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Distribution of Magnon Modes in a Disordered Magnetic Chain

D. L. Huber~
Brookhaven National Laboratory, Upton, ¹w York 11973
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Numerical methods for the calculation of the frequency spectrum of the linearized magnon modes in

disordered magnetic chains are outlined. The distribution for the ferromagnetic chain is obtained from
the Sturm-sequence algorithm introduced by Dean in the analogous calculation for the one-dimensional

crystal lattice. The distribution for the antiferromagnetic chain cannot be calculated by Dean s method.
For this case the Sturm sequence obtained from the amplitudes is appropriate (Rosenstock-McGill
method). Applications are made to two systems: an amorphous ferromagnetic chain, where comparison
is made with the analytic theory of Montgomery, Krugler, and Stubbs, and to an antiferromagnetic
chain with parameters chosen to resemble those of Cu„Cr, „Cl,. The results of numerical studies on
chains of 50000 spins are reported.

I. INTRODUCTION

In recent years the discovery of compounds hav-
ing magnetic properties which are characteristic
of chains of spins coupled by nearest-neighbor ex-
change interactions has led to increased interest in
one-dimensional magnets. ' Apparently, studies
of both the static and dynamic properties of mag-
netic chains have been limited to crystals having
one species of magnetic atom. However, it may
be feasible to grow crystals where some frac-
tion of the magnetic atoms are replaced by either
nonmagnetic atoms or magnetic atoms with dif-
ferent exchange interactions. Provided there is
no interaction between magnetic atoms on differ-
ent sides of the impurity, the effect of adding the
nonmagnetic impurity atoms is simply to break
up the long chains of magnetic atoms into chains
of differing lengths. The addition of magnetic im-
purities leads to more complicated effects since
the magnetic atoms in the chain are all in com-
munication with one another. In this respect, the
one-dimensional systems differ from those of
higher dimensions. In the latter, the addition of
small numbers of nonmagnetic impurities does not
prevent communication between widely separated
sites.

In this paper we will focus on one aspect of the
properties of disordered magnetic chains, namely,
the influence of disorder on the magnon spectrum.
Inelastic neutron scattering studies of the linear
chain antiferromagnetic (CD3)4NMnClz (TMMC) have
demonstrated the presence of spin waves at low
temperatures. '3 These excitations, which are
well defined as long as the wavelength is less than
the correlation length associated with the staggered
susceptibility, follow the sinusoidal dispersion
curve characteristic of a one-dimensional anti-
ferromagnet with nearest-neighbor, isotropic ex-
change interactions. As the temperature increases,
the spin-wave peaks broaden and the excitations

become overdamped, finally disappearing at high
temperatures.

The purpose of this paper is to outline numerical
procedures for the calculation of the magnon den-
sities of states in one-dimensional ferro- and
antiferromagnetic chains with nearest- neighbor
interactions. The use of the formalism is illus-
trated by two examples, an amorphous ferro-
magnetic chain characterized by a fluctuating ex-
change interaction, and a substitutionally disor-
dered antiferromagnetic chain resembling
Cu„Cr,,C12.

II. THEORY

In a, series of remarkable papers4 Dean showed
how Sturm's theorem could be used to calculate
the phonon density of states in a one-dimensional
disordered lattice with nearest-neighbor harmonic
interactions. The purpose of this section is to
outline how methods similar to those developed by
Dean can be applied to magnetic chains.

The first step is to derive the equation of motion
of th" spin operators. It will be convenient to con-
sider the ferromagnetic and antiferromagnetic
cases separately. We begin with the ferromagnetic
chain whose Hamiltonian is written

N 1

&=-2~ ~n.n. iS".S"'-~an&sH~Sg ~

Here J„„„is the exchange interaction between
sites n and n+ 1, g„is the g factor associated with
the atom on the nth site, H"„is the anisotropy field,
and $" js the spin. The equations of motion for
the operators S", (S,= S,+fS„)are written

f —S", = [S"„Hj.~ d n n

Assuming a ground state of the form fl„(S",= S")
and carrying out the conventional linearization
(S",—S")we obtain
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S".= (g„gsH&+2J„,„.&S"'+2J„,,„S"')S",

StlSFI+1 2J $5$ll 1 (3)

By postulating a harmonic time dependence e '"',
Eq. (3) can be rewritten

where

n +n n n+~n n 1Un 1+ n-1 nUn-1~ (4)

I/ S n/ ($n
)
t /2

A„,„„=—2Z„, , (S"S"")'/,
(6)

('I )

= &n, n-l. (8)

With the equations of motion written in the form
indicated in Eqs. (4)-(8) the evaluation of the
magnon frequencies reduces to the calculation of
the eigenvalues of the symmetric tridiagonal ma-
trix A. At this point the problem becomes iso-
morphic to the calculation of the phonon frequencies,
the only difference being that u in Eq. (4) is re-
placed by the square of the phonon frequency. In
fact if the anisotropy field is zero and all the Sn

are the same, then the calculation of the magnon
frequencies is identical to the calculation of the
squares of the vibrational frequencies of a chain
of atoms of unit mass whose force constant y„,„„

is equal to 2Jn, n+,S.
Because of this isomorphism the formalism

developed by Dean can be applied directly to the
ferromagnetic chain, it being necessary only to
express his variables o.

&
and P& (Ref. 5) in terms

of tha A„, in Eqs. (6)-(8). In such an analysis it
should be kept in mind that the ground state has
been postulated to be the state of maximum align-
ment. If the impurity spins are antiparallel to the

majority spins the Dean formalism is not applic-
able. Furthermore, the magnon frequencies must
be positive; negative eigenvalues are to be inter-
preted as an indication that the postulated ground-
state alignment is incorrect.

The calculation of the frequency spectrum of the
disordered antiferromagnetic chain is more com-
plicated. The difficulties appear at two levels.
First, there is the nature of the ground state, and

second, there is the effect of disorder on the low-
lying excited states. We will, in effect, circum-
vent the ground-state problem in the conventional
manner. That is, we linearize the equations of

motion by replacing S", by ( —1)"S", having as-
sumed that the odd-numbered spins point in the
minus direction, the even-numbered in the plus
direction. In the case of TMMC, where S=~, this
procedure is believed to yield frequencies which
are in good agreement with experiment. For spin
—,', the approximation is more crude. However,
it does give the correct wave-vector dependence
in the ordered limit; only the over-all normaliza-
tion is changed (for S =y2 the renormalization fac-
tor lies between 1 and 1.1; for S= —,

' it is equal to
2&)

The Hamiltonian for the antiferromagnetic chain
takes the form

N-1
X= 2 5 J„„„S"~ S"'-0 (- I)"g„/2sH"„S,".

n=i (9)
After linearization the equations of motion for the
S", can be written

[2J ( I)n 1$n+1
nyn+1

The presence of the factor (- 1)" on the left-hand
side of Eq. (11) leads to complications. Because
of it, the dynamical matrix whose eigenvalues are
the magnon frequencies is no longer symmetric.
As a consequence, the successive minors no long-
er form a Sturm sequence with the result that
Dean's method is not applicable.

To circumvent this difficulty, we make use of
the fact that the amplitudes Vn themselves form a
Sturm sequence provided V, is set equal to a con-
stant. This was first pointed out in connection
with the phonon problem by Rosenstock and
McGill. ' Their analysis also applies to the solu-
tion of (11), the main criterion being that the coeffi-
cients multiplying V„1 and V~1 have the same sign.

In order to evaluate the distribution of magnon
modes we define

e„(s&)= V„.,/V„,
and rearrange (11)to read

(12)

+ 2J„,,„(—1)" 'S" ' —(- I)"g„i/sH"„jS".

+ 2J ( ] )IlSllS II+1

( 1)IISIISII 1 (1())

Writing V„=S",/(S")'/ and assuming a harmonic
time dependence we obtain the result

( —I)"~V„=(g„y,sH„"+2Z„,„.,S""+2J„., „S"')V„

(
—[g„)2sH~+2J „„S"'+28„|.„$"—(- I)"(u] Z„,„(S"')'/

(S2+1)1/2 ( )
(13)
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for n = 2, . . . , n —1. For n = 1, we have (with
Vg= 1)

(~a +14'BRA+ 2~1.2~+ ~
2J (S'S )' (14)

We have carried out detailed calculations of the
distribution of modes in two special cases, an
amorphous ferromagnetic chain, and a binary
antiferromagnetic chain with parameters chosen
to resemble those of Cu„Cr,„C12. We consider the
former first.

Our interest in amorphous ferromagnets stems
from an analytic theory for the density of states
in these systems which has been developed by
Montgomery, Krugler, and Stubbs (MKS). " In
their model, the exchange interaction between
nearest-neighbor pairs is postulated to be a ran-
dom function characterized by a mean value and the
dispersion about the mean. In one dimension, their
approach leads to the result that the density of
states p(u&) can be written

Np(~)=, Imlim dh
27k 6 0 "-r

x [ra —ce —4S g(&o —ce )(1 —coax )]"' (I &)

for an isotropic exchange interaction. The fre-
quency-dependent effective exchange integral J(~)
has the form

J((u) = Z'+ a(&oG, ((o)- I)/2Z',

where 7 is the mean exchange interaction and

(16)

The function Gz(&u) is the Fourier transform of the

We denote the number of minus signs in the se-
quence e„.. . , e„byR(&o). Then, according to
Sturm's theorem, the Cauchy index of the function

[e„,(v)] ' over the interval (v„v~)is equal to
R(&o,)-R(&u, ). In light of the definition of the
Cauchy index, ' we conclude that tR(v„)—R(v, ) I is
the number of modes with frequencies between ~,
and co~ in a chain subject to the boundary condi-
tions V, =const, V„=O.

As with the ferromagnetic chain, the determina-
tion of the distribution of magnon modes is re-
duced to counting the number of minus signs in an
appropriate sequence. In connection with this, it
should be pointed out that the approach followed
for the antiferromagnetic chain (which can also be
applied to the ferromagnetic chain' ) will only work
provided the J„~,are all nonzero and have the
same sign. Also, the frequencies associated with
Eq. (11)occur in pairs, one positive and one nega-
tive. Imaginary frequencies are an indication that
the alternate-spin alignment postulated for the
ground state is incorrect.

III. APPLICATIONS

spin autocorrelation function for the ordered chain
with exchange interaction Z:

G (&u) = [(v —4ZS) - 16' S ] '~ . (16)

In order to test the validity of the MKS theory in
one dimension, we have undertaken a numerical
calculation of the density of states of a ferromag-
netic chain of identical spins and zero anisotropy.
The exchange integrals were chosen to be of the
form

J„,„,q
=Z(1 —

~ B+ ~BY),

where Y is a random number between zero and
one, and l Bl & 2. For this model we have

E=~PB . (2o)

The results of a numerical calculation based on
the Dean algorithm are shown in Fig. 1 for the
case B=1. The calculations were carried out for
a chain of 50000 spins. On the same graph, we
have also plotted the upper-half of the distribution
of modes for the ordered chain. It is seen that
the effect of disorder is to round out the singulari-
ty at the high-frequency end of the spectrum. Al-
though not apparent in the drawing, there is also
a, slight enhancement in the distribution at low
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FIG. 1. Histogram of the distribution of magnon modes
in an amorphous ferromagnetic chain of 50 000 spins.
Shown is the number of modes with frequencies between
co —0. 2 JS and &. The exchange integral is postulated to
vary as J{1—~+ 2 Y), where Y is a random number be-
tween zero and one. The upper-half ((d ~4JS) of the dis-
tribution of modes in the ordered chain is indicated by the
dotted curve.
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frequencies.
In Fig. 2, we have plotted the distribution of

modes obtained from the MKS theory with h=~P.
It is evident that the analtyical approach leads to
a density of states which is qualitatively correct,
apart from the singularity at the high-frequency
end. This singularity, which is a special feature
of one dimension, comes about because J(&u) is
real for ur & 8ZS. From this we conclude that the
MKS expression is a fairly reasonable "first ap-
proximation" provided the artificial singularity is
smoothed out.

The second application is to an antiferromagnetic
chain with the properties similar to the (hypothetical)
compound Cu, Cr, „C12.In spite of the fact that it is a
quasi-one-dimensional magnet, it is the only system
we are aware of where both solvent- solvent and solute-
solute exchange integrals are known. ' According
to Ref. 1, we have

Jc@-cu 60K, S "=
2 9

9NIO

4J0 0

4rl0
K
6) 3—
Dx

X =O. I

X =0.5

Jcr-cr = 6 Ky S"=2. 0
5x I03 X =0.9

We approximate Jcu c, by the geometric mean of
cu-cu a cr-cr~

~ca-cr= (~ca-cu~c~cr)' '= &9K.S/2

We have carried out calculations of the distribu-
tion of modes in a chain of 50000 spins for various

I I I I I
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FIG. 3. Histogram of the distribution of magnon modes
in Cu„Cr& „C12. Shown is the number of modes with fre-
quencies between (o and co —4 I(.

' in a chain of 50 000 spins
for x=0. 1, 0. 5, and 0. 9. Frequencies are measured in
K.
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FIG. 2. Histogram of the distribution of magnon modes
in an amorphous ferromagnetic chain of 50 000 spins ac-
cording to the theory of Montgomery, Krugler, and Stubbs
(Ref. 11). The number of modes with frequencies between
co=0. 2 JS and cu for 6=&J~ are shown. The histogram
was obtained by calculating the theoretical density of
states at the points co/2J$=0. 05+0. 1n, n=0, 1, 2, . . . ,
and multiplying the result by 0. 1.

values of x between zero and one. Our results for
x=0. 1, 0. 5, and 0. 9 are shown in Fig. 3. In
compiling the data, we have followed the customary
interpretation for negative eigenvalues and have
added together the number of modes in the fre-
quency interval co —hen &u & (d and —cu &u & —co

+ b,(d, where b+ = 4K. Particularly interesting
here are the data for x = 0. 1. The modes lying above
the Cr band are localized modes associated with
Cu impurities. Detailed calculations on chains of
80 spins show that the modes with energies between
136 and 140 K arise from isolated Cu atoms. Their
frequency is approximately equal to the precession
frequency in the exchange field associated with the
two nearest-neighbor Cr atoms. The modes near
114K come from Cu-Cu pairs, while the modes
near 128 and 146 K are associated with Cu-Cr-Cu
triplets. The degree of localization is indicated
by the fact that more than one Cr atom between a
pair of Cu atoms effectively isolates the Cu atoms
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from one another leading to two modes with fre-
quencies near 138K. As the concentration of Cu
atoms is increased, more and more modes appear
above the Cr band until at x =0.9 the spectrum re-
sembles the Cu density of states with some tailing
up to energies on the order of 150K.

It must be emphasized that our results are ob-
tained with a particular choice of Jc„~,. Other
choices will lead to quantitatively different dis-
tributions. A second point is that the Cu ion has
S= & ~ As noted above, the linearization in the case
of spin-,' is a particularly crude approximation.
Even with the correct exchange integrals, the theory
may be only qualitatively correct.

IV. DISCUSSION

The purpose of this paper has been to outline
methods for the calculation of the magnon density
of states in one-dimensional lattices with nearest-
neighbor interactions. Apart from the lineariza-
tion of the equations of motion, the calculations
are exact. No further approximations are needed
to handle the effects of disorder. Since calcula-
tions involving 104-105 spins are easily handled by
a computer, it is possible to simulate the behavior
of real systems with great accuracy. This sug-
gests one application, namely, the testing of ap-
proximate analytic theories for the density of
states in disordered compounds. Such tests are
particularly valuable for theories attempting to
characterize the behavior of amorphous (as op-
posed to substitutionally disordered} magnets. The
preparation of samples of high quality is often im-
possible for these systems, making comparison
between experiment and theory difficult.

A second area of potential application is in the
study of the excitations in real chains with small
numbers of impurities. The numerical studies
can be of help in identifying the local magnon
modes and inferring the strength of the solvent-

solute exchange interactions. In connection with

this, further theoretical work is needed. Quan-
titative estimates of the renormalization of the
local-mode frequencies would be particularly
valuable.

In their studies of the vibrational spectra of
disordered lattices Dean and Bacon' have shown
how Sturm sequence methods can be generalized
to two- and three-dimensional lattices. Subse-
quently, Payton and Visscher have carried out
extensive calculations using the Dean-Bacon ap-
proach. ' From the discussion in Sec. II, it is
evident that the methods of Dean and Bacon can
be applied to the calculation of magnon spectra in
disordered two- and three-dimensional ferromag-
nets.

As a final comment, we would like to point out
that considerable theoretical effort has gone into
the calculation of phonon distributions in disor-
dered chains. ' For the most part, these calcu-
lations are somewhat artificial since they assume
nearest-neighbor interactions. Moreover, in
the case of isotopic disorder, the effects asso-
ciated with realistic changes in the mass are
small. On the other hand, magnetic chains do not
suffer from either of these drawbacks. The in-
teractions are short range and the relative changes
in parameters associated with the impurity are
usually large. It is hoped that the possibility of
establishing a meeting ground between experiment
and theory will stimulate efforts to grow the dis-
ordered crystals and study their excitations.
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