
PHYSICAL REVIEW B VOLUME 8, NUMBER 5 1 SE PT EMB ER 1973

Thermoelectric Power of Chromium below the Neel Temperature
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The accurate determination of transport properties near the critical points is of great current interest.
We present here new data of 0.3% accuracy for the thermoelectric power S of chromium below the
Neel temperature T„which was obtained with a temperature difference of only 0.5 K. Extensive

computer fitting to diverse theoretically predicted forms for S(T) does not yield an unambiguous

critical exponent, nor does it let us make distinction between different forms. These ambiguities arise

from our ignorance of the functional form of the normal background of S and the lack of precise
knowledge of T„.The latter is due to the fact that the transition is of first order, and, it can be
argued, it masks a second-order transition occurring at a higher temperature if one approaches T„
from below. This higher temperature would then be the appropriate temperature for the analysis of
fluctuation effects.

I. INTRODUCTION

In recent years the anomalous behavior of trans-
port properties near critical points has received
much of the attention that the divergences in the
static properties did shortly before. There are
three main reasons for this delay: First, the na-
tures of the anomalies in electrical resistivity p,
the thermal conductivity», and the thermopower S,
for instance, are much less striking than those in
the specific heat or the magnetization; second, the
transport properties are experimentally more dif-
ficult to measure; third, theories predicting the
anomalies were only recently developed. It can,
of course, be argued that all these reasons depend
on just one fact: The temperature derivatives of
these transport properties, rather than the prop-
erties themselves, are divergent near the critical
point.

Of the transport properties mentioned, only the
electrical resistivity has been studied extensively.
This again is due to experimental difficulties in the
measurement of thermal conductivity and thermo-
power as compared to the relative ease with which
electrical resistivities can be measured. The prob-
lem, however, lies deeper: The imposition of a
temperature gradient on the sample always limits
the closest approach to T& possible and with a gra-
dient of b T it does not make sense to talk about an
approach to T& closer than —,'4T. Thus, one would
like to keep 4T as small as possible. On the other
hand, the quantity measured is generally propor-
tional to b, T and in order to measure it to a given
accuracy one would like to have b T large. Since
it is only the derivative of S that diverges at T~,
the gradient across the sample cannot be decreased
as T& is approached if it is to be measured with
constant accuracy.

These are, however, not the only reasons why it
is much harder to get, for example, thermopower

data for chromium with an accuracy comparable to
that of electrical-resistivity data for nickel. The
ferromagnetic phase transition of Ni is well known
to be of second order, while the nature of the anti-
ferromagnetic transition in Cr is not —although it
is hoped that it is of "nearly second" order with
some of the effects of the fluctuations still notice-
able. This means, among other things, that a first-
order transition interrupts what would have been a
second-order transition at a higher (or lower) crit-
ical temperature, depending on whether one is ap-
proaching T» from below (or from above), and,
more importantly, that the second-order Tz cannot
be measured, but only inferred from divergences.
If this first-order transition is sufficiently far from
the second-order transition it can happen that one
has never even entered the critical region.

When measuring the resistivity of Ni, '3 one knows
that the normal background contribution is quite
linear and it can be subtracted. This is not the
case for the therrnopower of Cr; far below T~ the
slope of S is of the same magnitude as and opposite
sign from the slope at T„. One last major differ-
ence concerns the forms of the functions predicted
to fit resistivity and thermopower, respectively.
%hereas it has been shown in a number of cases
that

—- —(e ' —1)+Bsp A
eT n

gives excellent fits over a large range of e =
~ (T

—Tc)/Tc I, the proposed functions for the thermo-
power include forms with two different exponents
of e.

Available data on the thermopower anomaly near
magnetic critical points are contradictory and con-
fusing. Especially perplexing are the elusive os-
cillations in thermopower seen in some samples of
Ni, and in Fe and FeCr alloys' near the Curie tem-
perature.
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In this paper we present new data of 0. 3/p accu-
racy of the thermopower of chromium below the
NOel temperature. We shall demonstrate that these
data can be fitted equally well by a number of dif-
ferent expressions proposed in the literature. This
leads us to the conclusion that data of much higher
accuracy are needed to distinguish between differ-
ent theoretical predictions.

II. THEORY

Two functional forms for the thermopower near
the critical point of a magnetic system have recent-
ly been proposed. Tang, Craig, and 1Qtchense use
the Gibbs-Duhem relation between the electrochem-
ical potential and the entropy to show that for an
itinerant-electron ferromagnet, like Ni, the excess
specific heat at the Curie point can be related to
the temperature derivative of the thermopower by

T =c,&~ (e—N, n, )

where e is the charge of the electron, N, is Avo-
gadro's number, and n, is the number of charge
carriers per atom. This excess specific heat has
been shown to be well described by a weakly diver-
gent power law, ' both above and below Tc

mag
el

The temperature derivative of the electrical resis-
tivity, in turn, has the same singularity as the spe-
cific heate:

(4)

the exponent of divergence for the specific heat;
y is that of the staggered or sublattice susceptibil-
ity. The intimate theoretical connection between
thermopower and resistivity is demonstrated again
by the fact that Suezaki and Mori ~ have previously
obtained an essentially identical expression for
dp/dT.

We have written Eqs. (5) and (6) in the form that
specifically allows for logarithmic singularities
(when the exponent of e goes to zero). Care must
be taken that the determination of the coefficients
A or B, is not dominated by the term —1 in these
expressions. This is done most easily by includ-
ing a consta, nt term, say, C, in the background.

For the real background function one is first
tempted to consider the behavior of S for molybde-
num and tungsten, 3 the two elements below Cr in
the periodic table (Mo is the closer analog of the
two since W is not strictly isoelectronic with Cr).
One quickly sees that this is inappropriate since
dS/dT for Cr well below T„ is considerably larger
than that of either Mo or W. One must therefore
look at the low-temperature data of Cr itself for a
clue to the background. Data over a large temper-
ature range ~' indicate that the background is not
a simple matter. There is no region where the
thermopower is well approximated by a straight
line. However, as we shall demonstrate, the in-
troduction of a parabolic background cannot be jus-
tified either since any improvement in the fit is il-
lusory, i.e. , only due to the additional free param-
eter.

III. EXPERIMENTAL PROCEDURE

Independent measurements of specific heat and re-
sistivity3 confirm Eqs. (3) and (4) with the same
exponent n. In analogy to this, we propose to fit
our data to an expression of the form

8S A
T—= —(e "—1}+background.

8T Q
(5)

x (e-'~'r' ~ —1)+background, (6)

where the first term is due to spin fluctuations and
the second term to the appearance of energy gaps
at the magnetic superzone boundaries. For S& 0 it
should hold that B&&0, B2&0; the second term
should dominate for small e. As in Eq. (3), n is

We defer comments on the meaning of this relation
and especially on the implied relation between spe-
cific heat and thermopower and, for the time being,
simply accept Eq. (5) as one of the functional forms
commonly used to fit critical data.

In the theory of Ausloos and Kawasaki ' the
thermopower of Cr below the NOel point is given by

T
BS 3 ((-&a+r-3& 1) ~

Bg Bg
sT n+y —1 —,'(n+y)

The sample was cut to the approximate dimen-
sions 1&&0.1x0.1 cm with a low-speed low-pres-
sure diamond cutting wheel (Macrotome) from a
high-purity "Iochrome" crystal (Iochrome is the
trademark of Materials Research Corporation}. It
was then given an acid etch in hydrochloric acid to
remove the worked surface. Visual inspection re-
vealed the sample to be composed of three large
crystals; however, x-ray analysis showed that the
orientation of these crystals is the same along the
length of the sample. In any case, there is not ex-
pected to be anisotropy in electron transport prop-
erties in chromium since the electron propagation
is always parallel to the magnetic lattice vector.
The residual resistance ratio R3QQ x/R4. 3x of
another crystal prepared by the same method was
approximately 70. The electrode junctions were
produced by spot welding copper leads to the sam-
ple.

The sample was mounted in a vacuum can im-
mersed in a well-stirred 10-gal-water -antifreeze
bath which was thermally insulated with two layers of
Armaflex insulation and aluminum foil. For the
initial cool-down liquid nitrogen was forced through a



THERMOELECTRIC POWER OF CHROMIUM BELOW. . . 2101

copper coil immersed in the liquid. A simple cop-
per-bar cold finger connected to a reservoir of a
mixture of dry ice and alcohol held the bath temper-
ature constant below room temperature; above
room temperature a proportional controller was
used. The bath temperature was measured with a
calibrated Leeds and Northrup platinum resistance
thermometer. The temperature gradient across
the sample was produced by a small Advance wire
heater and measured by two glass-lead thermistors
(Gulton Industries, Model 51CA3) mounted with
Thermocoat HT (Omega Engineering) directly over
the electrode junctions. The voltage drops across
the two thermistors, which were in series and had

room-temperature resistances of nominally 100
kQ and a typical sensitivity of 5% K, were mea-
sured by two type-K-5 Leeds and Northrup poten-
tiometer s. These were balanced simultaneously
with a Hewlett-Packard 3420B potentiometer which
monitored the current through the thermistors.
This current was supplied by a 2-V lead storage
battery and was typically 1 p,A. The thermal volt-
age across the sample was amplified by a factor of
10' with a Keithley 140 amplifier and read to 3-,' sig-
nificant figures on a Fluke 8300 digital voltmeter.

Every few degrees during the run the Advance
wire heater on the sample was switched off and the
sample came to equilibrium at the bath tempera-
ture. This provided the calibration points for the
thermistors against the platinum resistance ther-
mometer. The power to the Advance wire heater
on the sample was held constant during the whole
run.

After several preliminary runs, it was deter-
mined that a temperature gradient of 0. 5 K was the
best compromise between producing a signal which

could be resolved to the desired accuracy and ob-
taining closely spaced data points. Data were tak-
en in the temperature interval 275-312 K. Equil-
ibration time for each data point was typically 15
min after the bath had been raised to the new tem-
perature.

IV. RESULTS

The first step in the data analysis was the cal-
culation of the temperature differences along the
sample. As described in Sec. D, the thermistors
on the sample were calibrated against the platinum
resistance thermometer measuring the bath tem-
perature by switching off the heater establishing
the gradient along the sample. The function

InR = (A T + B)/(T + C)

described the resistance -versus- tempe rature rela-
tion of the thermistors very well. A, B, and C
were determined by least-squares analysis of 20
data points over a temperature interval 254 & T & 312
K. The root-mean-square error for these fits was
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FIG. 1. Experimental thermoelectric power of chro-
mium. Triangles: smoothed databy Moore et al. {Ref. 14),
accuracy + 1.2%. Circles: present work, accuracy
+ 0. 3%. The contribution of the Cu electrodes has been
subtracted according to Eq. {7).

of the order of 1.5 mK. The temperature gradient,
which was about 0. 5 K, and the average tempera-
ture of the sample were thus determined to 1.5

mK.
The experimental thermopower of Cr vs Cu

was then determined by dividing the measured volt-
age drop along the sample by the temperature dif-
ference. In order to arrive at the absolute thermo-
power of Cr we corrected from the measured val-
ues ~cr ~ cu according to Scr = ~cr ~ cu+ Sc~ ~ where 6

Sc„=( —0. 308+6.4x IO~T) pVK-'. (I)
This step is not really crucial since the slope of
Sc„ is much smaller than that of the normal back-
ground of Cr.

Figure 1 shows our experimental results for
Sc„as well as smoothed data of s 1.29O accuracy
by Moore et al. '4 which extend over a much wider
temperature range. We also list our results in
Table I. The combined uncertainties in the mea-
surement of temperature difference (+ 1.5 mK out
of 0. 55 K) and thermal emf (s 0.01 pV out of 20
gV) result in an over-all accuracy of about 0. 3%.

In order to compare the data to particular func-
tional forms such as Eqs. (5) and (6), one would
have to differentiate the data. However, due to the
limited accuracy this procedure would introduce
considerable scatter. One alternative to numeri-
cally differentiating the data would be a graphical
differentiation, i.e. , drawing a smoothed curve
through the data points and taking the slopes of this
curve with a protractor. This introduces a bias in
the result which was deemed unacceptable. A sec-
ond alternative —and the procedure followed in our
analysis-is the integration of the functional forms.

Experimental runs over a wider temperature
range indicate the presence of a distinct kink at
311 K, the thermopower being linear with tempera-
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TABLE I. Absolute thermoelectric power of chromium, Sc .

Temperature Thermopower
(Kj (I( v/K)

Temperature Thermopower
(K) (pV/K)

Temperature Thermopower
(K) (I V/K)

256. 264
256. 880
257. 406
257. 901
258. 446
258. 976
259. 455
260. 040
260. 766

261.191
261. 944
262. 457
263. 049
263. 474
263. 969
264. 442
264. 998
265, 587

266. 245
266. 658
267. 019
267. 372
267. 748
268. 144
268. 518
268. 905
269. 332

269. 623
270. 007
270. 392
270. 274
271.124
271.779
272. 338
272. 689
273. 145

273. 602
274. 133
274. 623
275. 154
275. 834
276. 312
276. 857
277. 349

19.54
19.62
19.67
19,73
19.77
19.87
19.93
19.97
20. 05

20. 04
20. 09
20. 13
20. 21
20. 21
20. 33
20. 35
20. 39
20. 42

20. 54
20. 55
20. 57
20. 59
20. 58
20. 67
20. 74
20. 79
20. 81

20. 84
20, 84
20. 82
20. 88
20, 98
20. 97
21.00
20. 98
21, 07

21.04
21.16
21.21
21.22
21.25
21.29
21.30
21.32

278. 193
278. 730
279. 177
279. 649
280. 184
280. 699
281.337
282. 064
282. 534

282. 877
283. 374
283. 793
284. 240
284. 706
285. 282
285. 729
285. 992
286. 431

286. 940
287. 416
288. 884
288. 285
288. 693
289. 194
289.489
290. 043
290. 492

290. 937
291.375
291.812
292. 238
292. 488
292. 952
293. 382
293. 792
294. 506

294. 926
295. 506
296. 029
296. 437
297. 048
297. 397
297. 702
298. 113

21.48
21.44
21. 52
21. 51
21. 54
21.59
21.61
21.63
21.70

21.76
21.71
21.78
21.81
21.78
21.81
21.82
21.82
21.83

21.82
21.82
21.90
21.88
21.86
21.85
21.88
21.89
21.81

21. 90
21.83
21. 88
21.86
21.77
21.66
21.64
21.72
27. 66

21.67
21.66
21.68
21.63
21.64
21.62
21.60
21.60

298. 485
298. 864
299.230
299. 594
299. 969
300. 345
300. 649
301.105
301.516

301.951
302. 389
302. 807
303. 149
303. 526
303.886
304. 259
304. 652
304. 656

305. 051
305. 470
305. 877
306. 288
306.682
307. 102
307. 523
307. 969
308. 393

308. 822
309.255
309.585
309. 820
309. 993
310.220
310.437
310.658
310.876

311.329
311.533
311.807
311.998
312.241
312.409
312.647

21. 53
21.60
21.62
21. 59
21.57
21.52
21.50
21.41
21.43

21.33
21.36
21.23
21.22
21.15
21.12
21.06
21.01
20. 96

20. 93
20. 89
20. 85
20. 77
20. 70
20. 59
20. 52
20. 38
20 ~ 29

20. 20
20. 10
19.90
19.80
19.74
19.64
19.53
19.40
19.31

19.03
18.96
18.86
18.83
18.75
18.71
18.69

ture within experimental accuracy for 311& T & 316
K. At a slightly lower temperature, however, the
absolute value of the first derivative starts increas-
ing again; for our analysis we only consider data
below 310 K, where the second derivative becomes
positive.

We will thus write Eq. (5) as
Defining

+ (background) +F
4p

8S A Tg —T
T—= — " —1 + background

8T Q Tg

and integrate:

(8) rT
Z= TS — SdT,

4 Fp
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—TNf T
n(1-n) n '

we can write this as

Z = Ax+ g(background) +F.
To is the temperature corresponding to the lowest
experimental point and the constant F is f ro SdT,
which cannot be determined from our experimental
data. For each exponent and Noel temperature
chosen the quantity x can be calculated for each da-
ta point. A background contribution linear in the
temperature, for example, leads to the form 7

Z= Ax+B'T +CT+E,
leaving four parameters to be determined.

For each choice of exponent and Noel tempera-
ture the root-mean-square (rms) deviation between
measured data and calculated fit was determined.
For this particular functional form the minimum
rms value occurred for n= —0.3 and T„=310.15 K.
As an indication of the quality of the fit, we find
that for this value of T„ the whole range of -0.7
& a & 0.0 gives rms values within 10$() of the mini-
mum. If an rms value in this range is now used
as a criterion we find that the following simpler
forms are also valid:

8S AT—= —~ +BT,8T n

T—= —(a —1)+BT,8S A
8T n

—= —(e ' —1)+C .8S A
8T Q

(10)

Despite the fact that these forms [(9)-(11)j con-
tain one less free parameter than form (8), their
minimum rms deviations fall within 10/p of the min-
imum rms deviation of form (8). The best-fit n
values are 0. 5, —0.1, and 0. 16 for forms (9)-(11),
respectively, while the corresponding Noel temper-
atures are 318.45, 310.25, and 311.95 K.

If one is trying to fit to the two-exponent forms
stemming from Eq. (6), one also finds minimum
rms values in the same range for the special three-
parameter choices:

T =(~' ——1) ——, (c~"-1),
8T 1 —y

(12)

T—= E ~ ——&~18S A g 8
y —,'y

&~lp8S A, B
8T 1 -y —'y (14)

where y = n+ y. Note the absence of all explicit
background terms. The lowest rms values now cor-
respond to exponents y equal to —0. 1, 1.0, and
0. 86, respectively, at T„equal to 310.35, 314.45,

and 313.65 K.
For each functional form, the contours of con-

stant rms deviations outline relatively narrow val-
leys in the exponent-Noel-temperature plane. For
a given T„, the 5% contour includes typically an
exponent + 0.3 and, for a given exponent, T„ is de-
termined to +3.0 K.

Inclusion of a background term in the forms (12)-
(14) gives improved fits. The functions

T—= (~ "-I)- —, (~ ' 1)+-CT,8S
8T 1-y ~y

gw/&+ CT
8$ A B
8T 1 —y 2

8S A, g B p~~'+c
T 1-y ay

(15)

(16)

(17)

give exponents y of —0.7, —0.4, and 1.18, respec-
tively, at T„equal to 310.15, 310.15, and 311.15
K; form (16) actually gives the smallest rms value
of the ten forms tested. This minimum value cor-
responds to a mean deviation of 0.05 p,VK which
is slightly smaller than the estimated uncertainty
of our data. Our analysis is thus limited by the
accuracy of our data, and we cannot distinguish be-
tween the different forms tested. Because of the
integration necessary to our analysis, the simplest
form of the function we are fitting to, viE. , Eq.
(8}with no background, has two free parameters in
addition to T„and the exponent. Using the back-
ground term BT and C in Eqs. (9)-(11)and (15)-
(17), corresponding to a linear temperature depen-
dence of the "normal" thermopower, we compro-
mise between an unsatisfactory background and a,n

excessive number of free parameters. This leads
quite naturally to the question of how good the data
would have to be such that we could make the dis-
tinction between the one-exponent or two-exponent
form, or ascribe a value to the exponent. To an-
swer this question, we have generated "perfect"
data, assuming a reasonable Noel temperature and
exponent, and subjected these data to our fitting
procedure. The resulting rms contours have the
elongated shape discussed above; from the rms con-
tour corresponding to an accuracy in the data an
order of magnitude better than our present data, we
estimate that one could determine the exponent to
+0.1 and T„ to +1.0 K.

The final outcome of these fitting procedures can
thus be summarized as follows: (i} With the pres-
ent data one cannot decide which theoretical form
is preferred. (ii) If the value of the NOel temper-
ature (i. e. , the temperature of the second-order
transition) were known exactly (by some other mea-
surement), then the exponent could be determined to
+ 0. 3. (iii) Data, with ten times the present accu-
racy would allow a reduction in the uncertainty of
the exponent by a factor of 3.
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V. DISCUSSION

The wide range in T„ for the different forms re-
flects the fact that we allowed it to be a completely
free parameter. Applying the traditional interpre-
tation to the exponents we can rule out some of the
fitting functions: o+ y should be 1.0+0.3 and thus
the two-exponent fits (12), (14), and (16) give un-
realistic exponents. Looking at the one -exponent
forms (8)-(11), the resulting exponent may be in-
terpreted either as a as in Eq. (3) or, alternative-
ly, as u+ y —1 if 6- e~ (see Ref. 11). Obviously
we cannot distinguish between the two interpreta-
tions.

Further discussion hinges on the order of the
transition at the Noel point of Cr. Not only does
this apparently depend strongly on the purity and
thermal history of the sample, ~~ but there are also
indications that a first-order transition may look
like a second-order transition if the sample has not
reached equilibrium, a process which may involve
times of the order of 10 s. The specific-heat
measurements of Gamier and Salamon indicate
that annealing sharpens the transition and decreases
the transition temperature concurrently, and ap-
parently shifts the behavior from second to first
order. The anomalous lattice expansion in the vi-
cinity of T„ further complicates the picture. For a
sample of the same origin and very similar thermal
history (1/L) (dL/dT) is negative in the tempera-
ture interval 306 ( T & 313 K, which might be the
reason why the derivative of our data has its maxi-
mum absolute value at a lower temperature than
where the kink occurs. Thus the second-order
transition would conceivably take place at a higher
temperature, but it is interrupted by the first-or-
der transition. We can estimate the extent of the
critical region according to '

1 kg~1
c 32 & gC Pg t

where n C is the jump in heat capacity per unit vol-
ume and $0 is the zero-temperature coherence
length. In Cr the problem seems to lie in the choice
of &C. Salamon et al. estimate &,=10, while
Gamier and Salamon' later quote a &C which yields
6~ —4x 10 '. Remembering that our temperature
difference was of the order of 0. 5 K we find that
our closest approach to T& corresponds to E &,

~ 1.7
x10; thus it is not clear whether or not we reach-
ed the critical region.

In Sec. II we have noted the recently proposed
relation between thermopower and specific heat, 6

Eq. (2). This relation is supposed to hold in the
immediate neighborhood of the critical point. It is
also a result of the free-electron model, ' which
rarely applies to critical phenomena. Using the
Hall constant R„=(n,ec) ', where c is the velocity
of light and e the charge of the charge carriers, we
can write Eq. (2) in the form '

T =(c—„~R„c)/N, .8$ m~ (2')
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This means that SS/S T and R„should have the same
sign in the vicinity of Tc if this relation between
thermopower and specific heat is to hold. In Cr
we have seen that BS/&T & 0, but R„)0; in Ni
ss/sr)0, butR„&O. "

Disregarding this difficulty with the sign we can
force agreement between our thermopower data and
the specific-heat data of Salamon, Simons, and
Gamier~~ by multiplying the values computed from
our data by a factor of order 1/120. As pointed
out by Gamier and Salamon the height of the peak
in c ~ depends strongly on sample preparation, but
an increase by a factor of 120 seems unrealistic.
For these reasons, we believe that any agreement
between c„~and TSS/ST is fortuitous. The be-
havior of S is qualitatively similar to that of the
resistivity, a connection which also holds in¹i

As a last point we would like to stress the fact
that presently available critical exponents for trans-
port properties which must be measured in the
presence of a temperature gradient cannot be taken
very seriously, nor can critical exponents which
fit data over less than one decade in &. Had we
terminated our analysis after fitting to Eq. (8) we
could quote a "reasonable" exponent and Noel tem-
perature. However, the other forms, which a Pri-
ori cannot be ruled out, demonstrate that a wide
variation of exponents and Noel temperatures is
equally "reasonable. " With the general lack of
knowledge of the background and the large number
of free parameters agreement with many functional
forms over certain temperature ranges is possible.
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