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The thermal conductivities K j and K~~ in the c plane and along the c axis, respectively, have been

measured in FeCl, between 1.2 and 80'K. Both K~ and K~~ are found to exhibit, in a wide

temperature range, an unusual behavior which reveals the presence of a strong spin-phonon coupling.
The experimental results in the antiferromagnetic phase are interpreted on the basis of the
magnon-phonon resonant interaction arising from single-ion magnetostriction. It is shown that the
thermal conductivity of the resulting magnetoelastic modes can reasonably account for the experimental

results: In particular, the anomalous behaviors of K~ and K~~ between 5 and 17'K are explained by the
effect of a large magnon scattering on the mixed modes. This large scattering leads to a negligible

contribution of the spin waves to heat transport. From the Kj results, the magnetoelastic coupling
constant G44 is found to be 3.5 meV.

I. INTRODUCTION

In recent years, several experiments have shown
anomalies in the thermal conductivity of magnetic
substances. Many of these anomalies have been
explained either in terms of scattering of phonons
by critical fluctuations ' or as a result of magnon-
phonon interaction. In the latter case, the con-
tribution of magnons to heat transport has been re-
lated to the strength of the magnetoelastic coupling
and to the magnitude of the magnon scattering. In
a previous paper' we have reported the tempera-
ture dependence of the thermal conductivity in the
c plane of antiferromagnetic FeCl& and nonmagnetic
CdClz crystals. For FeC12, K, results exhibit a
pronounced dip shifted to lower temperature corn-
paratively to the Neel point.

The crystal structure of FeC1& is isomorphous
with that of CdCl&, and has an hexagonal layer-type
structure. The magnetic properties of F& C12 have
been investigated with a variety of techniques. '
It has been shown that there are a strong ferromag-
netic exchange interaction among the intralayer
ferrous ions and a weak antiferromagnetic inter-
layer interaction which gives rise to an antiferro-
magnetic order up to T„=23. 5 K. Recently, Bir-
geneau et al. ~ reported a neutron scattering in-
vestigation of magnetic excitations in the antifer-
romagnet FeC1&. On the other hand, the critical
behaviors of parallel susceptibility and specific
heat of FeC13' and FeBr2" have suggested the
presence of a large magnetoelastic interaction.
Additional evidence for the existence of such an
interaction is provided by the effect of pressure'
and uniaxial strain on magnetic properties, and
by the change of lattice constants at the Noel tem-
perature, lately observed.

In Sec. II of this paper, experimental details are
given and results of thermal conductivity along the

c axis ard in the e plane are presented. Section
IG is devoted to a formulation of the thermal con-
ductivity of FeC12 in the antiferromagnetic phase.
In this section, the calculations of energies and
relaxation times of magnetoelastic modes arising
from a magnon-phonon resonant interaction are
given and the contribution of magnetoelastic modes
to thermal conductivity is deduced. In Sec. IV,
the experimental results are compared with theory,
and the strength of magnetoelastic coupling is de-
duced. Finally, Sec. V summarizes the main re-
sults of the present investigation.

H. EXPERIMENTAL

Experimental Techniques

All measurements were made on single-crystal
samples of anhydrous ferrous chloride. To pre-
vent moisture from accumulating, manipulations
were carried out in a dry atmosphere. FeCla being
soft and easily cleaved, it is unable to withstand
thermal or mechanical stresses. Precautions must
be taken in order to prevent such failures.

The thermal-conductivity measurements between
1.2 and 80 K were performed, using a steady-
state longitudinal-heat-flow method, in a pumped-
helium cryostat. The heat flow was, respectively,
perpendicular and parallel to the c axis in order to
measure K, and K„. In the first case, the sample
used was 30-mm long with a cross section of 4. 5
~ 5. 1 mm and the sample mounting was a conven-
tional one: A heater of -500 0 was wound on the
free end of the specimen, and carbon resistance
thermometers (Allen- Bradley) were attached, by
means of small copper clamps, at two intermedi-
ate positions along the rod.

For K„measurements, the best sample we got
was a 4. 4-mm long (c axis) with a cross section of
8 x10 mm; such a shape required the unusual as-
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sembly shown on Fig. 1. The sample (j) is squeezed
between a cryopoint (g) and a warm base (k). To
avoid any mechanical overstress in it, 40- p.m in-
dium sheets assume a soft thermal contact in each
face. The cryopoint is a copper cube, thermally
connected to the cryostat by a copper braid (b) and
thermocontrolled with a set of heater and thermom-
eter (h). The warm base is composed of a man-
ganin heating coil, wound around a copper rod (1)
and rolled into a gold foil used as thermal contact.
The effective thermal gradient and the mean tem-
perature are measured with thermometers (i) and

(m) which are connected to the sample by small
copper wires of 0. 5-mm diameter, glued in 0. 5-
mm holes located in the samples edges at a 3. 1-mm
pitch. All thermal contacts have been done with
GE 7031 varnish or silicon grease, according to
the temperature range of experiments. All parts
so joined are inserted into a press. The press
is composed of two parallel pushers (e) and (o}
actuated by nylon rods (f) and belleville washers
(c), thus the unavoidable thermal shunt is reduced
by using structural material having the lowest
thermal conductivity. Most of the loop is of nylon,
to reduce contact load changes during measurement,
insuring reproducible results. We found that using
a simple template made the assembly easier to set
up, as the operations around the cryostat in a
helium-filled bag were fairly difficult. All leads
are of manganin; flanges (d) and (n), their centers,
and threaded coupling (a) are of brass. In this
arrangement, the accuracy is not limited by tem-
perature measurements or by the thermal shunt
but rather by the inaccuracy on temperature sen-

FIG. 1. Holder for thermal-conductivity measure-
ments on a sample having a few mm thickness along the
heat-flow direction.

sors positionswhich can be estimated to - 5$. On

the other hand, the sample quality seems to be a
more determinant factor on the reproducibility
from one sample to another; that's why we keep
the greatest interest on avoiding to destroy sample
during cutting.

Experimental Results

The most striking feature of thermal-conduc-
tivity results (Fig. 2} is the anomalous tempera-
ture dependence of K, and K„between 5 and 40'K.

The variation of K, as a function of temperature
exhibits the following behavior: With increasing
temperature, K, increases as T ' in the interval
1.2-4 K, reaches a maximum at 5'K, thenbe-
tween 6 and 17 K decreases as T . After the
minimum, at 17'K, K, increases as T up to about
40 'K, then at higher temperatures exhibits the
usual decrease, as in CdC1~. '

The conductivity K„presents a slight dip around
17 'K. At lower temperatures, K„decreases with
decreasing temperature and varies as T ' below
2 'K. Moreover, the measured values of K„are
smaller than K, values in the whole temperature
range 1.2-80 'K.

III. THEORY

In magnetic insulators, two mechanisms are
responsible of the spin-phonon coupling '. the vol-
ume magnetostriction, arising from the phonon
modulation of exchange interactions between mag-
netic ions, and the single-ion magnetostriction
due to the modulation of the crystalline field by the
motion of the nonmagnetic ions. The first mech-
anism is quadratic in spin-deviation operators and
can contribute to phonon absorption and emission
by scattering of spin waves in the ordered phase,
as well as critical absorption of phonons near T„.
The effect of this first coupling mechanism on the
scattering of phonons near a critical point has been
widely investigated. ' In these theories the pho-
non cross section is expressedas the Fourier trans-
form of four-spin or energy-energy correlation
functions which are divergent at T„(or strongly de-
pendent on I T —T„ I). In these two cases of cou-
pling with order parameter and energy density
fluctuations, the result is a critical phonon scat-
tering near T„, which is not observed in the ther-
mal conductivity of FeCl~. The second mechanism
yields both quadratic and linear terms in spin-de-
viation operators. These linear terms are known
to give rise, in the ordered phase, to a resonant
magnon-phonon interaction which may be described
in terms of magnetoelastic excitations.

We shall show in this paper that this magnon-
phonon resonant interaction can explain the three
main features of the obtained K-versus-T curves:
(i) the anomalous behavior of thermal conductivity
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ao and co are the lattice constants of the convention-
al hexagonal cell. The values obtained for anisot-
ropy (g i»sH„= 2 meV), ferromagnetic intralayer ex-
change (2J„=0. 68 meV), and antiferromagnetic
interlayer exchange (2J„=—0. 03 meV) have led to
the conclusion that FeCl& behaves like a two-di-
mensional ferromagnet rather than an antiferromag-
net. We examine now two consequences of such a
situation, we shall use later: (a) The Bogoliubov
transformation can be approximatively expressed
as identity, and (b) intermode four-magnon scat-
tering can be neglected.

1. Ferromagnetic-Magnon Approximation

The spin Hamiltonian of a two-sublattice anti-
ferromagnet is

I I

X,»= —2 Q J„S'S' —2 Z J S S"
&r&

~ ) (mms)

—2 Z J„S'S gi»sH„Z-S,
(1m)

igPsH~ Q S», (2)

FIG. 2. Variation of the thermal conductivity K& (cir-
cles) and KII (triangles) as a function of temperature.

where S' and S are effective-spin operators (S= 1)
in sublattices a and b, respectively. Here the
primes signify a restriction of the summation to
nearest- neighbor pairs.

Introducing the usual spin-wave creation and an-
nihilation operators ak and bk, the spin Hamiltonian
becomes

in a rather large temperature range, particularly
at such a low temperature (T= 5 'K) that no critical
fluctuation can occur; (ii) a minimum of K versus-T-
at a temperature (T= 1V K) lower than the Noel
temperature (T„=23. 5 K); (iii) no anomalous be-
havior close to the Neel temperature.

For this purpose, we shall consider here the ef-
fect of the resonant interaction on the thermal con-
ductivity of FeC12. In order to calculate heat trans-
port by magnetoelastic waves, we shall determine
their energy spectra and relaxation times. Thus,
we shall first consider the dispersion relations and
scattering mechanisms of uncoupled magnons and
phonons.

A. Spin Waves

From the FeClz spin-wave spectrum determined
by Birgeneau et a/. ,

' we take the following disper-
sion relations for wave vector k perpendicular and

parallel to the c axis, respectively:

I&u» =g i»sH„12J,»+ 8—J~(1—coska),
1

R&»=gysH„- 12J„ for —v/c &k & v/c,

where

X„=Z [A,(a»a„+ b»b, )
k

+ B»(a» b» + a» b»)],

with

+k ++B+A 2Zab~ab+~aa

(3)

1 —2zaa g" l g ~ 4

and

(5)

ak= o"k cosh'+ pk sinh8k,

b', = o.'k sinh8„+ p'kcoshe„

with

(6)

cosh e, =[A„+(A,-B,)'a]/2(A, B»»). -
In FeC1&,

where R, and R are the positionvectors of lth and
mth ions, and z„and z,b are the numbers of near-
est neighbors for ferromagnetic and antiferromag-
netic interactions, respectively.

X~ is diagonalized by the Bogoliubov transforma-
tion which involves the new operators n» and P»;
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J„«J„and g~H„,
thus, we have

cosh8 & 1+ —x and sinh8, &~,

(6) are in a ferromagneticlike case. Dyson2~ showed
that the cross section for the scattering of two spin

«Q»

waves with wave vectors k, and k2 is

og, p a (kq kp). (15)
with

x = —6J,q/(gps H„—12J,q}—0. 04.

Then, to a good approximation:

cosh8, =1 and sinh8, =0.

(10)

This approximation will be used in magnon-mag-
non scattering and magnon-phonon coupling cal-
culations.

2. Magnon-Magnon Interaction

The four-magnon part of the Hamiltonian can be
written24

(4) (4) (4) (4)
+sp +aa + +bb + +ab (12)

The magnon scattering processes generally
taken into account are boundary effect, magnetic
defect scattering, magnon-magnon and magnon-

phonon scatterings.
The first two processes are known to give rise

to a relaxation tinge,

(v, ~) '=v, ~/f. +A (ka)4, (14)

where L is a constant mean free path characteriz-
ing boundary-type scattering, A„ is proportional
to the density of magnetic defects in the crystal,
and v, is the group velocity of magnons.

We shall now consider the relaxation times for
normal and umklapp (U) four-magnon processes.
The U processes are thought to be important even
at temperatures -10 to 20'K because of the flat-
ness of the spin-wave spectrum. In a first step,
we shall derive the mean free path of magnons in
normal four-magnon processes. We start with the
simplified interaction Hamiltonian (13), so that we

where 'K,(,) involves J„and products such as
a', a, a',.a... 'K'bb' involves J„and products such as
b' b b'. b ~, &',b' involves J,b and products such
as a', a, b' b; a& and b' being the usual spin-devia-P
tion operators associated to spins S' and S, re-
spectively.

With the aid of the above approximation (11), we

have

sy ~ ~ ip2pSp4
(4)

kg pk2pkSpk4

x[ap, app a,p up4+ P,', Pop Pop Pp4]» (13)

where $1,2, s, 4 is a function of k„k» k» k4 in-
cluding the momentum 5 function 5(k, + Rp - )t, —R4).

Thus, the four-magnon scattering which arises
from (13) involves only intramode processes.

B. Spin-Wave Scattering

f g (kpa) (19)

where E, is related to the J of Dysonby c,=4JS.
We obtain in the limit k~T «4m E1..

Ajf graf) fp (k~a) 2 (ksT/&, ) t» (p} (20)

where f is the Riemann zeta function. By com-
parison to Dyson's result, we obtain

to= 64m ~ aS .
Finally, we have

A„(k~)=lo (k, a) T ~ F„(T). (22)

F„(T) is the correction factor to Dyson's formula
due to the gap and the nonparabolicity of the dis-
persion curve:

»' r T-5/2 (k a)4
F„(T)= „d(kpa).exp e„ksT —1

For the case of U processes, we shall assume
that the result of Dyson (15) remains valid. The
only modification is that we can expect to have
U processes only for

I "i+"a I a ~& ~

(23)

For ease in calculation, we use the condition

(k, +kp)a &w.

The umklapp mean free path is then given by

Av'(ki) = ~o'(k ia)'

r-p»» exp '4p/ksT
1

We obtain the mean free path for scattering of state
k, by summing on k2..

A„'(k~)~ (k,a) Q (kpa) npp cos (k, , kp)» (16)
k2

where nk is the Bose distribution for state k2. For
an isotropic spectrum the density of states is pro-
portional to k» so that

A g (k g) = l p (k t a ) d (k p a )»
(kp a)'

o exp I e, kpT —1
(17)

where lo is a characteristic length of four-magnon
scattering. In the FeCl2 case, the energy Ek of"2
state kp may be written, according to (1),

fp =ep+ p Kg[1 —cos(kpa)], (18)

which involves a gap &0 and a spread in energy &,.
The constant lo may be determined by considering
the limit of (17) for the parabolic dispersion rela-
tion considered by Dyson:
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This can be written

/~v(k, )=lo (k, a) T Fu(k„T),
where

Fu(k~, T)= + d(k2/I). (26)
r-a&a exp(ezgk&T) —1

Both F„(T) and F~(k, T) have been computed numer-
ically.

Lastly, we consider magnon-phonon interaction.
The one-magnon-one-phonon process is included
in the formalism of magnetoelastic modes, treated
later. The scattering of magnons with creation
or absorption of a phonon is known to occur
only if spin-wave group velocity is greater than
the sound velocity v, . This condition is not satis-
fied in FeC12, and processes like Qt& a, ,c', or
n„13~~,c,', involving one phonon operator c'„cannot
occur. The fusing processes like o'„o,' ~c,' can oc-
cur but are thought to be effective at too high tem-
peratures to be considered here. Moreover, pro-
cesses involving more than two magnon and one
phonon operators have not been considered here.

To sum up, the combined magnon relaxation
time may be written

(r„~) '= v ~/L+A (ka) + v„ 1 '(k/T) T'

In the case of a magnetic lamellar material in-
volving magnon-phonon coupling, we assume that
the above approximation holds even for coupled
modes, namely, the magnetoelastic modes arising
from the phonon branches (l) and (t, ) does not
contribute to thermal conductivity.

Lastly, it is to be recalled that three mechan-
isms of phonon scattering are usually considered:
boundary effect, mass-difference scattering, and
phonon-phonon scattering. They can be taken into
account by assuming the following form for phonon
relaxation time

(v+) '=v, /L+A~O, +BQ, T', (28)

where A~ is given by the Klemens relation applied
to a compound, ' L is a characteristic length of
the crystal, and B is a phenomenological param-
eter for three-phonon processes. SQ, is the ener-
gy of a phonon with wave vector q.

D. Magnon-Phonon Coupling in FeC12

As mentioned above, we consider the interaction
of the transverse phonons (t2) with the two degener-
ate magnon branches.

The coupling of phonons with spins of one sub-
lattice by the modulation of crystalline field can
be described by the Hamiltonian '

a 2 2

iat ~ egy5 4 g @5~
aBQ

(29)

C. Phonon Formulation

In this section, we show that the thermal con-
ductivity R~ of FeC12 can be calculated by consider-
ing the interaction of the two spin-wave modes with
one transverse phonon mode.

For this, we first consider the thermal con-
ductivity of uncoupled phonons. In this case, it
is well known that, at low temperature, the domi-
nant contribution to heat flow arises from modes
of smaller velocities: for two modes having a sound
velocity ratio greater than 3, the contribution of
the upper mode can be neglected. For lack of the
knowledge of phonon spectrum in FeC12, we use
some results of the Komatsu mode12~ for lamellar
crystals. For these crystals the three polariza-
tion modes (l, t„and tm) of phonons with wave vec-
tor perpendicular to the c axis have three different
velocities v&, v&, and v, with v, &v, &v, . In8 1
graphite, it was found

v, /v, = 21 and v, /v, = 36.

This has been related to the fact that the binding
energies between atoms in the same layer are
much larger than those between atoms in different
layers. Such a situation is also known to occur
in FeC12. Thus, we may reasonably assume that
the contribution of phonons (l) and (t~) can be ne-
glected in a nonmagnetic lamellar mater:al.

$C),g=Z
2

Z [3(S ) —S(S+ 1)]g
l

~ G„Z a,~
S',St) (30)

If we retain only the terms which are linear in
spin-deviation operators and consider the coupling
with the transverse phonon branch (t2), we have

(31)

We may then expand the S ' to the lowest order in
deviation operators a', :

S, =- (2S) a, and S,'=S —ata, . (32)

Now, the spin-wave operators a'„are introduced:

~ -1/Spode Rf ' Rg (33)
k

where N is the number of unit cells in the crystal.
On the other hand, the local deformation can be
expanded in phonon creation and annihilation opera-
tors c', :

e
g Z

N1I2 ~
2MQ qy

0 a

where 6 is the spin-phonon coupling tensor, S the
spin of /th ion, and & is the local deformation around
the lth ion. In the case of a cubic environment
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x(c, e""&—c', e ""&), (34)

where M is the mass of the unit cell. Thus, the
interaction Hamiltonian 3C;,t becomes

100

& tn~ = ~De(ca so+ c» s~) ~ (35)

with

D~= G«S(2$) ~ (K/2Mv, a)~ (ka)~ ~. (36)

Then the Hamiltonian for magnon-phonon coupling
in antiferromagnet FeCl~ can be written

o

IX

9 5o
UJ

a 5
int + int+ int y

where 'K „,is obtained by substituting b; to a'„

(35). With the aid of (6) and (11), 'K„, can be
pressed in terms of magnon operators a~ and

Ki„=+D~[c~(a~y pt)+ c~(art + p„")].

The total Hamiltonian may now be written

K= Q (8QgcgC j+ KRg(Qg Q~ + p~ p~)

(3V)

in
ex-
po:

(38)
TK/2

ka

Z= (c'o.'P') (M) ~ u (40)

+ Dk [ck(ok + pit)+&~(&s+ pa)1) (»)
where &o, is given by relation (1) and 0, = v,k. 3C

may be written in the form
0

lK
LU

UJ

where

SQ~ D D

(M) = ~ D~ R(u~ 0

D„o n(u,

(41) 1T, /4

ka

I

Tt: /2

+
I lh6l k 1$,A»

i,k
(43)

can be deduced from the eigenvectors of (M). We
shall note only that

q2, ~= 2 ' '(a', —P,'). (44)

The energies of the coupled modes are given by
the eigenvalues of (M) which are

(,+,) ——,[ (,—,)'+ 8D,']' ',
&2,a= ~~a~

e3IR 2 ~(~k+ ~k)+ 2[~ (~k ~k) + D0]

(42)
The resulting spectrum for magnetoelastic modes
is shown on Fig. 3(b). The operators rl';, » which
diagonalize 'fC into the form

FIG. 3. Dispersion curves in the c plane: (a) for un-
coupled phonons and magnons, (b) for magnetoelastic
excitations with G44=3. 5 meV.

E. Magnetoelastic Wave Scattering and Thermal-Conductivity
Formulation

Following the idea of Kittel we take account of
the scattering by attributing an imaginary part to
the energy of both phonons and magnons:

I 0„=K[A, +f(v,') '],
(45)

h &u~= 5[a~ i(v+)~],
where v'„'" and v~ are the relaxation times of pho-
nons and magnons, respectively. Replacing Q~ by Q~
and &o, by tu, in (42), we obtain the complex ener-
gies for magnetoelastic modes:

Thus, from Eqs. (42) and (44) we deduce that the
second mode is totally magnon type.

k+ lW]~y '

From (46) we deduce the relaxation time of the

(46)
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magnetoelastic mode (i):

~ink @/vfik (47) 500—

The thermal conductivity of magnetoelastic modes
of energies &&,~ and relaxation times v, ~ is given
by

4n' 1 ~"
p g

s ~ l

v ],Ifv') ~k~xq „e"& &

3 ~2m)

x (e'& ~ —1) ~kmdk, (48)

where i=(1, 2, 3) is the index of mixed modes, v, ,
is the group velocity of mode (i) and x&,,= e&,,/ksT
The energies E&,~ and relaxation times v&, ~ are,
respectively, the real and imaginary parts of the
complex energies e, „defined by (45)-(47). Equa-
tion (48) is equivalent to the simpler Callaway ex-
pression's for K, which has been shown to be a good
approximation when N processes are not dominant.
In this case, addition of reciprocal relaxation times
includes N and resistive relaxation times as in
(27) and (28).

IV. ANALYSIS OF RESULTS AND DISCUSSION

In this section, the experimental results are
compared to the calculated thermal conductivity of
magnetoelastic waves. As, in FeC1~, spin waves
are well defined' only up to 0. 9T„, the calcula-
tions have been restricted to T &21'K.

A. Heat Flow Perpendicular to c Axis

The Fig. 4 involves two curves calculated on
the basis of the formulation of Sec. III. The curve
(a) shows that the general behavior of K~(T) can be
described by considering only two scattering mech-
anisms. The curve (b) is the best fit involving the
different scattering mechanisms considered before.

Curve (a) ~ Two scattering mechanisms are taken
into account: boundary scattering of phonons and

magnons, and four-magnon scattering. The velocity
v, of transverse ohonons has been estimated as = 1. 5
&&10' cm sec ' from lattice-specific-heat data. "
The value of L is determined from the adjustment
of the theoretical curve to the experimental curve
at the lowest temperatures (T & 2 'K) where the ex-
cited modes are purely phonons. The discrepancy
between the fitted value L = 0.02 cm and the calcu-
lated Casimir length Lc= 0. 54 cm, deduced from
the sample cross sections by the relation L~
= 2m

' s', could be related to the presence of
cleavage planes perpendicular to the c axis. The
mean distance between these planes would thus be
approximatively 0.003 cm. The four-magnon scat-
tering constant lp and the coupling constant G«are
determined by adjusting the computed conductivity
in the temperature range 9 & T & 20 K where both
magnon scattering and magnetoelastic coupling are
dominant. However the computed values around

200—
bC
0

E
~ 100—

E
~ 50-

20 —
g

5 10

T ('K)
20

TN

FIG. 4. Comparison of the experimental and calcu-
lated thermal conductivity E& in the c plane. Experi-
mental results are the circles. Curve (a) is calculated
for a coupling cons tant G44 = 3.5 me V, with a boundary
parameter L= 2 x10 cm and a magnon-magnon scat-
tering parameter lo =6 x10 cm. Curve (b) includes the
parameters of (a) and the scattering process arising
from: magnetic-defects (A~=5 x10' sec '), mass-
difference Q& = 5 x10 secs) and phonon-phonon inter-
action (B=3 x10-2i sec 'K ).

~ 'K are greater than the experimental ones.
Curve (b). The sharp maximum of curve (a) is the

consequence of the strong temperature dependence
of the magnon-magnon scattering relaxation times
(22) and (26). However, magnetic defects can scat-
ter spin waves even at low temperatures. ' As
FeC1& is known to contain residual Fe' ions,
the relaxation time given by Callaway and Boyd '
for magnetic defect scattering [v '=A (ka) ] has
been introduced in the calculation of curve (b). The
value A = 5&& 10' sec ' has been deduced from the
fit of K, between 2 and 5 K. A close agreement
between the theoretical curve (b) and experimental
points is obtained in the whole temperature range
with G«= 3. 5 meV and lp= 6x10 cm. The above
value of lo gives a magnon relaxation time (27)

(ka= v, T= 5'K)= 3&10 ~ sec which is in good
agreement with the linewidth he(ka = v, T = 5 K)
= 0. 2 meV obtained in neutron scattering experi-
ments. ' However, this value is much smaller than
the theoretical one given by relation (21): This dis-
crepancy can be related either to the failure of Dy-
son's theory in the FeC13 case, or to the existence
of some other scattering mechanism. The rather
strong value G«= 3. 5 meV can explain why FeC12
exhibits one of the largest thermal-conductivity
dips in magnetic insulators.

Finally, we have included the mass-difference
scattering [(r~ ) =A~A, ], and the phonon-phonon



THERMAL CONDUCTIVITY AND MAGNON- PHONON RESONANT. . . 2137

scattering [(~,") '=BQ,'T'). The value A~= 5x10"
sec has been calculated according to Holland,
and the value J3= 3&10 sec 'K has been deduced
from high-temperature thermal-conductivity re-
sults in CdC12, assuming that about 80 'K phonon-
phonon interactions are predominant.

B. Heat Flow Parallel to c Axis

Figure 2 shows that the ratio KJK„reaches a
value of 25 at 1.3 'K. This may be related to a
change of transverse phonon velocity or of phonon
mean free path. In Komatsu's model related to
lamellar structure graphite, transverse phonon
velocities for q l c and q II c are considered as
equal. Keeping v, = 1. 5X 10' cm sec ' for sound
velocity, we obtain L= 6&10 cm by adjusting cal-
culated and experimental conductivities at 1 'K.

The computed values of thermal conductivity
along c axis are shown in Fig. 5. Because of the
nearly cubic crystalline field around a ferrous ion,
we can consider the magnetoelastic coupling as
isotropic and we keep the value G«= 3. 5 meV for
calculation. On the other haad, effective disper-
sion curves along the c axis are included in the

I I I II

20—

10—

w5—
4

magnetoelastic modes calculation. Keeping the
same relaxation times than in heat flow perpendic-
ular to the c-axis case, we obtain a satisfactory
agreement between the computed conductivity and
experimental results with L = 6 & 10 cm and
A = 2&&10 sec, other parameters involved in K~
fit being unchanged. It may be noticed that the val-
ue L =6X10 crn was obtained for several sam-
ples of various sections and thickness. This is in
agreement with the fact that such a low-temp, .ra-
ture phonon mean free path is not determined by
the external boundaries of the sample.

V. CONCLUSION

A magnon- magnon resonant interaction applied
to a simplified model founded upon recent results
of magnetic properties leads to a reasonable ex-
planation of the anomalous behavior of the thermal
conductivity below the Neel temperature in FeCl&.
From our experimental results and theory we de-
termine the magnetoelastic coupling constant G44.

The temperatures of maximum (4. 5'K) and mini-
mum (17 K) of K, in the antiferromagnetic phase
can be, respectively, correlated, in this approach
with the energies of spin waves at zone center
(2. 1meV) and zone boundary (7 meV). For T
(4. 5 'K, only a purely elastic mode contributes
to thermal conductivity which increases as - T .
Modes of energy greater than 2. 1 meV, having
some magnetic character, are excited above
4. 5 'K. When the temperature increases, the mag-
non scattering rapidly increases, decreasing the
thermal conductivity of mixed modes. The contri-
bution of the unperturbed magnon mode is then
smaller than 2x10 of the total conductivity in the
whole temperature range. For temperatures
greater than 17 K, the upper mode, essentially
phononlike, is less scattered than the lower one,
essentially magnonlike. Thus, in the interval
17-21 K the contribution of the upper mode be-
comes predominant and K~ increases. The same
explanation, associated to a smaller boundary
parameter and a weaker magnon scattering, can
account for results of thermal conductivity along
the c axis.
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