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The transverse and longitudinal intensity spectrum pertaining to the lowest (one-cluster) multiplet of
fhe linear anisotropic spin-ferromagnetic chain is obtained analytically in the absence of transverse mean

exchange (j'+j '=0) and neglecting coupling to higher multiplets. The magnetic susceptibilities, which

have the form of continued fractions, are expressed in terms of Bessel functions. At high fields the

susceptibilities have the form'of quotients of power-series expansion in) /H, where j'is the
transverse anisotropy parameter (j' = (j"—j )/2) and H is the magnetic field. At low field the total
intensity is evenly shared among the energy levels. At zero field the intensity spectra are bounded and

continuous and assume the shape of a semiellipse about the degeneracy point. A magnetic intensity

spectrum of that character has recently been observed by Nicoli and Tinkham in the magnetic salt

CoC1, ' 2H,O.

In a previous publication, ' referred to as II, an
analytical expression was obtained for the energy
spectrum of the lowest (one-cluster) multiplet of
the linear anisotropic spin--,' ferromagnetic chain
in the absence of transverse mean exchange (j'
+j'= 0) and neglecting coupling to other states.

In the present article, an analytical expression
is derived for the relative intensity spectrum per-
taining to the lowest (one-cluster) multiplet in the
absence of transverse mean exchange (j'+j"=0)
and disregarding coupling to higher multiplets.
An intensity spectrum of this character has re-
cently been observed in. the magnetic salt
CoCl& ~ 2H&0 by ¹icoli and Tinkham, and it is
therefore of considerable interest to obtain an
analytical expression for the relative intensity
spectrum.

As discussed in a previous publication, which
shall be referred to as I, the intensity spectrum
falls into two parts. The part corresponding to
transverse polarization is given by the absorptive
component of the transverse dynamical suscep-
tibility,

X", (k, to) = — Q dt exp[i&a(t —t') —ik(x, —x,)}2

(k )

'
d(o Xi. i)(k, (u)

XLs II y g (d g
(4)

As is well known, the poles and corresponding
residues of X,(k, z) and X„(k, z) yield the energy
spectrum and relative intensity spectrum corre-
sponding to transverse and longitudinal polariza-
tions, respectively.

Performing the time integrations in (1) and (2)
by means of the Heisenberg equations of motion
for the spin operators, we can express X,(k, z) in
the resolvent forms

referring to the site indices i and k develop in
time according to the spin-~ nearest-neighbor ex-
change Hamiltonian

N N

$C
' = —2 5 [j' Sf Sf„+—,

' j' (S;S;., + H. c. )]+ yH, Z Sf .

(2)j' and j' are the longitudinal and transverse ex-
change constants, respectively. yHO is the effec-
tive g factor in units of the Bohr magneton p, & times
an external field applied along the z direction.

As in I, it is convenient to introduce the complex
susceptibilities X„(k, z) and X„(k, z) defined by the
spectral representations

x —,
'

&[SI(t), S;(t )]) (I)

Similarly, the part of the intensity spectrum cor-
responding to longitudinal polarization is described
by the absorptive component of the longitudinal

dynamical susceptibility,
N

X'„'(k, ur) = Z ' dt exp[i&@(t —t') —ik(x, —x~)}

x &[Sg(t), S~(t')]) . (2)

and

X,(k, z)= —Z e '"~~ "~'[& (XS' E —z) 'S'„)-
1=1

—&S;(Eo 3C' —z) 'S,t]-
N

X„(k, z)= Ze "'"~ ""[&Sf(K'—Eo z) 'S,')-
—&Sa(EO- &' - z) 'Sf)1

(5)

(6)

In the exact expressions (I) and (2) the square
brackets denote an expectation value in the true
ground state of the system. The spin operators

In order to investigate the intensity spectrum of
the lowest (one-cluster) multiplet, we insert into
expressions (5) and (6) a set of intermediate Bloch
states referring to the lowest multiplet of the
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X,(k, z) = y', (k)*(Z'-z) 'y', (k) (6)

Ising model (i. e. , j'= 0},

yo(k) Q elh[x(+(n 1)s/2j 5+g+ g +
~
0)

(7)
The Bloch states g„(k), corresponding to a single
cluster of n adjacent spin deviations with respect
to the aligned ferromagnetic ground state 10),
have the energies E„=2j'+nyHo (n=0, 1, 2, . . . , H)
and form an orthonormal set, assuming (010)= 1.
a is the interatomic instance and N is the total
number of spins; the angular wave number k runs
over the first Brillouin zone —v/a & k & v/a. Con-
fining our attention to the admixture effects within
the lowest multiplet, i.e. , neglecting coupling to
higher rnultiplets, we get

and

X(k, z)=
0z —Ei— (2j' coska)'

&0 (2j' coska)
~0z ~~5 ~ ~ ~ ~ (10)

Xii(k, z) =

(2j' coska)a

l, 2j' coska)'

+(z- -z)

cof(X' —z) and the determinant det(K' —z) in the
Bloch basis (7), we can show that x, and x„can be
expressed in terms of continued fractions in the

following manner:

and

X (k, z)=4'(k)*[(30'-z) '+(3e'+z) ')0'(k), (9)

m0z —Ee-' ' '

where we have absorbed the ground-state energy
E0 in X' and included z-independent constants in
the definitions of X~ and X„. Expressing the re-
solvent (K' —z) ' as the quotient of the cofactor

By inspection we notice that the poles in (10) and

(11) coincide with the roots in the secular deter-
minant arising from the eigenvalue equation 3C'g
= Ef for the lowest multiplet,

—2j'coska

E-E,'

—2j' coska

—2j'coska

E-Es0
—2j' coska

0

= 0. (12)

The diagonal elements originate from the un-
perturbed Ising model (i. e. , j' = 0); the off-diagonal
elements arise from evaluating the j' term in X'
in the Bloch basis (7). We also notice that the
dynamical decoupling of the states that correspond
to an odd number of spin deviations (the "odd"
states) from the states that correspond to an even
number of spin deviations (the even" states) is
reflected in the two components of the susceptibility.
X& yields the intensity spectrum of the odd states,
and x„gives the intensity spectrum of the even
states.

It is perhaps interesting to observe that since
the unperturbed levels are equidistant the eigen-
value problem corresponds to a harmonic oscilla-
tor with a constant coupling between adjacent
levels. In the well-known Bose representation
of a quantum oscillator, the Hamiltonian for the
odd levels assumes the form

$C,'„= 2j +yH0+ 2yH0btb

—(2j'coska) [(1+5'b) ' '5+ H. c.] . (13)

The structure of (13) clearly exhibits the strong
nonlinearity of the problem.

Returning to the continued fraction (10), it is
easy to show that X~ satisfies the nonlinear differ-
ence equation

(2j' coska) X,(k, z —2 yHO} X,(k, z)

+ (z —E,) Xi(k, z)+ 1= 0. (14)

By means of the substitution

1 Q(k, z)
2j'coska Q(k, z+2yHO} ' (15)

a linear difference equation is obtained for Q(k, z):
z Eo

Q(k, z+2yHO)+Q(k, z —2yHO)= ., ~ Q(k, z) .2j'coska
(16)

The substitution (15) essentially amounts to ex-
pressing x,(k, z) as a quotient of two secular de-
terrninants, as was done in I. The linear difference
equation (16) is then obtained simply by expanding
the determinants in minors.



2202 HANS C. FOGEDBY

As in our analysis of the energy spectrum in
II, a solution is immediately obtained by observ-
ing that (16) is a recursion formula for the solu-
tions to the Bessel equation. ~ The Bessel function
has the appropriate high-field behavior; we obtain

2j' coska
II(k, z) = ~&so-e) l»z

yHO

Hence

1
2j'coska

Z&z~ „l»„(2j'coska/yH, )
X

J&z)o»)lo ) l»zo(2j coska/rHo)

By a similar analysis we obtain

(17)

(18)

X,)(k, z)

J«o, &,»„(2j' coska/rH, )

2j' coska J&zo»„„l»z (2j' coska/yHo)

1 J&zg„»»zo(2j' coska/yHo)
2j' coska Z&zo,o„z „&lo„„(2j'coska/yHo)

(19)
The expressions (18) and (19) provide explicit
forms for XJ and y„ in terms of tabulated function. '
As in II the energy spectrum is obtained by de-
termining the roots of the Bessel functions in the
denominators of pJand X, i. e. , the poles of XJ
and p((. The intensity spectrum is given by the
residues of the corresponding poles in (18) and

(19). Since X) and X, have a similar structure, we
confine our detailed discussion to XJ.

At zero field, the unperturbed Ising levels are
degenerate and the continued fraction (10) for X,
can be expressed in a closed form. Solving (14),
which for Ho= 0 becomes a simple algebraic equa-
tion, we obtain (as in I)

—2

(z —2j')+[(z —2j') —(4j' coska) ]'&

(20)

[(4j 'coska+ 2j' —&d) (&d —2j'+ 4j'coska)j)lo
(4j' coska) o

(21)

The relative intensity spectrum in the zero-field
limit has the shape of a semiellipse centered about
the degeneracy point 2j'.

In order to discuss the intensity spectrum at
finite field, we emphasize that the dimensionless
parameter characterizing the problem is the cou-
pling strength divided by the energy difference
between adjacent unperturbed levels. It is there-
fore useful to introduce the dimensionless param-
eter )) = (2j

' coska)/yHo.
For large values of the field, i.e. , g «1, an

asymptotic expansion in 1/yHo is obtained by doing
perturbation theory in j', as discussed in I and II.
The procedure amounts to terminating the con-
tinued fraction (10) after admixture of a finite
number of higher levels. In terms of the secular
determinant (12), the above procedure is equiva-
lent to diagonalizing a finite determinant, as was
done by Torrance and Tinkham numerica?ly in
their analysis of the energy spectrum and by
Nicoli and Tinkham in their numerical investiga-
tion of the intensity spectrum. An expansion of
pJ in powers of g is readily obtained by means of
the mell-known series expansion of the Bessel
function,

%e get
(22)

X,(k, z) has a branch cut along the real axis ex-
tending from 2j '- 4j'coska to 2j'+ 4j'coska. This
branch cut corresponds to the bounded continuous
energy spectrum obtained in I in the zero-field
limit. The relative intensity spectrum is given by
X", (k, &d) = ImX, (k, &d+ ie). From (20) we obtain

o I ( I)P )} .oo

2yHo „o n t 2 F(n+ (E)—z)/2yHo+ 1) o o p t 2 F(p+ (E)-z)/2yHo)

which expresses X,(k, z) as the quotient of two
power-series expansions on the dimensionless
parameter g. For completeness we note that the
expansions in (23) are convergent for all values of
p and uniformly convergent for all values of z.

Employing the fundamental recursion formula
I'(z+1)=zF(z) for the I' function, we get for )7

=0, X,(k, z) = 1/(E, -z), thus corroborating the
continued fraction (10) for )}= 0.

As in our discussion of the energy spectrum in



INTENSITY SPECTRUM OF THE ANISOTROPIC MAGNETIC CHAIN 2203

Xi (k, cu) x fcos[p, (sinn —acosn) —
& p]+O(p '~'}],

(27)
where 0& o.'& &m and p. & 0.

As in II, the energy spectrum is determined by
the condition

Ju;P, z„„,„)gp„„(2j 'coska/yHp) =0 .
By means of (27), we get

(28}

q(sin8„—8„cos8„)= v(v+ —', ), v = 0, 1, 2, . . . ,
(29}

where we have introduced the notation

~„=2j'-4j'coska (cos8„+ —,'q ') . (30)

7 /
yHp

FIG. 1. Relative-intensity spectrum as a function
of energy and field (arbitrary units).

By expanding (29) and (30) at low field we obtain
to leading order

&u„= 2j'-4j' coksa(1 ——,'[3p(v+ +)] 'ri ' '+O(q ')] .
(31)

As described in II, the energy levels approach the
lower edge of the zero-field band with infinite
slope as a function of field.

In order to examine the intensity spectrum given
by (20) at low field, we introduce the notation

II, the interesting regime is the low-field limit,
where the discrete infinite spectrum collapses to
a bounded continuous spectrum. Since the spec-
trum for nonvanishing field is discrete, y, (k, z)
can be written in the form

and

~ = 2j'- 4j 'coska(cos8+ —,'q ')

~„= 2j*—4j'coska(cos8'„— z' q ') .
By means of (27) we get

(32)

(33)

Xi(k, z) = Z I„
v=o „- Z

i.e. ,

(24)

where

x cos[ri(sin8„' —8„' cos8„') ——,
'

w], (34)

X", (k, &u) = w Q I„5(&u ~„),
v=O

(25) cos~„'=g '+cos~„. (35)

where I„ is the relative intensity of the energy
level „. An expression for I„ is obtained by ex-
panding }(,(k, z) near the pole ~„. From (18) we
get

I„=-— 1
2j'coska

J(zf (a )l p~zp(2j 'coska/yHp)
[(d/d~) Ja.p.p„z ~&yp„s (2j'coska/yHp)]„„„

(26)
In order to discuss the low-field limit we make

use of the following double asymptotic expansion
of the Bessel function4:

J„„(p)= (2/pp, sino)

Examining (34) at low field, (i.e. , about the lower
edge, since v is fixed) we obtain to leading order

I„=2r)-'+ O(r)-4"). (36)

It is interesting to note that the leading term
in the low-field expansion is indePendent of the
quantum number v. The total intensity is shared
evenly among the energy levels in the low-field
limit. However, since the levels converge towards
the lower-band edge in the limit of zero field, the
continuous intensity spectrum at zero field assumes
the shape of a semiellipse.

In Fig. 1 we have sketched the relative intensity
spectrum as a function of energy and field.
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