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Results of lattice-dynamical calculations are presented which support the view that the ferroelectric

phase transition in gadolinium molybdate (GMO) arises from the softening and ultimate instability of a

doubly degenerate zone-edge mode of the high-temperature paraelectric phase. We have used a rigid-ion

model in which the short-range force constants are obtained from a detailed knowledge of the crystal

structure together with the conditions imposed by the requirement that the crystal must be in static

equilibrium under the combined influence of both Coulomb and short-range forces. Our results show

that this type of approach is very useful when one is dealing with complex structures such as GMO,
which has thirty-four ions per unit cell in the paraelectric phase. In view of the simplicity of our

model we are able to obtain a surprisingly good correlation with experimental results. In particular, our
calculated zone-center frequencies reproduce the basic features of the observed Raman spectrum.
Dispersion curves are presented which show a pronounced softening of two phonon branches which

become doubly degenerate at the M point. This result is in agreement with the results obtained by

inelastic neutron scattering. The displacements associated with the soft M-point modes correlate with

the difference in the structures of the high- and low-temperature phases determined by x-ray diffraction.

This provides further evidence that the ferroelectric domains in GMO are to be interpreted as
"frozen-in" soft zone-boundary modes of the paraelectric phase.

I. INTRODUCTION

Gadolinium. molybdate [Gda(Mo04)~ or GMO] was
found to undergo a ferroelectric transition at 159 'C
by Borchardt and Bierstedt. ' Subsequent studies
of this transition by a number of workers have
shown that it possesses some very unusual prop-
erties. Particularly remarkable is the essential
absence of any dielectric anomaly. The clamped
dielectric constant shows no temperature depen-
dence while the free crystal exhibits only a small
peak at the transition temperature. ~ At the same
time, there is a large anomalous elastic behavior
which occurs for temperatures T & 159 'C. How-

ever, this anomaly, as does the peak in the free
dielectric constant, vanishes suddenly when T ~

159 'C.
Detailed x-ray analyses of the structure of ferro-

electric (f. e. ) phase of GMO have been performed
by Keve et al. and Jeitschko, ' while Jeitschko
has also made similar studies on the paraelectric
(p. e. ) phase. The transition is accompanied by a
structural change from P42,m with two formula
units per unit cell for p. e. GMO, to Pba2 with four
formula units per unit cell for f. e. GMO.

The fundamentally new aspect of this transition
is that the instability in the p. e. phase results from
a softening of a doubly degenerate phonon mode at
the zone boundary. This was suggested indepen-
dently by Pytte, ~ Levanyuk and Sannikov, s and
Aizu, who observed that such a soft M-point mode
would account for the observed doubling of the unit
cell. Subsequent neutron- scattering measurements
of Axe et al. ' and Dorner et al. "have shown that

this is indeed the case. In the latter paper, "dy-
namical structure analysis was used to examine
the relative magnitudes of those eigenvector com-
ponents which are not fixed by symmetry alone. '
In this way a linear combination of eigenvectors
for the degenerate M-point modes was determined
and it was found that the associated displacements
could describe the differences between the struc-
tures of the two phases.

These authors were also able to explain the ap-
pearance of polarization in terms of an order pa-
rameter which is proportional to the soft-mode
amplitude and which is anharmonically coupled to
the macroscopic strain. Since the crystal is pi-
ezoelectric, this in turn produces a spontaneous
polarization.

The anharmonically induced strain due to a spe-
cific soft mode depends upon the "direction" of the
mode in the degenerate "plane" of the two soft-
mode eigenvectors. From Eqs. (13) and (11c) of
Ref. 11, the strain is proportional to g, sin2$+
g«, ~ cos2$, where P is a rotation in the degener-
ate "plane" and gal, , and ge ~ arecoefficientswhich
describe the anharmonic coupling. If we replace
p by ft)+2 mthis evidently changes the sign of the
strain, and thus, domains of opposite strain (polar-
ization) in the f. e. phase must correspondto orthog-
onal eigenvectors of the degenerate soft modes in
the p. e. phase. This point was first discussed by
Axe et al. ' However, the subsequent discussion
in Ref. 11 is somewhat obscure on this point since
it appears that setting @ = 0 and fitting Jeitschko' s
data for one polarization do not allow for switching.

We have also found that this type of ft) dependence
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in the strain (polarization) is necessary to account
for the observed differences between the f. e. and

p. e. structures. Furthermore, we conclude that
as the transition occurs the crystal "selects" a
pa&inclar set of orthogonal eigenvectors from the
degenerate "plane" and the displacements asso-
ciated with these special eigenvectors are "frozen"
into the structure. Again, this is not immediately
clear from the discussion in Ref. 11 because of the
assumption that P =0. However, if the form of the
free energy given by Eq. (14) of Ref. 11 is retained
then the coefficients of the fourth- and sixth-order
terms are functions of P such that they are invari-
ant if P is replaced by (P+ 2 v). A particular set
of orthogonal eigenvectors for which the associated
displacements become one of the four observed
ferroelectric domains is given by P = Q, where
P„ is the value of P (at the transition temperature)
for which the free energy is a minimum. The four
domain structures thus correspond to P„, P + & m,

+m, and Q + —,'n, For P=Q„or (Ij) +m the do-
mains have polarity (strain) +P,(+u ) and the @
+ —,'v and P + fv domains have polarity (strain)
—P,(-u~). These possibilities account for the un-
usual switching mechanism in GMO and lead one to
consider the possibility of domain walls between
regions of like polarity. '

Our calculations are based on a rigid-ion model
in which short-range interactions between the gado-
linium ions and their seven nearest-neighbor oxy-
gen ions are included and similar interactions be-
tween the molybdenum ions and their four nearest-
neighbor oxygen ions are also taken into account.
Our approach requires a detailed knowledge of the
crystal structure. Given this and the magnitudes
of the ionic charges, we obtain certain equilibrium
conditions, which specify the first derivatives of
the short-range potentials. Three other param-
eters (two of which are second derivatives of the
short-range potentials and the third of which mea-
sures the ionicity of the molybdate group) are ob-
tained by a partial fitting to the observed Raman
spectra.

In Sec. II we give a detailed account of the model
we have used and present an overall comparison
of the observed Raman spectra with theoretical
predictions. In Sec. III phonon dispersion curves
are presented which show a pronounced softening of
the two modes that become degenerate at the M
point. We then list and discuss the eigenvectors
and the associated displacements of these soft
modes and relate them to the structural differences
between the f. e. and p. e. phases.

II. RIGID-ION MODEL FOR PARAELECTRIC GMO

We regard p. e. QMO to be an array of point
charges of magnitudes z«e, zl,e, and zoe, for the
gadoliniums, molybdenum, and oxygens, respec-

TABLE I. Positions of the ions in the p. e. (183 'C)
phase as determined by Jeitschko. The coordinates are
given with respect to the primitive axes of the p. e. phase
and are in units of 10 A. The origin is shifted by half a
lattice vector along the x axis from that used by
Jeitschko.

1 —0.23108 0.23108
2 0.23108 -0.23108
3 0.13857 0.13857
4 —0.13857 —0.13857

—0.27996
—0.27996

0.27996
0.27996

Jeitschko's
ion designation

Gd(1)

5 -0.21689 0.21689 0.38087
6 0.21689 —0.21689 0.38087
7 0.15276 0.15276 -0,38087
8 -0.15276 -0.15276 -0.38087

9 0.36965 0.0 0.0
10 0.0 0.36965 0.0

Mo(1)

MO(3)

11 —0.22534 0.22534
12 0.22534 —0, 22534
13 0.14431 0.14431
14 —0.14431 —0.14431

15 0.09530 —0.09530
16 —0.09530 0.09530
17 —0.27435 —0.27435
18 0.27435 0.27435

19 0.20412 —0.00126
20 —0.20412 0.00126
21 —0.36839 —0.16553
22 0.36839 0.16553
23 —0.00126 0.20412
24 0.00126 -0.20412
25 0.16553 0.36839
26 —0.16553 —0.36839

27 0.23266 0.02905
28 —0.23266 —0.02905
29 0.34060 —0.13699
30 —0.34060 0.13699
31 0.02905 0.23266
32 —0.02905 —0.23266
33 —0.13699 0.34060
34 0.13699 —0.34060

—0 ~ 51269
—0.51269

0.51269
0.51269

0.33173
0.33173

—0.33173
—0.33173

—0.31957
—0.31957

0.31957
0.31957

—0.31957
—0.31957

0.31957
0.31957

0.10190
0.10190

—0.10190
—0.10190

0.10190
0.10190

-0.10190
-0.10190

O(1)

O(3)

O(5)

O(9)

tively, where e is the absolute magnitude of the
electronic charge. These are located at the sites
determined by Jeitschko. In Table I we list coor-
dinates for all 34 ions in the unit cell along with the
ion label used by Jeitschko and define another la-
bel k, where k=1, 2, . . . , 34. We take z«=+3 and

zM = 2 4z p and allow z o to be an adjustable pa-
rameter. We then assume that the ions are held
apart by various central short-range forces which
act between the molybdenum ions and their four
nearest-neighbor oxygen ions, and between the gad-
olinium ions and their seven nearest-neighbor oxy-
gen ions.

If the static lattice is in equilibrium, then the
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TABLE II. Coulomb force F~g) on the ions of the p. e.
phase with z=-1. 25. The components are directed
along the primitive axes of the p.e. phase, and are given
in units such that the charge of the electron and the length
10 A are both unity.

Ion

1
5
9

11
15
19
27

7.007
-7.284

0.0
2.746

30.596
—19.383

50.956

Coulomb force F fP)

-7.007
7.284
0.0

-2.746
—30.596

43.969
2.706

8.404
1.020
0.0

—49.489
11.600

—24.723
—18.187

net force on any sublattice must be zero, and the
macroscopic stress due to the short-range forces
must cancel tnat produced by the Coulomb forces
which tend to collapse the structure. To set the
crystal in static equilibrium the short- range forces
must be chosen to satisfy these constraints. Ex-
plicit expressions for these static equilibrium con-
ditions are given by Boyer and Hardy' for a gener-
al rigid-ion crystal. For our model of p. e. GMO
we have eight force constants to be determined
from these conditions. These are the first deriva-
tives of the short-range interatomic potential be-
tween the following ion pairs (we used Jeitschko' s
notation see Table I) Mo(3)-O(9) Mo(1)-O(5);
Mo(1)-O(l); Mo(1)-O(3); Gd(1)-O(9) Gd(1)-O(1)
Gd(1)-O(5); and Gd(1)-O(3).

Unfortunately, this procedure gives 16 linearly
independent equilibrium conditions from which
these eight force constants have to be determined;
14 are obtained from the sublattice equilibrium
conditions and two from the requirements that the
macroscopic stresses be zero. Of the 14 sublat-
tice equilibrium conditions, two are provided by
Gd(1), two by Mo(1), two by O(1), two by O(3),
three by O(5), and three by O(9).

The values of the Coulomb forces E (k) obtained
using zo= —1.25 are listed in Table II. The rea-
son for using this value for the oxygen charge is
discussed below. From the values in Table II it
is clear that the Coulomb forces on the oxygens are
considerably larger than those on the Gd(1) and
Mo(1) iona. The force on the Mo(3) ionsisautomat-
ically zero. (This is because these iona are at the
origin of the 4 operation. ) Thus, we only require
that the short-range forces cancel, or approxi-
mately cancel, the Coulomb forces on the oxygen
ions. We also neglect the conditions for zero mac-
roscopic stress and assume the existence of what-
ever applied stress is necessary to maintain the
experimentally determined lattice constants.

From our restrictions on the range of the short-

range interactions, we find that theO(l), O(5), and

O(9) ions each experience two short-range forces.
For the O(3) ions there are three short-range
forces, two due to Gd(1) iona, and one due to a
Mo(1). However, the two Gd bonds are equivalent
and all three bonds lie in the same plane. Further-
more, the Coulomb forces on the O(1) and O(3) ions
lie exactly in the plane of the short-range forces
and therefore these can be determined so as to can-
cel these Coulomb forces on the oxygens exactly.
The Coulomb forces on the O(5) and O(9) ions lie,
to a good approximation, in the plane of the short-
range forces. (The component normal to the plane
is -3-4% of the total force in each case. ) Thus,
we determine the short-range forces acting on these
ions by requiring that they cancel the components
of the Coulomb force lying in the plane of the short-
range forces.

The resultant short-range forces are listed in
Table III, along with the associated bond lengths,
and are plotted as a function of bond length in Fig.
1.

To perform lattice dynamical calculations we
also need the second derivatives of the short-range
potentials. We have chosen these second deriva-
tives to be the same for all the Mo-O interactions
(PM, ) and also for the Gd-0 interactions (P~~).
The values taken for P„, and PG~ appear in Fig. 1
as the slopes of the plots of P' against bond length.
Clearly, PG~ and PM, can have a fairly wide range of
values and still be within the limits one would ex-
pect from Fig. 1. The final values chosen for PM,
and (II)G~ were determined by fitting to Raman data.
The value of the ionic charge, zo =- 1.25, was also
chosen in this manner. The masses of the ions are
mG~ = 157.0, m „,= 96.0, and m o = 16.0, in atomic
mass units.

In the foregoing material we have described how
we obtain all the parameters necessary to construct
the dynamical matrix of p. e. GMO; namely, the
charges of the ions, the masses of the ions, their
precise locations, and the values of the first and
second derivatives of all short-range potentials,
General expressions for the dynamical matrix of a
rigid-ion lattice' have been programmed for the
computer so that we can treat any structure within
the limits of the rigid-ion model given the neces-
sary input parameters such as those listed above.
This program was used in our lattice dynamical
calculations for p. e. GMO. The eigenvalues were
obtained using a subroutine based on the House-
holder method, which we find is -10 times more
efficient than the Jacobi method. '

In Table IV we list the frequencies of the normal
modes of zero wave vector with the macroscopic
electric field contributions omitted. The non-
acoustic portion of this spectrum of frequencies
is plotted as a histogram and compared with a se-
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TABLE III. First derivatives of the short-range in-
teratomic potential and the associated bond lengths.

Bond

Mo(3) —O(9)
Mo(1) —O(5)
Mo(1) —O(1)
Mo(1) —O(3)
Gd(1) —O(9)
Gd(1) —O(1)
Gd(1) —O(5)
Gd(1) —O(3)

(Same units as those
in Table II)

—83.44
—80.09
—63.55
-53.09
—38.16
-13.92
—27.64
-7.02

Bond length

1.7319
1.7354
1.7385
1.7884
2.2924
2.3287
2.3476
2.4341
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FIG. 1. Plot of the first derivatives of the short-
range interatomic potentials p' as a function of bond
length. P' is measured in units such that the electronic
charge and 10 A are unity. The slopes of the lines are
given by PM', and PQ.

lected Raman spectrum'~ in Fig. 2. The highest
frequencies depend strongly upon PM'„ thus the
value of PM, was chosen so that these coincided
with the corresponding group of peaks in the Raman
spectrum. The values of Po~ and zo were chosen
to fit the lower end of the frequency spectrum to
the Raman spectrum. Specifically, the lowest fre-
quency mode depends upon /GAL and zp in the follow-
ing manner: For any reasonable z» i.e. , —2
& zo & —1 the lower limit of the frequency spectrum
increases with increasing PG~, and approaches a
limiting value which depends upon zo. We find that
the largest limiting value is obtained using zp
= —1.25. For this value of zo and a reasonable value
of Po~ (cf. Fig. 1) the lowest frequency is that
shown in Table IV and is close to the limiting value.

From the results given in Table IV it is clear
that our lowest frequency modes are too low, but
over all, the correspondence between theory and

FIG. 2. Histogram of the frequency spectrum of the
q = 0 phonons of p. e. GMO compared with the x(yx)y
Raman spectrum.

TABLE IV. List of eigenfrequencies of the dynamical
matrix at zero wave vector without the macroscopic elec-
tric field contribution. Frequencies are in cm

0.0
0.0
0.0

20.5
23.4
23.4
37.8
56.5
56.5
65.2
88.0
96.0
96.0

111.1
111.1
118.5
130.4

131.6
131.6
133.1
134.2
154.9
154.9
157.8
157.9
167.8
172.2
172.2
186.2
190.7
190.8
190.8
218.6
218.6

224. 6
236.4
240.7
240. 7
249. 9
278.6
278.6
280.3
288.8
288.8
294.8
295.9
308.0
309.9
314.3
314,3
323.7

333.2
344.7
355.1
355.1
358.3
359.7
362.4
362.4
363.1
397.3
407.1
407. 1
424. 6
424. 6
427. 8
428. 9
455.2

474. 0
474. 0
483.1
484.2
533.7
559.8
745.9
754.9
779.4
779.4
901.8
901.8
903.4
927.6
927.6
935.1
937.1

937.1
941.1
942. 1
944.7
944. 8
944. 9
944. 9
957.6
963.2
966.8
966.8
972.6
977.6
984.2
984.2
998.6

1008.3

experiment in Fig. 2 is surprisingly good, consid-
ering the simplicity of the model that we have used.
We believe that the probable cause of our inability
to fit the low-frequency end of the spectrum is that
we have not included enough short-range interac-
tions to put the crystal in complete static equilib-
rium.

When the macroscopic electric field contribution
to the dynamical matrix is included certain of the
degeneracies shown in Table IV are lifted. The
resultant splitting depends upon the direction of the
wave vector. However, this modification does not
affect the correlation shown in Fig. 2. In particu-
lar, we find that the lowest frequency mode is un-
affected by the electric field contribution.

The comparison in Fig. 2 is not the only one pos-
sible. We could also make comparisons with ex-
perimental spectra obtained for other scattering
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geometries. However, until we know more about
the symmetries of the computed eigenvectors this
would be premature. For the present all that we
can say is that we do not necessarily expect the
Raman spectrum to show all the q= 0 modes and
thus the present comparison is only semiquantita-
tive.

HI. SOFT-ZONE-EDGE MODES

Using e moth del described in detail in Sec. II,
we have computed the phonon dispersion curves for

GMO. The results of these calculations are shown

in Fig. 3.
The important feature of Fig. 3 is the occurrence

ed e .Mof two soft degenerate modes at the zone e ge .
point'; in ac, orf t f these modes our model lattice

ilitis uns a e.t bl Also present is an acoustic instahi x y,
th' ' tability is not as prominent as tha o

th tw e-edge modes. This acoustic insta z x y
f theis probably due to the fact that the frequency of e

1. This can re-lowest zone center mode is too sm . i
suit in acoustic instability. '~ As was mentioned
above we believe this difficulty is probably due to

our failure to satisfy the static equilibrium condi-
tions exactly.

The eigenvectors for the soft doubly degenerate
(
—' —' 0) modes were obtained as follows. A matrix

6 = [D —&»,(I+ 5)I] ' was constructed from the dynam-
ical ma rmt ' D I is the unit matrix, v~ is the low-
est eigenvalue of D (i. e. , the square of the soft-
mode frequency, anand 5 is a small positive number.
One can easily show that if E, is an eigenvector of
D associated with tiie eigenvalue (d„ then E is also
an eigenvector of G with eigenvalue 1 —co25. Since
5 is small, 1/- [&F5 is much larger than the other

G"X will converge rapidly, as n increases, to an
eigenvector associated with this largest eigen-
value. '

Since the two soft modes are degenerate, the vec-
tor X may ie anyw( -X l' anywhere in a two-dimensional" l " ' th hyperspace of eigenvectors. How-

ndever, by starting with two different vectors X a,n
X' btain linearly independent eigenvectors,, weo
G"X and G"X, and from these an orthonorma a-
sis can be cons ruc e .b tructed. Two such orthonormal eigen-
vectors, denoted by S,(k,j) with j= 1 or 2, are list-
ed in Table V.

The displacement of the ion (I,k) due to all the
crystal vibrations is given by

1000.0-- [[ (f, k)~ «, Qe. (k,j~q)Q(j~q(m, )"'
~g

[[C'f&&IR&+A(jll&& (1)xe

60Q.Q. -

O
4J

IJJ 400.0"
CL

0.0-

[»0] M POINT

where e~(k, jlq) is the jth eigenvector of the dy-

Qi q» the complex normal coordinate of the mode
(j( q), x(f, k) is the position of the (f, k) ion, and

m~ is the mass of the kth ion. The factor e'
a.ccoun s ort for the fact that all the components

ItiB im-e, (k,j l q) contain an arbitrary phase factor. &s im-
rtant to note that one must be careful to expresspo an o n

the displacements in a manner consistent wi
definition of the dynamical matrix [see discussion
followin Eq. (38.29) of Ref. 15]. In our calcula-fo owxng q.

in the defini-tions we included the factor e '
in e e ini-

f D ( k k') and for this definition the dis-tlon of D+N q,
lacements are given correctly by Eq. (1).

Combining the contributions due to the (-,', —,', 0 and
the —(-', -'„0) modes, the displacements due to the2y 2y

jth soft mode are given by

(I kj j) [g (k j)Q(j) e[[B(l 0&+ (J&&

+3 "(k j)Q*(j)e '['{""0"] (2)

FIG. 3. Phonon dispersion curves for p..e. GMO,
th vector along the [110)direction. The "curves"with wave ve

ear ancelotted b computer, and therefore, their app
i . Imag-at points of intersection may be a little mxsleading.

inary frequencies are plotted here as negative real.

where p(l, k)=qo x(l, k), qo= (v/[[)(1, 1,0), a is the
are theunit cell side in the xy plane, and S k,j are

eigenvector components.
The normal coordinates may be written Q(j)
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=Q, (j)+fQ3(j), where Q, (j) and Q2(j) are solutions
of the harmonic oscillator equation. Thus, if we
set Q(j) ~1+k, Eq. (2) may be written

$,(l, k~j)~,'~, (cos[P(l, k) —8 (k,j)+d(j)]R (k,j)

—sin[P(l, k) —e (k,j)+ h(j)]], (3)

where we have expressed the eigenvectors in the
polar form S,(k,j)=R, (k,j)e '~~"'~', as they are
listed in Table V.

The soft-mode theory of displacive phase transi-
tions hypothesizes that at the transition the dis-
placements associated with the soft mode (or
modes) are "frozen" or "condensed" into the phase
of lower symmetry. That is, the difference be-
tween the structure of the two phases corresponds
to the displacements associated with the soft modes
in the higher- symmetry phase.

The structure of f. e. GMO has been determined
by Jeitschko. ' He concludes that ferroelectric
switching may be visualized as an application of
the 4 operation, which was a symmetry operation
of the high-temperature phase. Thus, we can de-
termine the positions of the ions in the ferroelec-
trically switched phase from Jeitschko' s values by
performing a rotation of 90' about the x = 4, y = 4

axis followed by a reflection in the z = 0 plane.
The 4 operation may be applied n times, where

n=0, 1,2, or 3, to obtain four different sets of ion
coordinates. Hence, when one subtracts from
these, the coordinates of the ions in the p. e. phase
one obtains four different sets of displacements
denoted by w(l, kin), to be interpreted as arising
from "frozen in" soft modes. In Table VI we list
the displacements associated with the structural
difference between the two phases for the k = 19
and k = 21 ions. These displacements were corn-
puted for zero macroscopic strain, i. e. , the lat-
tice constants of the f.e. phase were taken to be

0 0
a=b=10. 4554 A and c=10.6700 A, which corre-
spond to those of the p. e. phase, insteadof thoseof
the room-temperature phase.

An important feature of the displacements
w(l, kin) is that those associated with an even (or

4(l k)= —aa( (l k(1)+a $ (l kl2) (5)

%e are now free to choose the coefficients a„
~ and the phase angles 6(1), d (2), so that f (l, k)
and g'(l, k) fit the largest components of the dis-
placements j(l, k) and rl'(1, k), for the O(5} ions.
Specifically, if we take a, =8. 5093 A, a~= —1.0088
A, 6(1)=—2. 734', and 6(2)=5.021', then g,(1, 19)
= rl„(l, 19), f, (l, 19)= rl„(l, 19), i;„(l,21)= rl, (l, 21),
and g, (l, 21)= q„(l, 21). The displacements g(0, k)
and g'(0, k) obtained using the parameters given
above, together with the corresponding displace-
ments g(0, k) and g'(O, k), which characterize the
difference in the structure of the f.e. and p. e.
phases, are listed in Table VII for all values of k.
For the other lattice points f(l, k) = (- 1)(l,+ l„)
x1(0,k) with similar expressions for 1'(l, k), r)(l, k),
and g'(l, k).

The differences between the calculated and mea-
sured displacements are displayed pictorially in

odd) number of applications of the 4 operation dif-
fer primarily only in their sign; i.e. , w(f, kin)
=- —w(l, k In+ 2).

For example, using the data given in Table VI,
we find that the angle between w(0, 19I0) and w

(0, 19I2) is 175.1 and the angle between w(0, 19I1)
and w(0, 19l 3) is 174. 2', while the lengths of these
vectors are, respectively, 0.3435, 0.3801, 0.3483,
and 0. 3453 A for n = 0, 2, 1, and 3. This approxima-
tion is not as good for some of the other ions which
have smaller displacements, and is poorest for the
O(9) iona. For k=2'l, which refers to an O(9) ion,
the corresponding angles and lengths are 167.8,
155.3', 0. 1444, 0.0938, 0. 1355, and 0. 0906 A .
Because of the fact that w(l, kin):——w(l, k in+2),
we characterize the "frozen in" displacements by
rl(l, k) = —,

'
[w(l, k I 0)- w(l, k I 2)] and rl'(1, k) = —,

'
[w(l, k I 1)

—w(l, kl3}] and their negative counterparts.
Equation (3) gives the displacements due to one

or other of a pair of orthogonal eigenvectors. How-
ever, these are still arbitrary and we now define a
new pair of vectors:

f~(l, k) =a,(,(l, k~1)+az$ (l, kI2)

and its orthogonal counterpart

TABLE VI. Displacements of the k =19 and k = 21 sublattice ions obtained from the structural differences between the
f.e. phase after g applications of the 4 operation and the p.e. phase. The values listed are those obtained using lattice
constants a=b=10.4554 L and c=10.6700 A. for the f.e. phase. The axes are those of the p. e. phase. Displacements
are in A.

w(0, 19 ) n) w(0, 21 ( n)

0.2772
0.3327

—0.3238
—0.3430

—0.0037
—0.0384

0.0148
0.0178

-0.2027
—0.0843

0.1985
0.0577

0.0384
—0.0148
—0.0178

0.0037

0.3327
—0.3238
—0.3430

0.2772

0.0843
—0.1985
—0.0577

0.2027
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Fig. 4. There are 13 nonequivalent displacement
differences. The measured displacements are
denoted by solid vertical arrows with length pro-
portional to the magnitude of the displacement.
The lengths of the dashed arrows denote the mag-
nitudes of the calculated displacements while their
directions show the directional deviation from the
measured values.

There is clearly a correlation between our cal-
culated soft-mode displacements and those obtained
from the structures of the two phases. There are
some discrepancies; particularly in that the mag-
nitudes of the calculated displacements, other than
those which we fit, are too small. On the other
hand, one does not expect the soft-mode displace-
ments to be frozen into the crystal exactly, owing
to the higher-order effects that are significant at
the transition and which are responsible for the
onset of the permanent polarization. Also the use
of our oversimplified model may be causing some
of the discrepancies.

Perhaps the most important factor which spoils
the correlation is the fact that the f. e. structure,
which we have used to determine q(l, k) and rl (l, k),
was determined at room temperature. Jeitschko
has shown that the structure changes continuously
with temperature from room temperature to just
below 159 C and that about half the change in struc-
ture occurs over this temperature range. ~ For a
better comparison, we really need the structure of
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f.e. GMO at a temperature just below 159 'C. On
the whole however, we believe the present correla-
tion is quite good and provides new insight into the
nature of the transition and the formation and
switching of f.e. domains. '
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