reliable results than a number of other'
approximate many-body techniques. Finally we
note that while there are exact results" available,
they apply primarily to zero-temperature proper-
ties (and hence, may be employed as a partial
judge of various approximate treatments).

Section II presents the perturbation theory and

develops the forrnal expansion through seventh or-
der. Section III presents a diagrammatic repre-
sentation of the terms in the expansion which great-
ly simplifies the tedious substitution processes.
Section IV then employs the diagrammatic repre-
sentation to evaluate the expansion. Appendices
A-C outline intermediate steps, prove several
theorems about diagrams and evaluate the diagrams
in terms of the more usual spin and permutation
operators on ordinary spin space. Finally, Sec. V
discusses the results and indicates the extension of the
present techniques to more general Hamiltonians.

Hermitian projection operator onto the zero-order
eigenspace with eigenvalue E,

H O' =O'H =E 6' (2. l)

As the perturbation V is gradually turned on these
zero-order eigenkets evolve. We let 6'be the idem-
potent and Hermitian projection operator onto the
space spanned by the perturbed eigenkets which
evolved from the zero-order eigenspace. Then
assuming every perturbed eigenket has nonzero
overlap with the zero-order eigenspace from which
it evolved, we may express the perturbed eigen-
kets of interest in the form (PIE), where IE) is
contained in the zero-order eigenspace and E is
the perturbed eigenvalue. We have

(2. 2)

and

s'Hs's" ~E&=Ea'tP6" ~E&.

According to Kato' the nth-order term in the ex-
pansion of 4' 6'6' is

(2. 3)

(n)
(+ (P6' )™=-Z (kq, ko, . . . , k q)

a (n-1)

and the nth-order term of /J' (H —E )/y/y is

(2. 4)

(n-1)
[(Po(H —Eo) 6'Q~"'= Z (kq, ko, . . . , k„~). (2. 5)

gr (n-1)

(0)—
~o

l(E H)
(2 7)

and go'"&'
&

denotes a sum over all sequences of non-

negative indices k„k~, . .. , k which sum to n.
Kato's expansion yields an effective Hamiltonian

5' (H -E ) /J'/f' with a nonidentity effective overlap
Also, truncation of these effective opera-

tors at a given order sometimes yields a problem
in which the wrong N-dependence of the eigenval-
ues is obtained. These problems are avoided if
we eliminate the effective overlap operator, as
described by LNvdin, 1 to give a new effective
Hamiltonian problem

~ IE') = (E -E') IE'&, (2. 8)

where IE')=(5' d'+ )' IE) and

Here we have defined

(ki, ko, . . . , k„ i)-=(P VS "&' VS o' V VS &-i' Vs',
(2 6)

II. PERTURBATION THEORY
o~ o o

((pOp~O)1/Z ( E ) ((pO(pyO)1/2 (2. 9)

We first consider the general perturbation for-
malism. We define 6' to be the idempotent and

The nth-order term in the perturbation expansion
of l/(s' 6'6' }" is
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g) Pt

1 g(P f)1 g ( ) Z (s)os)&po) &m)+))
(&p'&p&p') '~ '

X(&po&p&po) &mb) ' ' ' (&pO &p&po} &~)+1) (2. 10)

operators into spin operators and then permutation
operators using the results of Appendix A. To aid
in this complex substitution process we first intro-
duce some additional concepts.

Substitution of the terms (2. 4) into (2. 10) followed
by substitution of the terms (2. 5) and (2. 10) into
(2. 9) yields the terms of the formal perturbation
expansion of the effective Hamiltonian X.

For the Hubbard model the zero-order Coulomb
repulsion interaction IIO of (1.2) has eigenvalues
mI, where m is the number of doubly occupied
sites. Hence, the ground state has energy E = 0
corresponding to single occupancy of every site.
The perturbation V connects ground-s&te con-
figurations only to states with one double occupan-
cy (and one vacancy); these ionic states are not
in the zero-order ground-state eigenspace, so
that

III. X OPERATORS, DIAGRAMS, AND THE LINKED
EXPANSION

We define

tX„-=~~ a„a,. (3. 1)

which transfers an electron from site j to i (or
gives zero). The fermion anticommutation rela-
tions yield

[X&(, X))1=5),x&) —5&) X,) (3. 2)

and these X operators are the basis elements of
the Lie algebra of the unitary group 'u(I)I). Since
the zero-order Hamiltonian and perturbation can
be expressed as

6 VO'=0 (2.11) V= TZ (X~+)+X„+)„),

Similarly, the application of such charge transfer
interactions to any zero-order ground-state ket
any odd number of times will not return it to the

eigenspace. Hence,

(k» k2, . . . , k„)= 0, n even (2. 12)

(k„kz, . . . , k, O, l„l, . . . , l„)=0, m or n even.

(2. 13)
We also readily see that

(k), . . . , k )(l), . . . , l„)
= —(k), . . . , k, 0, l&, . . . , l„). (2. 14)

Also recalling that E = 0 and that the lowest ionic
states have energy I, we obtain

(k), k2, . . . , k„)= (- 1/I) & (1, k2, . . . , k„)
= (- 1/I) & (k), k~, . . . , k„), 1).

(2. 15)
Since the mth-order term $C' in the expansion of
X involves an odd number of V operators when m
is odd, the results in (2. 12)-(2. 14) imply that

X"""'=0 (2. 16)

Using (2. 12)-(2. 16) for the Hubbard model, we
evaluate the expression for even orders,

X")=0, 7C")=(1),

3C& ' = (1, 1, 1)—(1/I) (1, 0, 1),
3C' '= (1, 1, 1, 1, 1)+ g(1,2, 1, 0, 1) + g(1, 0, 1, 2, 1)

—(3/2I) (1, 1, 1, 0, 1)—(3/2I) (1, 0, 1, 1, 1)

+ (2/I }(1, 0, 1, 0, 1) . (2. 17)

The final result is obtained on substituting (1.2)
and (2. 7) into (2. 6), (2. 6) into (2. 17), and then
converting the products of creation and annihilation

H'= ,'IQ (X„'„-—X„„),
(3. 3)

FIG. 1. One-arrow diagram.

the perturbation formalism can also be developed
entirely in terms of these X operators. We further
represent an X&& by an a~row directed from site j
to site i, as in Fig. 1.

A product of X operators may then be represent-
ed by a labeled diagram consisting of the arrows
for the individual X operators ordered such that
if X,&

is to the left of X» in the product then the
first arrow is located above the second in the dia-
gram. An unlabeled diagram consists of a sum
of labeled diagrams all translationally equivalent,
and is depicted by removing the labels from any
one of the labeled diagrams in the sum. Further,
enclosing a set of arrows in a diagram in anti-
commutator brackets indicates a sum over all pos-
sible orderings of the enclosed arrows. Several
diagrams are found in Appendix A, where they are
evaluated in terms of spin and permutation op-
erators. In Appendix B they are further re-
lated to double cosets of the symmetric group,
and a second method of evaluating them is de-
scribed.

We define a product X; & X& & X& &
of X1122 ft n

operators and its corresponding diagram to be
linked if and only if the integers i, j~, i» j» . . . ,
i„,j„cannot be divided into two or more disjoint
sets with each pair i„j~ in the same set. We also
write
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Z(X& &
~ ~ ~ X&~)=

X, &, linked

unlinked .
(3.4)

In this section we find that the effective Hamil-
tonian through seventh order may be expressed as
linear combinations of the permutation operators
on spin space,

A&—= Q [1 —(n, n+ 1)],

A, =Q [1—(n, n 2)]+,

A, =Z [1—(n, n + 3)],

It may be shown that the present perturbation ex-
pansion of the effective Hamiltonian consists only
of linked terms, by which we mean that on sub-
stituting V as in (3. 3} into the expressions for
X'"' only linked n-fold products of X operators oc-
cur, before any commutation or other manipulation
takes place. Alternatively we may describe all the
unlinked terms as canceling. We hence rewrite
Eqs. (2. 1V) as

3C '= Z(l), 'JC' '= Z(1, 1, 1)—(1/I) 2(1, 0, 1),
(3. 5)

R '= Z(1, 1, 1, 1, 1)+ ~ 2(1, 2, 1, 0, 1)

+ 32(1, 0, 1, 2, 1)- (3/2I) Z(1, 1, 1, 0, 1)

—(3/2I) 2(1, 0, 1, 1, 1)+ (2/I ) B(1,0, 1, 0, 1).

It is the canceling of the unlinked terms which as-
sures that the present perturbation expansion
yields the correct N dependence of the eigenvalues
computed from a truncated expansion of the effec-
tive Hamiltonian.

Since 6' is applied to both the left and right of
each term in the perturbation expansion, the total
number of arrows coming into any site must be
the same as the number leaving. Hence, defining
a cyclic diagram to consist of a product of X opera-
tors X&,&, X«, . . . , X&; in any order, we see
that the perturbation is, in fact, composed of
(linked) cyclic diagrams. In the following we will
assume that the application of +0 before and after
each cycle is understood, so that it will not be
written down explicitly.

IV. EVALUATION OF THE PERTURBATION EXPANSION

36'& = - (2T'/I)A, . (4 3)

This result agrees with Anderson and Buleavski.
We next turn to the evaluation of the fourth-or-

der term. Using the linked diagrammatic expan-
sion, we see Z(l, 1, 1}is given as T /I' times the
diagrams of Fig. 3, where theorem A. 2 is used.
Similarly, using theorem A. 3, Z(1, 0, 1) is given
as —T'/I times the diagrams of Fig. 4. Evalua-
tion of these diagrams is carried out in Appendix
C to yield

K' '= Z(1, 1, 1)- (1/I)Z(1, 0, 1)

= (ST /I )A& (2T /I )A-~. (4. 4)

This result agrees with Buleavski.
Evaluation of the sixth-order term employs the

same methods, though the number of diagrams is
greatly increased. For the (1, 1, 1, 1, 1) term of
3C' ' we classify the possible "excitation paths" ac-
cording to the number of doubly occupied sites
after each application of V. This classification is
given in Table I, where the factors listed there
are simply the appropriate coefficients multiplying
the corresponding diagrams. We find that diagrams
of types c, e,g, h, and i as given in Table I have no
linked contribution. Hence,

2(1, 1, 1, 1, 1}

= —(T /I') Z(type a) —(T /2I ) 2 (type f&)

—(Ts/2I')Z(type d)- (T /4I') 2(type f). (4. 5}

The linked portions of the diagrams of types a, b,
and f are given in Fig. 5. We also note that dia-
grams of type d are Hermitian conjugates of those
of type b. The evaluation of these different dia-
grams is outlined in Appendix C. The result is

3t'&= Z(1)

(p0
=g ~'V, , V~' =--Z, 6"VV'.E-H j I

(4 2)

Here we have used (2. 6} and (2. V) and the fact that
V connects ground-state kets only to kets of zero-
order energy I. Using the diagrammatic notation
of Sec. III we find $(1}is —2T /I times the first
of the two-arrow diagrams in Fig. 2. Equation
(A6) then gives us

B&—=Q [1—(n, n+ 1)(n+2, n+ 3)],
(4. 1) Z(l, 1, 1, 1, 1)= —(T /I ) (140A& —36Ag+ 12A~

Bz +[1-(n, ——n+ 2) (n+ 1, n 3)],+
n

B3 2[1—(n=,—n+3)(n+1, n+2)].
I

fbi

l

I

~ll
We first evaluate the second-order term in the ex-
pansion of $C, FIG. 2. Two-arrow diagrams.
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I

I

I

I

I

I

TABLE I. Excitation paths in (1, 1, 1, 1, 1).

Number of applications of
perturbation

2 3 4

FIG. 3. Diagrams appearing in the expansion of
g(1, 1, 1), and an application of theorem A. 2.

—42B,+ 10B3- 10Bg}. (4. 6)

In Fig. 6 we present the diagrammatic representa-
tion of the linked portion of (1, 0, 1, 1, 1). Again
using the results of Appendix C gives

g(1, 0, 1, 1, 1)+g(1, 1, 1, 0, 1)

= —(T /I ){232A, —80A2+ 24A g

—4&B(+ 16B2—16Bg}, (4. 7)

where we have noted that (1, 0, 1, 1, 1) and (1, 1, 1,
0, 1) are Hermitian conjugates. The linked por-
tions of (1, 0, 1, 2, 1) and (1, 2, 1, 0, 1) may be treated
very similarly, since the diagrammatic represen-
tation is as given in Fig. 6 except that the coef-
ficient of the fifth diagram is & instead of &. We
obtain

Z(l, 0, 1, 2, 1)+ Z(1, 2, 1, 0, 1)

= (T /I ){20&A)—64A2+ 16A3 —40B)+&Bp—&Be}.
(4. 8)

Finally, again using the method of Appendix C,
we obtain

2(1, 0, 1, 0, 1)= —(T /I ) {176A i —64A~+ 16AS

—24B + 8B —8B }, (4. 9)

where the diagrammatic representation is given
in Fig. 7. Substitution of (4. 5) and (4. 9) into (3. 5}
gives

Re'= —(T /I }{4AO~ —12A2+ 2B~ —2B2+2BQ.
(4. 10)

We note that the coefficient of A& is zero in $C' '.

V. DISCUSSION AND CONCLUSION

Collecting (4. 3), (4. 4), and (4. 10) together
yields the expansion of 'K accurate through seventh
order:

X={-2(T/I) + 8(T/I) —40(T/I)~}IA i

+{—2(T/I) + 12(T/I) }IA~—2(T/I) I(B)—By+Be)

+ eighth order and higher. (5. 1)

The expansion is expected to yield accurate results
for the low-lying states for sufficiently small T/I.
The result is a spin Hamiltonian containing first-
and second-nearest-neighbor terms in addition to
some small biquadratic terms.

The systematized methods of determining the ex-
pansion as described here have simplified the com-
putation. The various theorems of the appendices

I

I

I
I

I

I

I

I

I
I
I

I

I

I

I

I
1

I-
I

I

ia

I

I

I

I

I
I

I

FIG. 4. Diagrams appearing in the expansion of ~(1, 0, 1).
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6(type e) =

{~
I

~ ~ ~

g. (type b) = ~ ~ ~

&(type() = ~ ~ ~

FIG. 5. Different types of linked diagrams occurring in (1, 1, 1, 1, 1). The extra diagrams not listed are merely
arrow reversals related to those already listed. There is one arrow reversal for each diagram listed except for the
third and fourth diagrams of type b, for which there are three.

provide different approaches to evaluating diagrams
so as to make some internal checks. That the un-
linked terms cancel was also verified by computa-
tion.

The methods are evidently applicable to higher-
dimensional Hubbard Hamiltonians, modified Hub-

bard Hamiltonians, and yet other more general
Hamiltonians. It is to be expected that such tech-
niques should be of use in the derivation of Heisen-
berg spin Hamiltonians. Systematic treatment of
the higher-order terms in such expansions, as is
emphasized here, should often be of interest. In
such more complex situations it is of importance
to distinguish intersite interactions between dif-
ferent pairs of sites, since a term of a low order
in an interaction between two distant sites may

be much less important than a term of high order
in an interaction between two neighboring sites.
We could treat this formally by introducing dif-
ferent dummy perturbation parameters for inter-
actions between different pairs of sites. For in-
stance, for a term in the Hamiltonian associated
with the qth double coset (see Appendix B and
Refs. 19-21) and the double coset symbol D' with

(m, n)th elements D' „, we would identify the per-
turbation order II„~„Xp&, where X~„ is the dum-

+
I

+

+

~ ~ ~
2 I

+'
,

' +

FIG. 6. Linked diagrams occurring in (1, 0, 1, 1, 1).
The unlisted portion includes three arrow reversals for
each of the listed diagrams.

FIG. 7. Linked diagrams occurring in (1, 0, 1, 0, 1).
The unlisted portion includes seven arrow reversals for
each of the listed diagrams.
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my perturbation parameter for interactions be-
tween sites m and n. Further, one may treat
cases with a nonidentity overlap in a similar
formulation. ~

As an example of a more complex situation, we
briefly discuss Anderson's treatment of super-
exchange. Anderson argues that the primary con-
tributions to the effective exchange interaction be-
tween two paramagnetic sites, rn and p, arises
from terms we could describe by diagrams as in
Fig. 2.

These diagrams are associated with the l;inetic
and direct exchange terms. Clearly, however,
we may imagine a wide variety of additional dia-
grams which may be important, if we explicitly
introduce the diamagnetic site (or sites) which
is a mutual neighbor to both m and p. A few such
diagrams are displayed in Fig. 8. Some portions
of these diagrams of Fig. 8 are implicit in Ander-
son's treatment, since the zero-order site kets
employed are not those constructed by merely
orthogonalizing noninteracting site kets, but al-
ready include the effect of some intersite inter-
actions such as the crystal-field interactions.

Finally, we again point out that the Heisenberg
spin Hamiltonian may be somewhat more easily
solved to within a desired degree of accuracy than
the corresponding full Hubbard Hamiltonian from
which it was derived. Some tests of this likeli-
hood, including computations on finite chains, will
be reported in the future.

APPENDIX A: PRIMARY RELATIONS

In this appendix we list some relations among
creation and annihilation operators, spin opera-
tors, and permutations. Most of these are well
known, though a few involving some higher per-
mutations are less familiar. We shall also evaluate
some simple diagrams and prove several useful
theorems concerning the diagrams.

The relations between fermion and spin opera-
tors are

t
Sff = afff)f a„g

n n8 na~

(Al)

(mnpq)+ (mqpn)= (mn) (pq) —(mp) (nq}

+ (rnq) (np)+ (mp)+ (nq) —1.
These relations (A1)-(A3) allow one to start from
the definition (l. 2) of the perturbation V and even-
tually deduce the form of the X', for n ~ 7.

We now indicate the evaluation of a couple of
simple diagrams. First we find that the first two-
arrow diagram of Fig. 2 is equal to

t t
+mn~~nm amoi anfg ano me+ arne ne ns fn5

t t+ am' anB a„lamo+ afft& ang afire am8

=a~~a~~(1 —a«a«)- a~ a ~a„z a«
t t t—a~& a ~a„~a„&+a~&a„z(1—a~ a„8)

= (-,
'

+ S:)(p —S„*)—S.'S-„S.-S'„+ (-,' —S:)(p —S„')
1= P —2' 'Sff

= 1 —(mn). (A4)

Similarly, although somewhat more tediously, we
find that the three-arrow diagrams of Fig. 9 are
equal to

=ano a„o
1- 'g —at a„g

where the last two lines hold if there is only one
electron on site n. We also have relations between
spin operators and permutations on spin space,

(mn) = 28 8„+q

(mnp)=8„' 5„+8„~8q+S~' Sq- 2i5 5„&&8p+g.
(A2)

Further, since the permutational symmetries of
spin space are limited to two-rowed Young dia-
grams, we find linear dependence among permu-
tations

(mn p ) + (m pn ) = (mn ) + (np ) + (pm ) —1,

(Fig. 9)= (np) —(mpn). (A5)

(~,)

m () p

n p

fA~~p

FIG. 8. A fear of the many possible diagrams which
could contribute to the effective exchange interaction be-
tween two paramagnetic sites ~n and p. Separated by
diamagnetic sites n and n'.

To evaluate more complicated diagrams one could
continue with the type of procedure outlined in
(A4), although considerable effort can be saved
through the use of some general theorems con-
cerning the diagrams.

Theorem A. 1. Simultaneously turning a diagram
upside down and reversing its arrows yields the
Hermitian conjugate of the original diagram.

Proof. The proof is immediate on considering
the corresponding X-operator products and noting
&mn Xnm ~

Theorem A. 2. Let wiggly arrows from m to n,

and n to ~ represent any two systems of linked



PERTURBATION EXPANSION OF THE LINEAR HUBBARD MODEL 2243

t

I

I

I

I
AF

I

I

I

p

I

I

I

I
m

'I

I

I

P

FIG. 9. Three-arrow diagrams.

arrows from sites m to n and n to m. Then the
equality of Fig. 10 holds.

Proof. We write the original diagram D as a
product of two operators

D = PmnPnm,

where P „and P~ consist of the X-operator prod-
ucts corresponding to the wiggly arrows from
sites n to m and sites m to n. After application of

Pn site m is vacant and site n is doubly occupied,
so that

tD Pygmy g ~ (a,a, a~ a~ + a~; a~, ani ane)Pmn i

where the second term in parenthesis yields zero
since a - attempts to create a & spin at site n al-

FIG. 10. Theorem A. 2.

though there already is one there owing to the ap-
plication of P

Employing the Fermion anticommutation rela-
tions yields

Y'. r t tD = IPmn ~ (ana ameameana+an&7am&ramaaer)Pnm
0

j.= g PntnXnntXInnPnIn ~

thus completing the proof.
For the following theorem we define a unicyclic

diagram to be a cyclic diagram which has no more
than one arrow coming in and one leaving any site.

Thecn'em A. 3. The diagram obtained on re-
versing all arrows of a unicyclic diagram D with

m n p q FIG. 11. Diagrams used
in the proof of theorem
A. 3.

m n
p q
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d arrows is equal to (- 1)'D.
Proof .The proof is by induction. Equation

(A4) establishes it for the two-arrow case, and

(A5) along with theorem A. 1 establishes it for the
three-arrow case. Assuming that the theorem
holds for the (d —1) -arrow case, we seek to prove
it for the d-arrow case. For d ~ 4 the diagram D
must involve at least four sites, say m, n, p, and

q. Without loss of generality we take these to be
the last four sites involved in D with arrows from
n to m, p to n, and q to p. Six orderings for these
arrows are possible, four of which are depicted
in Fig. 11. The two unlisted orderings differ from
the last two diagrams merely by a reordering of
X „and X~; these two unlisted diagrams are, how-

ever, equal to the corresponding listed diagram
since X„„and X~ commute. The first three dia-
grams of Fig. 11 are expressed via theorem A. 2
as a product of two smaller unicyclic diagrams,
say D& and D2,

D =D~D2.

Since D, involves three arrows in each of these
cases and D2 involves d —1 arrows, we see that
the arrow reversals of Dj and D& are -D& and

( —1)" 'D2. Then, since the arrow reversal of D
is simply the product of the arrow reversals of
D& and D&, the theorem is obtained for these first
three diagrams of Fig. 11. In the fourth diagram
of Fig. 11 we obtain

D=D)-D~,

where D, is one of the first three types of diagrams
and D2 involves d —1 arrows. Noting that the arrow
reversal of D is the sum of the arrow reversals
of D j and D2 and that D& and D2 satisfy the theorem,
the theorem is established for this fourth, and
final, type of diagram in Fig. 11.

Coro/lary. The diagram obtained by turning a
unicyclic diagram with d arrows upside down is
equal to (- l)2D~.

Application of these theorems reduces all the
more complex linked diagrams to products of the
basic two- and three-arrow linked diagrams. Ex-
amples of the application of these theorems are
found in Appendix C.

APPENDIX B: DOUBLE-COSET FORMULATION

In this appendix we outline an alternate manner
in which Hamiltonians such as the Hubbard Hamil-
tonian may be presented. This alternate formula-
tion leads to the perturbation expansion in terms
of products of double cosets of the symmetric group
In this formulation, diagrams are evaluated by
multiplying double cosets, which sometimes is
less tedious.

We first consider a general SchrMinger Hamil-
tonian H and its representation on the antisyrn-

metrized portion of a space t) with a basis of nor-
malized product kets

Here I K; o r ) is a spin-free ket for the elec-
trons assigned to site m in the site configuration
K„; also !K; o r & transforms as the r row of
the 0, irreducible representation for the symmet-
ric group 8 &, of permutations on the spin-free
electron indices assigned to that site. The ket
[o & is an N-electron spin function. We also make
abbreviations

K —= gK a'-=g a,
(82)

We identify ~ as the permutation group which
transfers no electrons among sites once they are
assigned to sites as in IK; o r& Letti.ng

Z (-1) PeP1
Nf ~g (83)

denote the antisymmetrizer for the total N-electron
system, we define the effective Hamiltonian

f I"f I+ &/2

ff,«= Z Z Z ~! — ~K', oor&
I(ozp o o g p' gg+ r e r

~o ~0' 1/2

=Nf p &
— v K; &r ~H K~; u~r

(85)
if we assume the orthogonality conditions

&K'; o'r'~K'; a'r "&

=5(K, K )5(o, a )5(r, r ) (86).
Here we assume (86), regardless of the number of
electrons assigned to the various sites.

We shall employ the double coset decomposition
of S„with respect to & and ~'+ on the left and
right,

s„—Qo+ goG so'

Here G, is a generator of the qth double coset
8 G, S+, and each element of ~„ is contained in
one and only one such double coset. It may be
shown' that

x(K"; a'r'~e (Ko;,or&~aH
~

K'; o' r'&, (84)

where g and g are the orders of ~ and S . We
0

note (K; o r ! aH !K2'; o+r+& is an operator on
spin space. Matrix elements of H,«over basis
kets such as (Bl) are of the form
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H. =» . I
&'&& o'I "'

o0

+PP &/P
( 1P, +T Z Q Z (- 1) ~ "[N (N„+1)]

I0,e~' m n=m~&

=6(o. , a~) 5(K, K )e (BQ)

which results on assuming strong orthogonality be-
tween kets on different sites. Diagonalization of
H,«on the product basis thus yields the desired
energies.

For the Hubbard model we consider only ground
states of the various sites with zero, one, or two
electrons. The two-electron state is taken as a
singlet. In this case, all e are one-dimensional
so that the ~ index does not occur, and all the K
are in one-to-one correspondence with an 0. , so
that K may be suppressed. Further, the matrix
elements which arise are assumed to be given as

&~p IG, lf I

op &=5(q, o)m, pf+5(q, -)T. (B10)

Here 5(q, 0) is zero unless q = 0, the identity double
coact with no arrows in its diagram; m 0 denotes
the number of doubly occupied sites. Also 5(q, -)
is zero unless exactly one electron is transferred
by G, from a site in I nP& to a nearest-neighbor site
in I n ). The effective Hamiltonian for the linear
Hubbard case thus becomes

xZ(K'aS IGHIK'aS&e„ppGey(y
(B8)

where d, is the order of the intersection S AG, ~

G, and 5 denotes the representation of & conju-
gate to 0.' . The group algebraic elements e-„0-0
are matric basis elements with e 0 0 being a primi-
tive idempotent projecting the symmetry 5 f' of

Further it may be shown that the double
cosets of (B7) are in one-to-one correspondence
with the possible patterns in which electrons may
be transferred among sites. Thus if G, transfers
D'„electrons from site n of ~ to site m of 8,
then the double coset 8 G, ~+ is identified ' by
a pattern with D'„arrows directed from site n to
site m.

Substitution of (B8) into (B4) yields an effective
Hamiltonian expanded in terms of double cosets.
Matrix elements of H,«over a basis of product kets
are the same, up to proportionality, as the matrix
elements of H over the antisymmetrically pro-
jected components of these same product kets.
The N! (f'f' /g g )'/ factor is introduced in
(B4) on account of the normalization of the anti-
symmetrically projected kets

fa a+ 1/2
&K'; a'r'I a IK~; a"r"

&

xl a &&o,
'

Ipp e' G~.„e . (Bll)

I
0) &0 l(1 —(mn)), (B13)

in agreement with (A4). Similarly we may treat
the three-arrow diagram of Fig. 9,

(1 2)"'(2 2)"'(2 ~ 1)'" lo&&m-p
I
(.n-n)-p&

x&m n lm-n)&0 I

m p (m- -p m- 0

=4lo)(OIIse e

=
I o& (o Ia (1-(mp))(1-(mn)]

=
I
0) & 0 let (1 —(mp) —(mn) —(mnp))

= Io&(o le(( p)-( p )], (B14)

where (m-n)-P is the configuration differing from
m -n only in having electron m transferred from
site n to site p. The result (B14) checks with (A5),
although the procedure here is less tedious.

APPENDIX C: DIAGRAM EVALUATIONS

In this appendix we illustrate the evaluation of
several types of diagrams which appear in the
fourth- and sixth-order expansions. First we con-
sider the cyclic four-arrow diagrams appearing

Here we have noted that'

(gPgP /d „)'/'= [N (N„+ 1)]'/', (B12)

with N and N„ the numbers of electrons on sites
m and n in I a ). Typically we may pick the G

to be the identity, since I m n) has one electron
more on site n and one less on site m than does

I n'&.
In a perturbation expansion of H,« treating the

I term as the zero-order Hamiltonian we now iden-
tify the diagrams as described in Sec. III as prod-
ucts of double cosets. We illustrate some of these
ideas by evaluating a couple of basic diagrams. We
denote the zero-order choice for n by 0, and as-
sign electron m to site m in I 0). A configuration
differing from I 0) only in that an electron m is
transferred to site n is denoted I m-n) We .note
that e = 1 and that e " is a singlet projector for
electrons m and n. For the simple two-arrow dia-
gram of Fig. 2 we thus obtain

(1 2) / (2 1) / IO)(m-n lm-n)&0
I

se e "e "e' =2
I
0)(0 le
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in g(l, 1, 1). Using theorem A. 2 on the diagram-
matic representation of 2(1, 1, 1) yields the result
of Fig. 4. Now since the upper and lower three-

arrow diagrams on the right-hand side of the equa-
tion in Fig. 3 are evaluated using Eq. (A5) along
with theorems A. 1 and A. 3, we obtain

1
(Fig. 3) = —Q ([(n + 1, n + 2) —(n, n + 1, n+ 2)] [(n+ 1, n + 2) —(n, n+ 2, n+ 1)]+[(n, n+ 2, n + 1)—(n, n + 1)]

x [(n, n+ 1, n + 2) —(n, n+ 1))+ [(n+ 1, n+ 2) —(n, n+ 1, n+ 2)] [(n, n + 1, n+ 2) —(n, n + 1)]

+ [(n, n+ 2, n+ 1)—(n, n+ 1)][(n+ 1, n+ 2) —(n, n+ 2, n+ 1)]j
= 4Ai-Aq. (Cl)

Here we have multiplied out the permutations,
used Eq. (A3), and collected terms.

Next we wish to evaluate the linked portion of
(1, 0, 1), as given in Fig. 4:

(Fig. 4) =Z ([1—(n+ 1, n+ 2)] [1—(n, n+ 1)]

+ [1—(n, n+ 1)] + [1—(n, n + 1)][1—(n+ 1, n + 2)]}

—72B i+ 24B2 —24B~, (C3)

Z(type f}= 2A~- B&.

Substitution of (C3) into (4. 5) yields (4. 6). If we
identify the first five diagrams of Fig. 6 as D&,
D&, D3, D4 and D5, then the present methods yield

D&+Dz+D3+D4+D j+D2 +Dg +D4

= 4A(-A2. (C2} = 46A~ 12Az+ 2 A3 8Bg (C4)

Here we have again used Eq. (A3).
On using similar techniques, the sixth-order

diagrams of Fig. 5, as appear in Z(1, 1, 1, 1, 1),
become

Z(type a) = 48A~- 12Az-2B, —2Bz+ 2B, ,

Z(type 5)+ Z(type d) = 168A, —48Az+ 24A,

and

z(DS+D5}= 12A& —8A2+ 4A& —4B&+ 4B2 —4B3.
(C5)

Addition of (C4) and (C5) then multiplication by
four yields (4. 7). Addition of (C4} and —,

' of (C5)
followed by multiplication by four yields (4. 8).
Similar techniques may be used to evaluate (4. 9).
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