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Many nonconducting ionic solids with open-shell 3d or 4f cations exhibit magnetic order at low
temperatures. In this paper such ordering is analyzed on the basis of exchange-perturbation theory
applied to a complex of two paramagnetic cations and one diamagnetic anion in different geometric
configurations. The perturbation energy is then summed over all complexes in the solid, for a given
structure and for different spin patterns. The unperturbed Hamiltonian is chosen such that it is
invariant under permutations of all electrons of the complex; the unperturbed ground-state wave

function is an eigenfunction of this Hamiltonian. Full permutation symmetry is thus taken into account
from the outset. On the other hand, space-group (or point-group) symmetry is not considered. An
effective-electron model with four electrons on three centers is used to evaluate the influence of a
diamagnetic anion on the interactions between unpaired electrons of two cations (superexchange). In
addition, the effect of the valence shells of the cations on the cation-cation interaction is taken into
account on the basis of a two-center six-electron model. The perturbation energies are evaluated in first
and second orders, using Gaussian wave functions for the orbitals of the effective electrons. It is found
that the model predicts both ferromagnetic and antiferromagnetic orderings, the type of ordering
depending upon the extensions of the orbitals for the difFerent efFective electrons, the lattice parameters,
and the symmetry of the crystal. It is established that exchange between unpaired electrons via the
anion, when summed over the crystal, generally favors antiferromagnetic alignment of the spins, whereas
indirect exchange via the cation valence shells leads to ferromagnetism. The model is applied to
magnetic ordering in the Mn and Eu chalcogenides. Specifically, EuO and EuS are found to be
ferromagnetic, whereas the remaining Eu salts are antiferromagnetic of the second kind. For the Mn
compounds the indirect exchange via cation valence shells does not affect the stable magnetic structure,
which is then determined by (antiferromagnetic) superexchange. Neel and Curie temperatures for the
Mn and Eu chalcogenides calculated on the basis of this model are in fair agreement with experiment.
A detailed calculation of the coupling parameters J, and J, for the systems MgO: V" and MgO: Mn" is

made and the results are compared both with experiments and with recent configuration- interaction
analyses. The observed positive (ferromagnetic) sign of J, in MgO: V ' is reproduced by the model.

I. INTRODUCTION

The discovery' of ferromagnetism in solid EuO
below 69.4 'K came as a surprise, since ionic
solids with paramagnetic cations are usually found
to be antiferromagnetic at the lowest temperatures,
or to show a more complicated magnetic behavior.
Later, ferromagnetism was also detected with EuS
(Curietemperature To=16.5 K) daGndN(T 6c0 K),
whereas EuSe is ferromagnetic below 2. 8 'K and
antiferromagnetic in the range 2.8-4. 6 K. EuTe
is definitely antiferromagnetic. For a detailed ac-
count of the properties of the europium chalcogen-
ides we refer to recent review articles. ~' As the
solids of high purity are not electrical conductors,
the ferromagnetic coupling at the lowest tempera-
tures cannot be ascribed to indirect exchange via
conduction electrons.

Insight into the possible explanation for the ferro-
magnetic behavior of some of the Eu salts can al-
ready be obtained~ when we consider a reference
anion in the lattice and its nearest-neighbor Eu
cations. The solids of these salts have the NaCl

(Bl) structure composed of two interpenetrating
face-centered-cubic lattices for the two types of
ion. The coordination number of the Bl structure
is six, i.e. , a reference anion is surrounded by
six nearest-neighbor Eu cations. The simplest
possible model to describe magnetic properties
then employs a ferromagnetic coupling parameter
Ji and an antiferromagnetic superexchange cou-
pling Jz via a diamagnetic anion. The observation
that EuTe is antiferromagnetic means that J, varies
more rapidly that J~ in the series EuO, EuS, EuSe,
and EuTe. For this reason one postulates that J,
refers to a direct cation-cation interaction.

There are two well-known versions of a theory
of superexchange, namely, Anderson's "potential-
and kinetic-exchange method" and the application
of the configuration-interaction method by Keffer
and Oguchi. ~ In the first method, the treatment of
superexchange is divided into two steps: First,
localized Hartree-Fock wave functions (Wannier
functions) are constructed for a magnetic electron
on one cation in the field of all anion ligands and of
the other cations, but without considering exchange
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between magnetic electrons on different cations.
In the second step, exchange between two magnetic
electrons on different cations with wave functions
as modified by the lattice is taken into account. If
we assume one effective unpaired electron per ca-
tion, then this treatment of superexchange is re-
duced to that of evaluating the energy of a system
of two one-electron atoms with electron wave func-
tions distorted (polarized) by the ligands. In the
second step of this procedure, therefore, the anions
are no longer explicitly considered, and it is no
longer possible to distinguish between direct ex-
change and indirect exchange (via the anions). Two
types of exchange contribution to the energy of the
system arise, which can be called "ionic" (or "non-
transfer") and "transfer" exchange. The t'irst is
just a consequence of the Pauli principle applied to
the system of two magnetic electrons on different
cations; since Wannier functions at different cen-
ters are orthogonal, this contribution favors par-
allel alignment of the spins ("potential" exchange).
The transfer-exchange terms are of the form
J= —b'/2U, where J denotes one-half of the energy
difference between singlet (antiparallel) and trip-
let (parallel) alignments of the two spine, and where
U(&0) is the energy necessary to transfer a mag-
netic electron from one cation to the other; b is the
corresponding transfer integral. This term, there-
fore, favors antiparallel alignment of the spins (so-
called "kinetic" exchange).

In the application of the configuration-interaction
method to superexchange, on the other hand, a
superexchange unit consisting of two cations and
one anion is considered as a whole. Wave functions
for this system which are eigenfunctions of $ and

S, are constructed as linear combinations of func-
tions for the separate ions, with admixtures of ex-
cited states to allow for virtual electron transfer
of different types between the ions. A variational
calculation is then carried out to determine the
energies for singlet and triplet states, taking ini-
tially one effective magnetic electron per cation
and two spin-paired electrons for the anion (three-
center four-electron system). This method has in
recent years been extensively applied to different
systems by Huang and Orbach. 6 7 In particular,
they studied the effect of nonorthogonality of cation
wave functions at neighboring sites in the lattice on
the sign of the magnetic coupling between them.
This effect was found to be important in the case
of a 90' cation-anion-cation configuration of V '
ions in a weak octahedral field (solid MgO). They
also showed~ that nonorthogonality of cation wave
functions can lead to a reversal of the sign of the
semiempirical Goodenough-Kanamori rules (see,
e. g. , Ref. 4).

Although the Anderson method and the configura-
tion-interaction (CI) procedure have different start-

ing points, the expressions obtained in an applica-
tion to the same physical system are identical to
the lowest order in overlap (in the CI sense) and
transfer integrals. This has recently been demon-
strated by Huang Liu and Orbach~ in an application
to the system of two V~' ions in MgO. We will re-
turn to the results of the CI method, especially in
relation with the sign of a 90' cation-anion-cation
exchange, later on in this paper.

Detailed application to 4f compounds of the above
treatments of superexchange developed for the in-
terpretation of magnetic order in solids with 3d

cations has, so far, not been made. Instead, a
number of different mechanisms has been proposed
in the literature to explain the observed ferromag-
netism of EuO, EuS, and GdN and the transition to
antiferromagnetic behavior for Eu chalcogenides
with heavier anions. Such mechanisms are discussed
in the review articles~ ~ referred to above; they
are either based on a localized description or in-
volve a hybrid model with localized unpaired elec-
trons and a band model for the electrons responsible
for the coupling. It appears, however, that the
agreement with experiment is at best qualitative
and that it is very difficult to reliably estimate the
magnitudes of these effects. In addition, the effects
often involve high orders of perturbation theory,
so that the problem concerning convergence of the
perturbation series may well be a serious one.

The present paper constitutes an attempt to ex-
plain magnetic ordering, and to evaluate transition
temperatures, for nonconducting ionic solids with
3d and 4f open-shell cations on the basis of the
same simPle model. To describe this model, it is
most convenient to adopt a perturbation analysis.
As an unperturbed state of the system we can, in
principle, consider that of the solid in which the
ions interact only due to their net charges. The
zeroth-order wave functions must be symmetry
adapted to both the space group of the crystal and
to the permutation group of the total number of
electrons. Such a complete analysis is difficult to
carry through; instead, we will in this paper re-
strict ourselves to the role of permutation sym-
metry in magnetic ordering. Since we are dealing
with exchange interactions it seems to be a relevant
condition on the model that full permutation sym-
metry be imposed from the outset. Instead of us-
ing, as is often done in the literature, only par-
tially antisymmetrized wave functions, or of in-
corporating the effect of exchange through addi-
tional terms in the Hamiltonian, we thus start with
a fully antisymmetrized wave function.

The analysis presented in this paper is based
from the outset on a superexchange unit of two ca-
tions and one ligand anion, with full permutation
symmetry of the unperturbed wave functions. Ex-
change-perturbation theory provides an appropriate
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simple tool for the evaluation of exchange interac-
tions. Further, in neglecting translational sym-
metry we base ourselves on a localized instead of
a band description.

The complex MXM consisting of two paramagnetic
cations M and one diamagnetic anion X, in different
geometric configurations, is taken as the funda-
mental unit for the evaluation of magnetic interac-
tions and magnetic ordering. In a perturbation
treatment, the total (spin-free) Hamiltonian H for
this complex is written as the sum of an unper-
turbed part Ho and a perturbation H; the part Ho

refers to the isolated ions and H comprises, as
usual, interactions between electrons at different
centers, interactions between electrons at one cen-
ter and the nuclei of the other centers, and nucleus-
nucleus interactions. The condition of full permu-
tation symmetry of Ho (and H ) can be realized' by

a, redefinition (symmetrization) of these operators
such that the antisymmetrized ground-state wave
function is indeed an eigenfunction of the symme-
trized Ho. A complete set of orthonormal antisym-
metric functions can then be constructed by using
the Schmidt orthogonalization procedure. These
functions are, except the one describing the ground
state, generally not eigenfunctions of Ho, although
the diagonal elements of Ho in this basis do corre-
spond to a sequence of energy values for the unper-
turbed system. For details we refer to Ref. 8.

This procedure leads to a Rayleigh-Schrodinger
type of exchange-perturbation theory. A conse-
quence of the formalism is that the permutation
symmetry of the Hamiltonian is not changed (in-
creased) by adding the perturbation. Stevenso has
recently pointed out that this condition may be an

essential one in dealing with exchange in insulators
by perturbation methods.

To evaluate the expression for the perturbation
energy, we adopt the simplest possible model.
First, we use the well-known three-center four-
electron system for superexchange (one "effective"
electron per cation, two spin-paired "effective"
electrons per anion). In addition, we consider in-
direct interactions between paramagnetic electrons
on two cations via their own closed outer shells.
In our model, the closed outer shells of each cation
are represented by two spin-paired effective elec-
trons, so that the valence-shell indirect exchange
is based on a two-center six-electron system. It
has been suggested in the literature by several au-
thors' "that indirect exchange between unpaired
localized electrons via filled valence bands must
be considered for magnetic interactions. The
present representation of this indirect exchange in
terms of localized valence shells avoids using a
hybrid version of such a mechanism.

Direct exchange between unpaired electrons is
also taken into account, although its effect on rnag-

netic stability is generally very small.

II. FORMALISM

We consider a complex MXM of two paramagnetic
cations M and one diamagnetic anion X, in an arbi-
trary geometric configuration. The centers of the
cations are denoted by a and c, the center of the
anion by b. Further, let 8 denote the opening angle
at the site of the anion. The unpaired (3d or 4f)
electrons of each cation are replaced by one effec-
tive electron, the anion shells by two spin-paired
effective electrons. In addition, we replace the
closed outer shells of each cation by two spin-
paired effective electrons. Three types of inter-
action for the complex MXM are considered:

(a) Direct exchange between the unpaired elec-
trons on the two cations. Here, the model is based
on a two-center two-electron system.

(b) Indirect exchange between unpaired electrons
on the two cations via the diamagnetic anion (suPer
exchange). For this effect, we will not consider
the outer closed shells of the cations, so that the
model is based on a three-center four-electron
system. ~

(c) Indirect exchange between unpaired electrons
on the two cations via the closed outer shells of
these cations. This effect will be called indirect
valence-shell exchange and the model is then based
on a two-center six-electron system. ' '

In addition, there occur, inprinciple, cross terms
between (b) and (c) involving both the anion and the
valence shell of one or two cations. In this paper
we will not analyze these cross terms; it is our
aim to establish the magnitudes of superexchange
and of indirect valence-shell exchange separately
and to study their dependence on the geometry of
the complex MXM and on the extension of the orbi-
tals for the different effective electrons. The com-
ponents (a)-(c) of the interaction energy are eval-
uated and added to obtain the magnetic energy for
the triplet and singlet states of the complex MXM.
For the crystal of given symmetry, these interac-
tions are summed over all complexes, for different
spin patterns, and then compared to obtain the most
stable arrangement.

The interactions are evaluated in first and second
orders of exchange-perturbation theory with, for
each ion, the ground-state free-ion wave functions
as zeroth order (no crystal-field splittings). The
zeroth-order wave function for the complex MXM
is antisymrnetric with respect to intra- as well as
inter-atomic exchange of electrons; it is an eigen-
function of the symmetrized unperturbed Harnil-
tonian Ho. The construction of zeroth-order wave
functions for the singlet or triplet can be carried
out straightforwardly by using projection-operator
techniques, '4 "or directly from properties of a
spin-space deterrninental wave function. ' We will
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briefly sketcn the projection-operator procedure
for the three-center four-electron system.

Let p„ ft)„and Q, denote the ground-state orbi-
tals for the four effective electrons; Q, and Q, are
singly occupied, whereas there are two electrons
in (!(,. Consider, on the one hand, the (2 = 16)-dimen-
sional spin space spanned by the four-electron spin
functions $(1) $(2) $(3) g(4), where g can be either
(2 (spin up) or p (spin down). On the other hand,
consider the orbital space spanned by the functions
P!((1,2, 3, 4), where P runs over the 24 elements
of the permutation group 34 and where g = Ps(1)
xps(2) $,(3}((((,(4). The dimension of the space {Pg}
is —,

' 4!= 12 (the one-half is due to the fact that the
orbital Ps is doubly occupied). The 16-dimensional
spin space can be decomposed into subspaces ir-
reducible under the operations of 3&. It is well
known that there exists a one-to-one correspon-
dence between these subspaces and the different
values of the pair S~, S„where S is the total spin
and S, its z component. Select any one of these
subspaces, with orthonormal basis {s(},and let
the corresponding irreducible representation of
$4 be I'. Next, decompose also the orbital space
{Pd into subspaces irreducible under $4. Select
among these subspaces the one (if it exists) whose
corresponding irreducible representation is asso-
ciate to F. Denote by {(!I(}an orthonormal basis in
that subspace. Then, as is easily shown, the func-
tion

+"' = O'X (2)

where 6' is a certain combination of permutation
operators for the four electrons of the system.
For the triplet state (index T}, (P reads

&r ——', (I —Pis —P14)(—I PS4)-
whereas for the singlet state (index S)

(P, = , (I-P„-P„+P,P-„)(i+P„).1

(3)

(4)

(I is the identity permutation; P, / permutes elec-
trons i and j.) The above expressions for (Pr and
(Ps are readily derived from (1), by using the gen-
eral form of the perturbation expressions for the
energy.

)if

1/2 Z $(S(m

where pn is the dimension of F, fulfills the condi-
tions that (i) it is completely antisymmetric, and
(ii) it is an eigenfunction of S and S, .

In this manner, the zeroth-order ground-state
wave function for the four-electron three-center
system (a similar method applies for other sys-
tems) can be explicitly constructed. A simplifica-
tion arises in our case, since the perturbation
Hamiltonian is spinless. Then it is sufficient to
use, instead of (1) above, the function

The formulas for 6'~ and 6'~ in the case of two
centers and six electrons (one effective electron
representing the unpaired electrons of each cation
and two spin-paired effective electrons for the
closed outer shells) are somewhat more compli-
cated, although their derivation is again straight-
forward. These expressions read

&r = (I—P«PSSPSS)[I —2(P12+ P«+ P24)

—Pss+ P(SP40+ 2 (P«P22+ P,S4+ P142

+ Piss + PISS) —P14P2SP50 —P124L

—2P1264 —P1842 ] ~ (5)

8 = (I+ P«P25PSS} [I-2(Pis+ P14+ PS4)+ Pss

+ P(SP40+ 2P14PSS + 4P10PSS+ P14Pss Pss

+ 2(P124+ P«s —Piss —Piss) —4(PssP140

+ PSSP«}+P1240+ 2P1204+ P(042] ~ (6)

The exchange-perturbation method followed is of
the Rayleigh-Schrodinger type, ' i.e. , an expansion
of the perturbed wave function and of the energy in
terms of integral powers of a smallness parameter

The first-order energy, putting A. = 1, is

E,= &e("
~

H'~ e"')+ c„ (7)

and the second-order energy, again for X= 1, reads
E-1 [(y(0&

~
H 2

~

@(0)) (y(0)
~

H
~

@(0))2]~ C

(6)
where E„is an Unsold average energy, defined by
the procedure of averaging over all excited states
for the complex MXM. C& and C~ are correction
terms containing H to higher order than occurring
in the leading term of Ej and E2, respectively;
these terms will be neglected. The perturbation
H is symmetric under permutations of the elec-
trons between the three ions M, X, M. The ground-
state wave function 4( ' is given by (2), with (P the
appropriate projection operator. For the moment,
the Unsold energy will be left as a parameter in the
second-order expressions.

The neglect of crystal-field effects leads us to
using spherically symmetric functions for the un-
perturbed atomic orbitals Q. For simplicity we
adopt a Gaussian form,

y(~) (P/01/2)s/2 e-8 r~/2 (9)

where r is the distance from the effective electron
to its nucleus and P is a characteristic parameter. '7

In the case of a three-center four-electron system
we must use two Gaussian parameters: P for the
diamagnetic anion and P for the orbital of the ef-
fective d or f electron on the paramagnetic cation.
It appears that an essential parameter in the model
is the ratio y= (P /P)2, which is a measure of the
"magnetic size" of the cation with respect to the
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We consider first the exchange interaction be-
tween two 3d or 4f electrons in the presence of a
diamagnetic anion, on the basis of a three-center
four-electron system. Each triplet (abc) of two
cations and one anion is characterized by its geo-
metric configuration; it may form an isosceles
triangle (with respect to the site of the anion) or a
nonisosceles triangle. Let R denote the smaller
of the cation-anion distances and Y (& 1) their ratio.
This yields, in total, the dirnensionless parameters
y, PR, Y, and 8. For each triplet of ions inthe
solid we carry out the calculations of the interac-
tion energy in first and second orders of perturba-
tion theory. The first-order integrals are easy to
compute; those of second order are determined
following methods developed by Zimering. "

I et us denote the interaction energy for a given
triplet (abc) in first order by E, (abc) and in second
order by Ez (abc) In eith. er order, these energies
are evaluated both for the triplet (T) and singlet (S)
configurations of the spins on the two magnetic ca-
tions. The perturbation energies are then denoted
by E», Ear, E», and Z3~, respectively.

The quantity of interest is the "effective" inter-
action between the magnetic ions g and c, i.e. ,
their interaction as modified by the presence of
the diamagnetic anion b Let $&(ac.), hz(ac) denote
this effective interaction in first and second orders,
respectively, with an additional subscript T or S
for the two possible spin configurations. Then we

have, by definition,

8 &(ac) = E,(abc) —[EP'(ab) + E& '(bc)], (10)

where E[0 (ab) is the first-order pair interaction
between a and b; and E&~'(bc) that between b and c,
i.e. , without the presence of the third particle.
No subscripts T or S are needed for the pair inter-
actions E[0'(ab) and Ep'(bc), as these do not depend
on the spin of the paramagnetic cations.

We can therefore write

size of the anion. If y&1, the diamagnetic anion
is "larger" than the cation, whereas for y & 1 the
situation is reversed. For the moment, P and P
are parameters of the model, i.e. , no projection
is as yet made on real systems. For the case of
a two-center six-electron system the Gaussian
parameter for each magnetic electron is again P;
the parameter for the closed outer shells of each
cation is denoted by P, . Then y'= (P /P, )~ is a mea-
sure of the magnetic size of the cation with respect
to the extension of its outer closed shells. Since
the orbitals of 4f electrons are embedded inside the
valence shells we expect y & 1 for such systems.
On the other hand, for 3d electrons y & 1.

III. INDIRECT EXCHANGE VIA THE ANION

(SUP EREXCH ANGE)

and

Sqr(ac) = Eqr(abc) —[E& '(ab)+ E[ '(bc)],

82r (ac) = Ezr (abc) —[Eq '(ab) + Em+ (bc)]

$»(ac)=E»(abc) —[E& '(ab)+E& '(bc)],

$„(ac)= E„(abc)—[Ea '(ab)+ Ea '(bc)] .
From (11) and (12) it is seen that the "effective"
interactions also contain the direct exchange be-
tween the two paramagnetic cations. In the follow-
ing the name "superexchange" will, for simplicity,
also include this direct interaction. The second-
order energies involve a summation over excited
states or, alternatively, they are expressed in
terms of Unsold energies (for direct and indirect
exchange, respectively, depending also on the spin
configurations), which quantities cannot be directly
calculated on the basis of the model. These ave-
rage energies are taken as equal in the triplet and
singlet configurations; this assumption is consis-
tent with the interpretation of the average energy
as a promotional or excitation energy of an elec-
tron.

We first present numerical results for an iso-
lated triplet of ions forming an isosceles triangle.
In Fig. 1 we compare, for a triplet (abc), the ef-
fective interactions between the cations a and c
[$(ac)] with their interaction [E'+(ac)] in the ab-
sence of the diamagnetic anion, as a function of
cos 8, with 8 the opening of the isosceles triangle
at the anion. Results, in units of e~P, are given
both for triplet (T) and singlet (8) spin ordering of
the cations in first order of perturbation. In Figs.
1(a) and 1(b), PR = 2 and y= 0. 5 (diamagnetic anion
"smaller" than the magnetic size of the cation),
whereas in Figs. 1(c) and 1(d), PR= 2 and y= 2

(diamagnetic anion "larger" ).
We see from Figs. 1(a) and 1(b) that for y=0. 5

the effective interaction in case of parallel spins
is less repulsive than the pair interaction (anion
absent). The effective interaction becomes even
attractive for opening 8& 80'. This illustrates the
effect of superexchange as given by the model.
For antiparallel spins the first-order pair interac-
tion shows again the typical Heitler-London depen-
dence on the distance between the cations. In this
case, the attraction is strongly reduced by the pres-
ence of the anion, except for large values of the
opening. From Figs. 1(c) and 1(d) we see that the
pair interaction is negligible for 8-80 . For tri-
angles of large opening, the interaction is then
completely determined by the presence of the anion;
it is repulsive for the triplet and attractive for the
singlet case. If 8-80, the effective interaction for
parallel spins is less repulsive than the pair inter-
actions, even becoming attractive; in the antipar-
allel case the effective interaction is less attrac-
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FIG. 1. Effective first-order interactions between two paramagnetic cations with parallel spin alignments, b~+, and

antiparallel spin alignment, ~ ~&, as compared with the respective cation pair interactions Efy and E~&', as a function of
cos8, where 8 is the opening of the isosceles triangle at the diamagnetic anion. The Gaussian parameters are PR= 2,
p=0. 5 [Figs. 1(a) and l(b)] and pR=2, &=2 [Figs. 1(c) and 1(d)j.

tive than the pair interaction, even becoming re-
pulsive

We conclude from Fig. 1 that the first-order in-
teraction between two Gaussian atoms with one ef-
fective electron each (spine parallel or antiparallel)
is significantly modified, because of superexchange,
by the presence of a diamagnetic anion with two ef-

fective electrons. The contribution by indirect ex-
change alone can be obtained from the figures by
subtracting the two curves. Similar results were
obtained for other values of y in the interval 0.4 to
10 and pR between 1 and 5; these intervals for y
and PR cover the applications to be discussed later.

Next we compare, in Figs. 2 and 3, the effective
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FIG. 2. Comparison between effective first-order cation interactions
alignments, as a function of cos8, for an isolated triplet. The Gaussian
tFig. 2(b)], y=2 tFig. 2(c)], and &=5 tFig. 2(d)].

P7
0.4 0 -0.4 -0.8

cos e
for parallel ($&z) and antiparallel (b&&) spin
parameters are PR=2, p=0. 5 [Fig. 2(a)], p=l

cation-cation interaction in first and second orders
for parallel and antiparallel spins and for an iso-
lated triplet, as a function of cosa. The PR value
is kept constant at 2 and the values of y are 0. 5,
1, 2, and 5, respectively.

The first-order results (Fig. 2) show that either
the parallel or the antiparallel coupling has the
lower energy, depending sensitively on the opening

8 of the triangle and on the value of y. We note
that the 180' superexchange gives in most cases
the dominant contribution to the magnetic energy,
even on the basis of spherically symmetric orbitals
for the effective electrons.

Upon increasing y, the interval of values of the
opening 8 for which the parallel alignment is more
stable, becomes smaller, while shifting to smaller
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interactions (b 2z and b2&, respective-

angles. Therefore, when considering a crystal
and summing over all the possible triplets, it is
predicted that, on the basis of superexchange alone,
the ferromagnetic spin alignment can be the more
stable one only for losu values of y(i. e. , relatively
"large" paramagnetic cations). It will be found
that this condition is not fulfilled for salts with 3d
or 4f cations, i.e. , that superexchange alone will
always give rise to antiferromagnetic alignment of

the unpaired spins. No general conclusion can be
drawn regarding relative stability of possible dif-
ferent antiferromagnetic spin structures, since
they are characterized by different combinations
of triangles (abc) with parallel and antiparallel
spins on the eations.

It is interesting to observe, by comparing Figs.
2 and 3, that the second-order results are similar
to those in first order. In view of this similarity,
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we expect that, in a first approach, and on the
basis of superexchange interactions alone, stability
criteria for different types of magnetic ordering
can be established on the basis of first-order in-
teractions only. This eliminates the necessity of
considering the second-order contributions, con-
taining the unknown tluantity'9 e p/E„, separately.
The results obtained for other pR values in the
range 1-5 are very similar to those given in Figs.
2 RIll 3.

W'e have also calculated, in first and second
orders, the effective interaction for nonisosceles
triangles; this was done for the same range of pR
and y values as for isosceles triangles. The ratio
Y was varied in the range 1.1-2. The results are
again similar in both orders of perturbation, and
exhibit the same characteristics as for isosceles
triangles.

The results obtained in this section show that
the superexchange energy for a complex MXM
varies strongly with respect to varying the opening
angle 8 of the triangle. Thus, it is not necessary
to start from oriented crystal-field orbitals for the
electrons to explain such a variation.

IV. INDIRECT EXCHANGE VIA CATION VALENCE SHELLS

Next we consider the exchange interactions be-
tween two Sd or 4f unpaired electrons on two dif-
ferent cations via the closed outer shells of the
same cations, on the basis of a two-center six-
electron system. The zeroth-order wave function
is again of the form (2), with 6' given by (5) or (6).
The parameters are here P R, with P the Gaus-
sian parameter for the magnetic electron and R
the cation-cation distance, and y = (P/P, )~, with

P, the Gaussian parameter for the closed cation
shells.

Again, only an effective indirect exchange is con-
sidered, by subtracting all nonmagnetic terms
(i.e. , those terms which are the same between the
singlet and triplet configurations) from the first-
and second-order perturbation energies. The re-
sults are given in Figs. 4 and 5 with a fixed value
p R =4. 5 and p R =8, respectively, and varying
y' between 0 and 20. The value of y' = 1 is, of course,
excluded by the Pauli principle, but it is found that
the perturbation energies vary continuously near
that point. The first-order results, denoted by
8» and S&~, respectively, are given in units of
e P, whereas e P (emP/E„) is the unit of second-
order energy, with E„again an Unsold energy.
The direct exchange between the unpaired electrons
is not given in the figures, as it is several orders
of magnitude smaller than the indirect exchange
interaction.

We observe again a striking similarity between
the results in first and second orders. In addition,
a singlet-triplet inversion occurs for a range of

values for y depending on the chosen value for
p R . Keeping the size of the magnetic orbital,
as well as the cation-cation distance, fixed (con-
stant P R ) and increasing y means that the closed
cation shells expand. The limit for y - 0 corre-
sponds to the system of two magnetic electrons
only in the field of two nuclei of charge +1. The
y —~ corresponds to the system of two magnetic
electrons in the field of two nuclei of charge +3.
As a distinction between Sd and 4f electrons we
can roughly take y = 1; the d-electrons have y
values smaller and the f-electron y values larger
than this limiting value.

In the specific case of EuO we estimate (see be-
low) y to be of the order of 2. 5 and P R = 6.0,
whereas for MnO, y is approximately 0. 5 and

P R = 4. 5. From Figs. 4 and 5 we then see that
for EuO (and, generally, for 4f electrons) and
nearest-neighbor cations the triplet state is defi-
nitely the more stable one. For further neighbors,
the singlet-triplet inversion occurs at higher values
of y and the energies decrease very rapidly. This
explains why the ferromagnetic coupling between
Eu~' ions becomes less important upon substituting
a larger anion. The model thus gives an interpre-
tation of the ferromagnetic cation-cation coupling
discussed in Sec. I. In the case of MnO (and, gen-
erally, for Sd electrons) we note from Fig. 4 that
the effect of indirect valence-shell exchange is much
smaller; for these compounds the magnetic pattern
is then mainly determined by the superexchange in-
teraction. The effect of the indirect valence-shell
exchange reflects itself here in a lowering of the
transition temperature for the antiferromagnetic
structure.

On the basis of the results of this section and
Sec. III, it is concluded that the magnetic interac-
tions in solids with Sd and 4f cations can in princ-
iple be explained on the basis of the same model.
For these compounds the resulting magnetic order
depends upon a balance between a ferromagnetic
indirect exchange via the valence shells of the ca-
tions and an antiferromagnetic indirect exchange
via the anion.

V. MAGNETIC ORDERING AND TRANSITION
TEMPERATURES

The results given in Secs. III and IV regarding
exchange interactions between unpaired Sd or 4f
electrons on two different cations via a diamagnetic
anion (superexchange) and via the closed outer
shells of the cations (indirect valence-shell ex-
change) will now be applied to the determination of
the most stable spin arrangement in the solids of
composition MXof such compounds. 20 The domi-
nant crystal structure, both with Sd and 4f com-
pounds, is Bl (NaCl); of those which crystallize
in structures different from Bl, we mention MnS
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and MnSe which possess, in addition to a B1-mod-
ification, the B3 (sphalerite) and B4 (wurtzite)
structures. Further, a number of compounds are
found with the BS (NiAs) structure. The large ma-
jority of the compounds with the B1 structure ex-
hibits at the lowest temperatures antiferromagnetic
ordering of the second kind, in which one-half of
the first neighbors have spins parallel to that of
the reference cation, the other half antiparallel.
All second neighbors are antiparallel to the spin
of the reference cation. This is one of four pos-
sible antiferromagnetic structures in the B1 lat-
tice. For the 3d compounds the only known ex-
ception is CrN, which is antiferromagnetic of the
fourth kind. All 4f compounds which are noncon-
ductors crystaDize in the B1 structure and most
of them also exhibit antiferrornagnetic ordering of
the second kind. A few (EuO, EuS, and GdN) are

ferromagnetic, as mentioned earlier, whereas
EuSe and some others show a more complicated
behavior. The Noel temperatures are of the order
of a few hundred degrees Kelvin for the Sd com-
pounds and between a few and 30' for the rare-earth
compounds. All nonconducting compounds with
structures different from B1 are antiferromagnetic
and have transition temperatures similar to those
with the B1 structure.

It is convenient to analyze stability of the differ-
ent possible spin patterns in terms of transition
temperatures from the ordered to the disordered
structures (Neel or Curie temperatures), the pat-
tern with the highest transition temperature being
the most stable one. To evaluate transition tem-
peratures we adopt a molecular-field approxima-
tion and write the magnetic part of the molar crys-
tal energy in the form
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where J,'0' is the contribution due to direct exchange
between the spins on a and c, 8,&„& the indirect-ex-

(N is Avogadro's number), where a denotes a ret-
erence cation, c any other cation of the crystal,
and S„f,their spin operators. In this notation,

g„ is one-half the energy difference between the
singlet and triplet configurations per pair of mag-
netic electrons between a and c; this quantity can
be obtained from the coupling parameters of the ef-
fective-electron model by dividing through n, where
n is the number of unpaired electrons per cation.
The quantity 4 can be written in the form

change contribution through the anion b, and where
p„results from indirect exchange via the closed
outer shells of the cations a and c. Using the no-
tation for the energies of the complex MXM em-
ployed in Secs. I-IV, and limiting ourselves to
first-order perturbation effects, we have

g&0) (i/2 2)(g(0) g(0&)

8, (.,)
= (i/2n')(h „—S,r) —J.',",

g,', = (i/2n')(& '„—8,', ) —Z,'," .

These quantities can, therefore, be directly calcu-
lated from the model.

As an example consider the structure B1. To
carry out the crystal summation one must first de-
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TABLE I. Different possible spin arrangements expressed by the number of cations, for each shell, with parallel and
antiparallel spins with respect to a reference cation, for the structure B1.

Kind of magnetic order

number of cations with spin parallel and antiparallel to that of the reference cation
First neighbors Second neighbors Third neighbors Fourth neighbors

tt tt

ferromagnetic
antiferromagnetic

first kind
second kind
third kind
fourth kind

12 0

4 8
6 6
4 8
6 6

6 0

6 0
0 6
4 2

2 4

24 0

8 16
12 12
16 8
12 12

12 0

12 0
12 0

4 8
4 8

termine, for each of the four possible antiferro-
magnetic spin patterns, the numbers of cations
around a reference cation, in consecutive shells,
with spin parallel or antiparallel to that of the ref-
erence cation. These numbers are given, up to
and including fourth neighbors, in Table I.

Let T„» T„2, T„s, and T„4 denote the Neel
temperatures for the four antiferromagnetic struc-
tures, and T~ the Curie temperature. It is con-
venient to relabel 4„as &z if c is a nearest neigh-
bor of the reference cation a, as 4~ if c is a second
neighbor, etc. The transition temperatures, in
the molecular-field approximation, can then readily
be obtained from Table I, extending formulas given
by Smart. ~~ These expressions read

ps Tc = 1+~+64&+ 248s+ 1244,

pq T„j.= —4gg+ 642 —Sgs+ 1244,

pq T„q = —682+ 124 4, (18)

pg T~ s= —4Ag+24~+84s —4/4,

p~ T„4= —2/2 —4/4,

with p~ = 3&/2S(S+1) and k the Boltzmann constant.
For the analysis of magnetic stability at 0 'K we
can, of course, also use the exchange interactions
as given by the model directly, i.e. , without adopt-
ing a molecular-field approximation.

All anions of the lattice contribute in principle to
every 8, through superexchange, but it is found
that the summation over the anions may be limited
to a very few terms. First, it is found that in sum-
ming over the anions the contribution to 8, arising
from triplets 1lfXM which form nonisosceles tri-
angles with respect to the site of the anion, is
negligible. In addition, superexchange contribu-
tions to 8, with i&2 are negligibly small in all
cases considered. There are only two anions which
contribute significantly to 8z, with MXM opening
angle 8=90' at the anion (90' superexchange),
whereas only one anion must be considered for 8~,

with opening angle 8 = 180 (180' superexchange).
The indirect valence-shell exchange is mostly neg-
ligible except if the two cations are nearest neigh-
bors.

To obtain numerical results the values of the
Gaussian parameters p (anion size), p' (paramag-
netic size of the cation), and p, (diamagnetic ca-
tion size) must be determined. We will use the
following semiempirical approach. In previous
work on the crystal stability of ionic solids of II-VI
compounds, s the P values for the ions 0, S
Se2, Te~ were estimated from the values of the
diamagnetic susceptibilities X relative to those of
the rare-gas atoms. For 0, with two effective
electrons, this yields an estimated P value some-
what less than 1 A ', those of the other ions are
correspondingly smaller. Let us adopt a gauge
value P = 1 A ' for 02; the P values for the other
ions can, in principle, be estimated on the basis
of their diamagnetic susceptibilities (proportional
to P ' in the model) relative to the value for 02,
by using the relation psa- = poa-(xg-/y+ )'~, and
similarly for the other anions. In view of the fact,
however, that values of X for these ions are not
known with any precision, this procedure leads at
best to a range of possible p values. On the other
hand, to estimate the Gaussian parameters P of
the magnetic electron and P, of the cation core we
have evaluated the contributions of the different
electron shells to the diamagnetic susceptibilities,
using Hartree-Fock self-consistent field (SCF)
functions as given by Herman and Skillman. For
comparison with experiment of the results obtained
with the present model, we choose again the Mn2'

and Eu2' ions as examples. The above procedure
leads to a value of y, which for Mns' is found to be
0. 5 and for Eu~' to be 2. 5. The P and P, values
can then again be calculated with respect to the
gauge value of P=l A ' for O~ in the manner de-
scribed above. The results for the solids of the
Mn and Eu chalcogenides based on these values of
the Gaussian parameters show that the observed
stable spin structures are reproduced by the model,
except for EuS which is predicted to be antiferro-
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TABLE II. Results for coupling coefficients ~
~ and A2, stable magnetic structure and transition temperatures obtained

on the basis of the present model as compared with experiment. Values of the nearest-neighbor distance Rp (anion-cation)
and of the Gaussian parameters P (anion), P' (magnetic electron), and P~ (cation core) are also given. Stable magnetic
structures are ferromagnetic (F) and antiferromagnetic of the second type (AF2).

Gaussian parametersNearest- 0

neighbor
(A- )

distance Cation Anion

Compound Ro (~) P P& P

MnO 2. 22 1.40 1.95 1.08
MnS 2 61 140 1 95 0 77
MnSe 2. 72 1.40 1.95 0.68

Calc.

—1.1
—7.0
—9.4

Stable magnetic
structure

Cale. Expt.Expt.Calc.Expt.

—5. 65 —5.65~ AF2
AF2
AF2

AF2
AF 2"
AF2b

—3.8
-4.2
-5, 2

Coupling coefficients ('K) Transition
Temperature ( K)
Calc. Expt.

122b

144 154b
181 173b

EuO 2. 57 l.62 1.03 1.08 2. 6 0 65c
0.75

-0.03 -0.06 Fc 332.8 69 4

EuSe
EuTe

2. 98 1.62 1.03 0. 77 0.12 p. 2p'

3.10 1.62 1.03 0.68 —0.19 0. 13
3.30 1.62 1.03 0.60 —0.35 0.03

-0.09

-0.18
—0.20

-0.08
—0. 10
-0.11
-0.17

9.9 16 5c

AF2 F, AF2 11.3 2.8, 4.6
AF2 AF2 12.5 8.0-11.0~

'See Ref. 26.
Landolt-Boernstein, Numerical Data and Functional

Relationships (Springer-Verlag, Berlin, 1966), new series
G. II, Vol. 2.

'See Ref. 2.
EuSe is ferromagnetic below 2.8 'K and antiferromag-

netic (of the second kind) between 2.8 and 4.6'K.

magnetic of the second kind (AF2). EuO is defi-
nitely ferromagnetic on this basis. The calculated
transition temperatures are, however, all too high

by an order of magnitude, suggesting that the chosen
values for the Gaussian parameters are all some-
what too low. Upon increasing these values it ap-
pears that the results for the transition tempera-
tures, and sometimes also those for relative sta-
bility of the different possible spin structures,
change very rapidly. In Table II we present the
results for those modified Gaussian parameters
which give considerable agreement with experi-
ment. Also listed in the table are results for the
coupling parameters &, and 43 separately. Fur-
ther small adjustments of the P parameters would

very probably lead to still better agreement with
experiment, but the physical significance of such
a procedure is very doubtful, also in view of the
fact that we are limiting ourselves to a first-order
calculation. . On the other hand, the experimental
observations (a) that EuS (and EuO) are ferromag-
netic, (b) that ' ~ 8~&0 for Mna', 8~ &0 for Va' in

MgO, and (c) that the Neel temperatures increase
in the series MnO, MnS, MnSe, severely limit the
possible ranges of values for the Gaussian pararn-
eters in the model, if the parameter y is kept con-
stant. In particular, it turns out that under those
limitations ferromagnetic behavior of EuS implies
an overestimate of 8& and thus of the Curie temper-
ature Tc, for EuO.

The transition temperatures listed in Table II
were calculated with the values S=-,' for Mn ' and
8=

&
—for Eu~'. %e note from the table that the signs

of the coupling parameters 8, (90' configuration of
two cations with respect to a central anion) and Ja

(180' configuration of the cations), as calculated
on the basis of the model, agree with experiment.
In addition, the magnitudes of these parameters
are in relatively good agreement, although, e.g. ,
for EuO the ferromagnetic indirect valence-shell
exchange is somewhat overestimated. The pre-
dicted stable magnetic structures are the same as
those observed, with the exception that the transi-
tion from ferromagnetic to antiferromagnetic sta-
bility of the Eu salts is predicted to occur between
the sulfide and the selenide, whereas experimen-
tally EuSe is still ferromagnetic up to 2. 8 'K and
antiferromagnetic (of the second kind) between 2.8
and 4. 5 'K.

For the Mn series it is observed from Table II
that the model reproduces the observed increase
in Neel temperature with increasing size of the an-
ion. This can be understood on the basis of the two
components of the exchange energy: Whereas the
anion-independent indirect valence-shell exchange
decreases rapidly with increasing cation-cation
distance, the antiferromagnetic superexchange be-
comes more important upon substituting a heavier
anion. This more than compensates the decrease
in superexchange with increase in anion-cation dis-
tance.

It has recently been observed25 from accurate
NMR measurements on V~' in MgO that 8&, although

small, is of positive sign. This factprovides a fur-
ther sensitive test case regarding the validity of the
present model. By following exactly the same pro-
cedure as for the Mn~' and Eu~' cations, we find for
V ' from SCF wave functions a y value of 0. 75 and

estimate P to be between 1.4 and 1.45 A, with
the corresponding values for JB, of 1.62 and 1.67 A ',



2152 RITTE R, JANSEN, AND LOMBARDI

TABLE III. Results for coupling coefficients &~i and ~2 obtained on the basis of the present model as compared with

experiment. The contributions to~~ i and ~~2 arising from direct exchange, superexchange, and indirect valence-shell ex-
change are listed separately. Values of Gaussian parameters are also given. Host crystal is MgO, with RD= 2. 10 A.
The two values for p' and the corresponding values for p, bracket an estimated range for V '.

Impurity P'

Gaussian parameters
(A-')

~c

Direct
exch.

A& ('K)

Calculated
Indirect
valence

Super- shell
exch. exch.

Direct
Total Expt. exch.

32 ('K)

Super-
exch.

Calculated
Indirect
valence

shell
exch. Total Expt.

Mn'
V+
V2+

1.40 1.95 1.08 0.1
1.40 1.62 1.08 0.4
145 167 108 03

-7.6
—21.4
-19.8

4. 5
32. 2
34.7

—3.0 -14 0
5.3b 0

15.2 5. 3b 0

-9.2
-25.7
-20, 1

0 -9.2
1.0 -24.7
1,3 -18.8

-14
-36.1b

-36.1b

Reference 16. "Reference 25.

respectively. For comparison, we also consider
Mn2' in a MgO lattice, for which the values of 0&

and Jz have also been measured. ~6 The results of
the calculations are given in Table III, with the
different exchange contributions to these coupling
parameters listed separately.

Again, the signs of 8& and 8~, as well as their
order of magnitude, are predicted correctly by the
model. We also note that for 8z (180' configura-
tion) the direct and indirect valence-shell ex-
changes are negligible, which is to be expected.
The sign of 42 is then determined entirely by super-
exchange effects.

As already mentioned, a configuration-interac-
tion calculation of V' in MgO has been carried out

by Huang Liu and Orbach~ who found a net value
for 8, of 9 'K. This value results from several
components of the sip@let-triplet energy difference
of either sign. A large ferromagnetic contribution
(4=+256 'K) arises from the ionic configuration (no
transfer) due to interactions involving p, (and, in
turn, P, ) orbitals on a ligand anion and d„orbitals
on two cations in a 90' configuration. In addition,
they establish a considerable antiferromagnetic
cation-cation direct exchange (J= —164 'K), due to
the nonorthogonality of the cation wave functions
(Heitler-London). These two terms correspond in
our perturbation treatment to the sum of first-order
effects. Taking into account also anion-cation and
cation-cation transfer contributions, such terms
are found to be considerably smaller and to favor
the antiparallel spin arrangement of the cations.
For one of the possible types of anion-cation trans-
fer these authors establish a reversal of the sign
as predicted by the Goodenough-Kanamori rules,
again because of nonorthogonality of the cation
wave function. Such transfer terms are implicitly
contained in the present perturbation treatment as
second- and higher-order effects.

VI. DISCUSSION

Whereas the antiferromagnetic properties of non-
conducting solids of 3d compounds at low tempera-
tures are now considered to be relatively well un-
derstood, at least on a qualitative or serniquanti-
tative basis, the ferromagnetic behavior of some
4f compounds (EuO, EuS, GdN) still presents an
unsolved problem. The working hypothesis of the
present paper is that the magnetic interactions in
the two cases have fundamentally the same origin,
and that their difference results from a different
balance between a ferromagnetic and an antiferro-
magnetic component of the crystal energy. For
the analysis, a simple model for exchange coupling
between unpaired electrons in nonconducting solids
has been developed on the basis of exchange per-
turbation theory of the Rayleigh-Schrodinger type.
The exchange coupling refers to either direct ca-
tion-cation exchange or to indirect exchange via a
diamagnetic anion or via the valence shells of two
interacting cations. These are the first terms in
a cluster expansion with regard to the number of
electrons participating in magnetic coupling. The
restriction to one effective magnetic electron per
cation implies that we have not considered mul-
tiple-exchange interactions, i.e. , contributions to
the magnetic energy of the solid involving simul-
taneously more than one unpaired electron per ca-
tion. The number of such unpaired electrons is
implicitly contained in the value of the parameter
P characterizing the orbital extension of the effec-
tive magnetic electron.

In the perturbation analysis it has been assumed
that full permutation symmetry is the essential
requirement to be imposed on the zeroth-order
wave function for a complex MXM of two cations
and one anion and that space-group (or point-group)
symmetry is not of primary importance. This as-
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sumption implies, e.g. , that the removal of de-
generacy of states for an unpaired electron by the
crystal field as considered in directed-orbital
ligand-field theory does not play the essential role
on which semiempirical rules (Goodenough-Kana-
mori) or more fundamental analyses are based.
The results show that permutation symmetry alone
does give rise to exchange interactions which are
strongly dependent on the geometry of the complex
MXM.

The model analyses magnetic order in noncon-
ducting solids within the framework of a Born-
Mayer type of description of ionic solids, supple-
mented by direct- and indirect-exchange interac-
tions between the unpaired spins. The ions can
be characterized in terms of a "diamagnetic size"
(closed shells of anion and cation) and a "paramag-
netic size" (open shell of cation). The values of
these parameters, together with the geometries of
the different complexes MXM (as given by the sym-
metry of the lattice and the lattice constant) deter-
mine the type of magnetic ordering and the transi-
tion temperature.

The magnetic order is found to result from two
competitive effects, namely (direct and), superex-
change interactions which, for the B1 structure
considered, favor antiferromagnetism when summed
over the crystal, and indirect exchange via the ca-
tion valence shells, which leads to ferromagnetic
coupling. If the orbital of the magnetic electron
is "outside" the valence shells (as for Sd com-
pounds), then indirect valence-shell exchange, al-
though not necessarily small, does not affect the
stable magnetic pattern, but lowers the transition
temperature. The resulting spin pattern is then
predicted to be antiferromagnetic of the second
kind. In the 4f compounds there exists a more
sensitive balance between superexchange and in-
direct exchange via the cation valence shells, and
both types of ordering (ferromagnetic and antifer-
romagnetic) can occur. Thus, no different models~
for magnetic ordering need be invoked to explain
differences in magnetic properties between 3d and

4f compounds, and the observed transition between
ferromagnetic and antiferromagnetic behavior of
Eu chalcogenides upon substituting a heavier anion,
finds a ready interpretation on the basis of the
present model.

Such an interpretation might not be equally ob-
vious on the basis of configuration-interaction cal-
culations as undertaken by Huang Liu and Orbach, '
extended to 4f systems. In Sec. I we have seen that
a ferromagnetic cation-cation exchange and an anti-
ferromagnetic cation-anion-cation exchange are re-
quired to explain the experimental results for Eu
chalcogenides. In the CI analysis for V2' in MgO,
these authors find that direct cation exchange is
antiferromagnetic, whereas a strong ferromagnetic

component results from indirect exchange via the
anion. This is the opposite of what would be needed
for 4f compounds.

In the present model, direct exchange between
two cations, omitting the valence shells, is neg-
ligibly small both for 3d and 4f systems, whereas
in the configuration-interaction analysis for
3d systems, such direct exchange contributes sig-
nificantly to the magnetic energy. The reason for
this is, apparently, that in the CI method directed
orbitals are used, whereas in the present model
one starts from spherically symmetric wave func-
tions. The positive contribution to 8& in the model
results entirely from indirect valence-shell ex-
change between the cations, whereas in the CI
analysis there occurs a strong ferromagnetic super-
exchange effect. Although for 3d systems, in par-
ticular for V~' in MgO, the final results are com-
parable in the two methods, the interpretation is
different. Also in this respect, it would be of great
interest to apply the CI method to solids with 4f
electrons.

Contributions to the magnetic energy arising
from excited states of the charge-transfer type of
the complex MXM, as well as exchange polariza-
tion effects, occur in second and higher orders of
perturbation theory. Leaving third and higher
orders aside, such contributions can be dealt with
parametrically in view of the similarity of first-
and second-order results, the parameter being
e'J3/Z, „, with E„an Unsold energy. The value of
this parameter determines whether the magnetic
interactions are mainly of second or first order in
perturbation theory, i.e. , whether or not excited
states of the complex MXM (for superexchange) and
MM (for cation-cation exchange; the parameter
here being e P /F. „)contribute significantly to the
magnetic energy. Qn the basis of the CI analysis~
for V ' in MgO, we would conclude that second-
order effects are generally smaller than those of
first order. A determination of the values of the
above parameters, however, goes beyond the
framework of the present model. For all our nu-
merical calculations we have considered first-
order interactions only, i.e. , we have assumed
that neither for superexchange nor for indirect
valence-shell exchange the second-order contribu-
tion is by far the larger one.

The similarity between first- and second-order
energies appears to be an inherent characteristic
of the exchange-perturbation theory adopted; it
was also established in earlier work on crystal
stability of solids with closed-shell atoms or ions. ~'

A main characteristic of the model is that the
relative "size" of the orbitals for the effective
electrons is an essential parameter in analyzing
magnetic ordering. For this reason it is most con-
venient, although not necessary, to work with node-
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less spherically symmetric wave functions which
then are not orthogonal, neither those at the same
center, nor at different centers. Orthogonalizing
the orbital of the magnetic electron to that of the
closed shell of the same cation does not affect the
indirect-exchange energy via the valence shells.
Of course, nonorthogonality between wave functions

at different centers is essential in this Heitler-
London type of treatment of exchange. We have
recently found~8 that a model quite similar to the
one employed in the present paper yields simple
criteria for stability and geometric configuration
of rare-gas compounds, in agreement with experi-
ments.
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