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Using permutation groups the Luttinger-Tisza method for the calculation of the low-tempera-
ture ordered state of spin configurations is generalized to treat more than one ion per unit
cell. It is found that, for the dipole-dipole interaction, not more than two ions per unit cell
can be treated by this method. On the other hand, for the exchange interaction it is possible
to treat the case of 2 ions per unit cell (m is an integer), provided the ions occupy special
positions.

I. INTRODUCTION

The Luttinger-Tisza (LT) method' for the calcu-
lation of low-temperature ordering in crystals con-
taining paramagnetic ions interacting via dipole-
dipole (DD) interactions has been successfully ap-
plied to the cases of one and two magnetically equiv-
alent ions per unit cell by several workers. The
method was originally proposed by Luttinger and
Tisza to calculate the low-temperature ordering of
ions, occupying the sites of a Bravais lattice and
interacting with each other through the DD interac-
tion. Recently, Niemeyer has extended the LT
method to include the exchange interaction and has
applied it to the case of cerium magnesium nitrate. '
Felsteiner and Misra have further extended Nie-
meyer's work to consider cases involving two mag-
netically equivalent ions per unit cell. Very re-
cently, Niemeyer and Blote have considered the
general problem of more than one ion per unit cell.
They use arguments based on the symmetry of a
matrix Y[much like the matrix A defined by Eqs.
(2a) and (2b) in Sec. II], for the case of two mag-
netically equivalent ions per unit cell, and show
that the eigenvectors of the energy matrix Y for the
case of one ion per unit cell can be used to con-
struct the eigenvectors of the corresponding matrix
Y for the case of two ions per unit cell. For the
cases of more than two magnetically equivalent ions
per unit cell, their examination of the correspond-
ing matrix Y leads them to the conclusion that these
cases cannot generally be handled by the LT meth-
od,

It is the purpose of this paper to investigate the
conditions under which it is possible to generalize
the LT method to treat more than two magnetically
equivalent ions per unit cell. This study is based
on the question of the existence of a group of per-
mutations which leave the matrix A invariant. If
it is possible to construct such a group for a par-
ticular case, then the conditions necessary for the
applicability of the LT method are fulfilled. It will
be seen that for the exchange interaction it is pos-

sible to treat certain special numbers of magneti-
cally equivalent ions per unit cell by the LT meth-
od. In Sec. II a brief review of the background the-
ory is presented. Section III deals with the details
of the generalization and Sec. IV deals with the sit-
uations to which the generalization is applicable.
The conclusions are summarized in Sec. V.

II. BRIEF REVIEW OF BACKGROUND THEORY

If the Hamiltonian describing the interaction be-
tween the various ions in the crystal can be written

z Z Z a'ss'
Pe a +sB &e&s&

(p, q label the ions), then for a regular distribution
of ions within the three-dimensional crystal (con-
taining n magnetically equivalent ions per unit cell),
one can rearrange Eq. (I) as

Sn

K= Z Z A, ~S)S S
4, $*1 o, B

(2)

having divided the crystal into Sn sublattices. Here
S denotes the ionic spin.

For the DD, nearest-neighbor (NN), and next-
nearest-neighbor (NNN) exchange interactions,

A;,'= Z J,", fori &j,
le{a)

A,", = Z J„',
le{a)llj

(2a)
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(2b)
The first term of Eq. (2b) represents the DD inter-
action, and the second term represents the exchange
interaction. In Eq. (2a) (j}denotes the set of lat-
tice sites generated by the application of 1"2 to ion
j (I' represents the lattice translations F = /a+ mb
+ nc; l, m, n are integers and a, b, c are the unit-
cell vectors). Thus the whole lattice is divided in-
to Sn sublattices by application of I 2 to the ver-
tices of n intercrossing parallelepipeds, each of
dimensions a, b, c; one vertex of each of the par-
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8a

Z (( ~ $(=Bn (4)

also satisfy the strong" condition

$, =1 (alii)

Niemeyer3 proves a theorem whereby the task of
finding the eigenvalues and eigenvectors of the 24n
~ 24n matrix A is reduced to that of finding the ei-
genvalues and eigenvectors of Sn 3X3 matrices,
provided that it is possible to construct a group
of Bn commuting permutations P, (operating on
elements numbered 1, 2, . . . , Sn), having the

property

Ap ip ~=A)~ . (8)

It follows that P, = 1. According to the theorem,
then, the eigenvectors of the matrix A can be writ-
ten as

q(k, o. ) = q(k)y, (n) (k = 1, 2, . . ., Bn; a = x, y, z) .
(7)

In Eq. (7) the q(k) are the common eigenvectors of
the group of permutations P, (t= 1, 2, . . ., Sn )The.
p~(a) are the eigenvectors of the matrix L~, whose
elements are defined as

allelepipeds is located at one of the n ion sites in
the unit cell. In Eq. (2b) g' represents the diag-
onal elements of the g tensor (a coordinate system
in which the g tensor is diagonal is chosen), r&& is
the vector from ion i to ion j; &i& = 1 if i and j are
nearest or next-nearest neighbors, 0 otherwise;
and vi& is the exchange-interaction constant be-
tween ions i and j.

Using a set of wave functions which are direct
products of the one-spin wave functions, the ex-
pectation value of X can be expressed as

E = &Z) = Z Z A;,'(', (', , (2)
i ) js'1 g)

where

~,. =(s,. )/s .
According to the LT method the minimum value

of E is the lowest eigenvalue of the matrix A, pro-
vided that the eigenvectors which satisfy the
weak" condition

eigenvectors (7) is then the lowest value of energy
given by Eq. (8).

III. DETAILS OF THE GENERALIZATION

We first review the conditions that must be satis-
fied in order that the eigenvectors may be written
in the form of Eq. (7): (a) It must be possible to
construct a group of Sn permutations satisfying Eq.
(8), acting on the 8n ions situated at the vertices of
parallelepipeds. One of these permutations is the
identity permutation, and the others are broken in-
to cycles of two elements each, with each element
appearing only once in each permutation. (b) All
P&'s must commute with each other so they have a
common set of eigenvectors. (c) The eigenvalues

&p] must be such that Ep& = 1.
It is also noted that expressing the eigenvectors

of A in the form given by Eq. (7) is equivalent to
first diagonalizing the matrix A in the subspace
(i,j) (corresponding to the various ions 1, 2, . . . , Bn)
and then diagonalizing in the subspace (a, P) (cor-
responding to the individual spin spaces). Since
the elements of q(k) are either I/v'(Bn) or —I/K(Bn),
the eigenvectors r)(k, o. ) correspond to ferromag-
netic, antiferromagnetic, or layered-antiferromag-
netic ordering of spins. Then, normalization of
g(k, a) (i.e. , fulfillment of the weak" condition)
implies the fulfillment of the "strong" condition.

Taking cognizance of the conditions (a), (b), and

(c), we now proceed to discuss the cases corre-
sponding to different values of n.

A. Case for n=1

This case has been discussed in Ref. 3. The
eight sublattices are obtained by application of I'
to the vertices of a parallelepiped of dimensions a,
b, c with one of the vertices situated at the given
ion in the unit cell; the vertices are labeled
1, 2, . . . , 8. For DD and exchange interactions, the
group of permutations is listed in Table I. For
reference purposes, we denote this group as P '

(i = 1, 2, .. . , 8). The corresponding eigenvectors
q(k) (k = 1, 2, . . . , 8), expressed as column vectors,
are given in Table II. The eigenvalues of the per-

L","=RA,'f ep(, ~)(k) (8)
TABLE I. The group of permutations P& (t=1, 2, . . . ,

8) for eight elements. It is easily seen that fP&, P& ]= 0
for all t, t'.

where the summation in Eq. (8) can be easily shown

to be independent of i, and e~«»(k) is the eigen-
value of the permutation P(i, j) containing the cycle
(i, j), with respect to the eigenvector q(k). When

the required conditions are satisfied so that the
eigenvectors can be expressed in the form given by

Eq. (7), it is seen that the "weak" condition does
indeed imply the strong" condition. The lowest
eigenvalue of the matrix A corresponding to the

P& =I (Mentity)
P, =(X, 2) (3, 4)
P, =(i, 3) (2, 4)
P4=(1, 4) (2, 3)
P, =(X, 5) (2, 6)
P, =(i, 6) (2', 5)
P, =(X, 7) (2, 8)
P =(1, 8) (2, 7)

(5, 6) (7, 8)
(5, 7) (6, 8)
(5, 8) (6, 7)
(3, 7) (4, 8)
(3, 8) (4, 7)
(3, 5) (4, 6)
(3, 6) (4, 5)
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Where v 8n = 0
(',l'Where v 8y=

C,'l

TABLE II. Eigenvectors q(k) for P& (t =1, 2, . . . , 8).

q(1) q(2) q(3) q{4) q(5) q(6) q(7) q(8)

(:)' (',)' U (:)' U' (",)'(,",
~ (."I q{1)

q(2)

q(3)

q(4)

q(5)

q{6)

q(7)

q(8)

P& P, P3

1 -1
1 —1

P5 Pe P, P8

1 1 1 1
—1 1 1 -1

1 -1 -1
—1 -1 -1 —1

1 -1
-1 -1 1 1

1 -1 —1 1

TABLE III. Eignevalues of the vectors q{A,) under the
operations P& ()=1, 2, ' '', 8).

mutations are given in Table III. It is easily seen
that conditions (a), (b), and (c) are fulfilled for this
case.

B. Caseforn=2

This case has been discussed in Ref. 4. The
sixteen sublattices are obtained by application of
I' to the vertices of two intercrossing parallelepi-
peds of dimensions a, b, c, one vertex of each
being situated at one of the two ions in the unit
cell. The indices 1, 2, ..., 8 label the vertices of
one parallelepiped [as in Sec. IIIA] and the indices
i + 8 = 9, 10..., 16 label the vertices of the other
parallelepiped. An inspection shows that the cor-
responding group of sixteen permutations P~'~ (giv-
en in Table IV) can be expressed as

I 1PI+8, k+8
~

I I

L J
I

IP $,k+8

L, J
(i=1, 2, .. . , 8; j=1,2, . .. , 16) . (9)

Here P" *' refers to the group of permutations
obtained from the group P" (i = 1, 2, . . ., 8) by re-
placing each elementi by the element i+8. P"8
refers to the set of eight permutations, each per-
mutation consisting of eight cycles, each cycle con-
taining one element from i (= 1, 2, . . ., 8) and one
element from i+ & (= 9, 10, ..., 16) in such a way
that any side of the parallelepiped, the vertices of
which are labeled 1, 2, ..., 8, goes over into a par-
allel side of the parallelepiped with the vertices
labeled 9, 10, ..., 16 under the permutations P""8.
[In general, the following notation will hereafter be
used. Both P" and P'" "" (i=1, 2, .. ., 2") will
refer to sets of 2 permutations, each permutation
containing 2" cycles. P"" will refer to a set
of 2 permutations, each permutation containing
2 cycles. The permutations for the case n = 2
are easily derived from the knowledge of the per-

mutations for the case n= 2 ' in the same fashion
as permutations for the case n= 2 were derived
from those for the case n= 1, as expressed by Eq.
(9) above ].

The eigenvectors Q(j) (j= 1, 2, .. . , 16) can be
simply expressed in terms of the eigenvectors q(k)
(k=1, 2, . . . , 8) for the case n= 1 as follows:

Q(kk —)) —
g2 ( (k)) ' Q)kk) g2 (- (k))

(10)
The eigenvalues of P& (t= 1, 2, .. ., 16) with respect
to Q(j) as given by Eq. (10) are listed in Table V.

It is easily seen that for this case the conditions
(a), (b), and (c) are satisfied.

C. Case for n = 2~ (m & I)

In this case the whole lattice is divided into 8&&2"

sublattices which are obtained by application of
~ to 8X2 vertices of 2 intercrossing parallelepi-
peds, each of dimensions a, b, c; one of the ver-
tices of each parallelepiped being situated at one of
the ions in the unit cell. An inspection of the group

TABLEIV. Thegroupof permutationsP& {t=l, 2, .. . ,
16) of sixteen elements. It is easily seen that [P&, Pq.]
= 0 for all t, g'.

Pf =I (Mentity)
P2=(1, 2) (3, 4) (5, 6) (7, 8) (9, 10) (11, 12) (13, 14) {15, 16)
P3=(1, 3) (2, 4) (5, 7) (6, 8) (9, 11) (10, 12) (13, 15) (14, 16)
P4=(1, 4) (2, 3} (5, 8) (6, 7} {9, 12) (10, 11) (13, 16) (14, 15)
Ps=(1, 5) (2, 6) (3, 7) (4, 8) (9, 13) (10, 14) (11, 15) (12, 16)
P&=(1, 6) {2, 5) (3, 8) (4, 7) (9, 14) (10, 13) (11, 16) (12, 15)
P7=(1, 7) (2, 8) (3, 5) (4, 6) (9, 15) (10, 16) (11, 13) (12, 14)
P8=(1, 8) (2, 7) (3, 6) (4, 5) (9, 16) (10, 15) (11, 14) (12, 13)
P&=(1, 9) (2, 10) (3, 11) (4, 12) (5, 13) (6, 14) (7, 15) (8, 16)
P10 = (1, 10) (2, 9) (3, 12) (4, 11) (5 14) (6, 13) (7, 16) (8, 15)
P11=(1, 11) (2, 12) (3, 9) (4, 10) (5, 15) (6, 16) (7, 13) (8, 14)
P12 —-(1, 12) (2, 11) (3, 10) (4, 9) (5, 16) (6, 15) (7, 14) (8, 13)
P13 = (1, 13) (2, 14) (3 ~ 15) (4, 16) (5, 9) (6 ~ 10) (7 ~ 11) (8, 12)
P14=(1, 14) (2, 13) (3, 16) (4, 15) (5, 10) (6, 9) (7, 12) (8, 11)
P15=(1, 15) (2, 16) (3, 13) (4, 14) (5, 11) (6, 12) (7, 9) (8, 10)
P16=(1, 16) (2, 15) (3, 14) (4, 13) (5, 12) (6, 11) (7, 10) (8, 9)
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TABLE V. Eigenvalues of the vectors q(k) under the operations Pt (t=1, 2, . . . , 16).

2029

q(1)

q(2)

q(3)

q(4)

q(5)

q(6)

q('7)

q(S)

q(9)

q(10)

q(11)

q(12)

q(13)

q(14)

q(15)

q(16)

P1 P2

1 1

P3

-1 —1

P4 P5

1 1

1 1

1 —1

1 —1

—1 —1

—1 —1

1 1

1 1

—1 —1
—1 —1

1 —1 —1 1

1 —1 —1 1

1 1 1 —1

1 —1

Ps

1 —1

1 —1 —1

1 1 —1

1 —1 1

1 1 —1

1 —1 1

11 12 13 14 15 P16

1 1 1 1 1 1
—1 —1

1 -1

—1 —1

1 1

1 1

1 —1

—1 1

1 -1
-1 1

1 —1

of permutations, eigenvectors, and eigenvalues for
the cases of n=2 and n=2' ions per unit cell gives
the prescription of how to deduce the details for the
case of n = 2 "from those for the case of n= 2 .
For example, for n= 2 one has, using P" (i = 1,
2, .. . , 16}for the case of n= 2, the group of per-
mutations

T I

I P&Q& I Pf+BX2~, $+Sx2~ I

I i I

I $, $+ax21 Ip
I

L

(j = 1, 2, .. . , 32) (11)

and the corresponding eigenvectors

Q(22 —1)=
1
—
2(2(k)) ' Q(2k)= g2 (-2(k))

(k=1, 2, .. ., 16), (12)

where q(k) are the eigenvectors for the case n = 20.
In general then, if P" denote the group of per-

mutations for the case of n= 2, the group of per-
mutations for the case n= 2 "can be expressed as

and the corresponding eigenvectors are

Qt2k —1)= g2 ( (k)) ' Qt2k)= g2 (- (k))

(k = 1, 2, . . . , 2 ), (14)

where (I(k} are the eigenvectors for the case n= 2 .
In the form of Eq. (14) the (2)(j) constitute an ortho-
normal set.

D. Case for n ~0

(no=odd interger different than 1, m=1 or an
even integer). Let us first consider the case m = 1.
It is then not possible to express the permutations
as products of cycles, each cycle containing two
elements, each element occurring once only in each
permutation, since the number of elements is odd.
Thus the LT technique using permutation groups is
not applicable to the case where n ( & 1) is odd. Al-
so, to the case where n is an even multiple of an
odd number, the LT method using permutation
groups is not applicable since, as shown in Sec.
III C the solution for the case n= 2nD is obtained
from that for the case n = no.

p f+8X2 $+8X2~fft fft IV. SCOPE OF APPLICABILITY

f 4,8X25t

(j = 1, 2, . .., 2 '; i = 12 22 .. ., 2 ) (13)

The interactions and configuration of ions for
which Eq. (6}is satisfied, i.e. , to which the LT
method using permutation groups is applicable, will
be analyzed in this section.
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A. Case forn=2 and 2'

As discussed in Refs. 3 and 4, the symmetry of
the matrix elements of A under the group of per-
mutations P, as expressed by Eq. (6) is satisfied
for both the DD and exchange interactions.

B. Case forn=22

In order to simplify the discussion, the case of
four ions distributed on a two-dimensional (2D) lat-
tice will be presented first. (The results for the
3D lattice and for higher values of n can be easily
derived using the same arguments as for the 2D
lattice for n= 4. ) Let us designate the four ions
within the unit cell by the letters A, B, C, D. In

general, ABCD form a quadrangle. In 2D the four
ions generate sixteen sublattices by application of
I" = 2la+ 2mb (l, m = integers) to the vertices of
four intercrossing parallelograms of dimensions
a, b, one of the vertices of each parallelogram
being located at one of the four ions A, B, C, D
(see Fig. 1, which also depicts the labeling of the
sixteen ions). The group of permutations relevant
to this case is P" (i = 1, 2, .. ., 16) and is given in
Table IV. It is easily seen from Table IV that,
since the DD interaction between two ions i and j
depends upon the vector r&& joining them, not all
the permutations P& (t= 1, 2, . . ., 16) satisfy Eq.
(6). For example, using Pm, we see that

(15)Ag gp 4=A~&Agg,

since rz, &r,4. (This is true even if ABCD forms
a parallelogram. ) It is then concluded that for the
DD interaction it is not possible to treat the case
of n=4 for a 2D lattice by the LT method, using the
permutation groups Simil. arly, for n= 2 (m &2),
DD interactions cannot be treated by this method
in either 2D or 3D.

I I
12

0 ~ ~

10 14

C&
4' 7 8

) 2(g)

FIG. 1. Case of four ions per unit cell of a two-di-
mensional Bravais lattice. The configuration and labeling
of the ions giving rise to the sixteen sublattice is indi-
cated.

On the other hand, for the NN and NNN exchange
interactions only between the ions, which depend
on the length of the vector, rather than the vector
itself, separating the two ions (the case of NN ex-
change interaction only is obtained by putting the
NNN exchange interaction to zero), it is possible
to treat by the LT method the case n= 4 for a 2D
latticeprovidedthat(a)the A, B, C, D form a par
allelogram with unequal sides, and (b) the diagonals
AC and BD are each of greater length than either
of the sides AB and AC. This can be seen by noting
that the group of permutations relevant to this case
(Table IV) transforms any side of the four parallel-
ograms (ABCD and images) of Fig. 1 into a parallel
side (in the same figure), whereas any diagonal of
the parallelograms ABCD and its images is trans-
formed into some parallel or nonparallel diagonal
of the same four parallelograms. Thus, if in the
element A&&, ij represents a side of any of the par-
allelograms ABC' and its images, then it will cor-
respond to either NN or NNN exchange interaction,
and for this element Eq. (6) will be satisfied, since
under the group of permutations the length x&& re-
mains invariant. However, if ij represents any di-
agonal of ABCD or of its images, then A~& under
the operation of permutations goes into A, P&. , where
either r, &

= r,.~& (parallel diagonals) or r~& & rq~&~

(nonparallel diagonals of ABCD and its images).
Fulfillment of Eq. (6) then requires that both the
diagonals AC and BD be greater in length than both
the sides AB and AC so that A, &

=A, P&i = 0. [In par-
ticular, note that for the NN and NNN exchange in-
teraction

(16)Ag~@=Aas =0=Ai4

in contrast to Eq. (15).]
It is also seen, using the same arguments and

considering only the NN exchange interaction, that
the method is applicable to three additional config-
urations: (i) Sides AB and AC of the parallelogram
are equal to each other, but smaller than the diag-
onals AD and BC. (ii) one of the diagonals, say
BC, is smaller in length than one of the sides, say
AB, but greater in length than the other side AC.
(iii) ABCD is not a parallelogram; however, two
opposite sides of it are equal in lengthbut , smaller
than both the diagonals and both the remaining sides.

We now consider the case of four ions per unit
cell distributed on a 3D lattice, requiring a group
of 32 permutations. The four ions per unit cell
generate 32 sublattices by application of ~ to the
vertices of four intercrossing parallelepipeds of
dimensions a, b, c, one of the vertices of each
parallelepiped being situated at one of the four ions
A, B, C, D. (Note that here ABCD, which, in gen-
eral, constitute the vertices of a tetrahedron, has
seven images. ) With regard to the NN and NNN ex-
change interactions between the ions, the LT meth-
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od is applicable to the following configurations,
taking into account the fact that under the operation
of permutations each side s of the tetrahedron is
transformed into the side s' of the tetrahedron
which does not have a common vertex with s or into
the images of s and s'. The four smallest sides
(of the six) of the tetrahedron constitute two pairs
a, 5; each pair consists of two sides (without a
common vertex) of equal length. The lengths of
the remaining two sides may or may not be the
same. (The case when the smallest two sides of
the tetrahedron are equal in length and do not have
a common vertex and the remaining sides of the
tetrahedron are unequal in length can be treated
for the NN exchange interaction only. ) When the
sides of the tetrahedron constitute three pairs a,
b, c, the sides of each pair are equal in length and
do not have a common vertex, then two of the three
pairs could be of the same length, different from
that of the third pair. [When a, b, c are of the
same length, the case of NN exchange interaction
only can be treated. On the other hand, when the
lengths of a, b, c are unequal the cases of NN,
NNN, and NNNN (next-next-nearest neighbor) can
also be treated. ]

When the four ions lie in a plane, in a 3D lattice,
the configurations (a) and (b) as stated for the 2D
case must be satisfied for the NN and NNN exchange
interactions only. The method is also applicable,
considering only the NN exchange interaction, to
the configurations satisfying the conditions (i), (ii),
and (iii) for the 2D lattice discussed above. [In the
following discussion the term tetrahedron also in-
cludes the case of parallelogram (or quadrangle)
when the four iona lie in one plane. ]

C. Case for n = 23

For the applicability of the method it is necessary
that the eight ions per unit cell lie on the vertices
of two tetrahedrons of equal dimensions, not nec-
essarily parallel to each other. The whole lattice
is divided into 64 sublattices by the application of
~ to the 64 vertices of 8 intercrossing parallel-
epipeds each of dimensions a, b, c, one of the ver-
tices of each parallelepiped being situated at one
of the eight ions; the relevant group of permuta-
tions consists of 64 elements. Depending upon the
relative lengths of the various sides of the consti-
tuting tetrahedrons the cases of NN-only, NN- and
NNN-only, and NN-, NNN-, NNNN-only exchange
interactions can be treated in the same way as dis-
cussed for the case n = 4, provided that the two tet-
rahedrons are either (i) far enough" apart (not
necessarily parallel to each other), implying that
the length of any intertetrahedron side (a line join-
ing any vertex of one tetrahedron with any vertex
of the other tetrahedron in the unit cell) is large
enough not to contribute to NN, NNN (and NNNN)

exchange interactions, or (ii) sufficiently close"
and parallel to each other, where the term suffi-
ciently close" implies that some intertetrahedron
sides correspond to NN or NNN (or NNNN) ex-
change interaction such that the resulting elements
of A satisfy Eq. (16).

Special cases occur when the eight ions occupy
the vertices of a parallelepiped or a prism having
a trapezoidal cross section. For the case of the
parallelepiped, the various conditions are (a) the
body and face diagonals are larger than the sides.
The following situations can then be treated. When
the three sets, consisting of four equal sides of the
parallelepiped each, are of unequal lengths, all
NN, NNN, and NNNN exchange interactions can
be treated; when two of the sets are of equal
length, different from the length of the third
set, only the NN and NNN exchange interactions
can be treated; and when all the three sets are of
equal length, only the NN exchange interaction can
be treated. (b) When there is one set t smaller in
length than any of the other two sets, and the two
faces f of the parallelepiped containing f are such
that one of their diagonals is larger in length than
the length of t but smaller than those sides of f
which are different from t, then only the NN ex-
change interaction can be treated. (c) For the case
of the prism, with a trapezoidal cross section, the
conditions are as follows: (i) the NN and NNN ex-
change interactions can be treated when any oppo-
site sides s~ of the trapezoid are equal, s& being
smaller than the other two sides sa and the lengths
of both the sides s2 are greater than the height of
the prism. (ii) Only the NN exchange interaction
can be treated when all the conditions remain the
same as in (i), except that here the prism height
is greater than the lengths of both the sides sa.
[In deducing (a), (b), and (c), use has been made of
the fact that under the operation of the groupof per-
mutations, any side of the parallelepiped trans-
forms into a paralle1. side of the parallelepiped and
any face diagonal transforms into the other diagonal
of the same face or into any of the two diagonals
of the opposite face. Similar considerations apply
to the transformation of the prism under the group
of permutations. ]

D. Case for n=24

The method becomes applicable when the sixteen
ions lie on the vertices of four tetrahedrons iden-
tical in dimensions (128 sublattices, 128 elements
in the group of permutations) which are either "far
enough" apart from each other, or obtained by a
far enough" displacement, not necessarily paral-

el, of a unit of two parallel sufficiently close" tet-
rahedrons, or if the two units are not 'far enough"
apart, they are parallel and sufficiently close" to
each other. (The various exchange interactions
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can be considered, depending upon the relative
lengths of sides of the constituting tetrahedrons, in
the same way as discussed for the case n= 4. )

Special cases occur when the sixteen ions per
unit cell are located at the vertices of two separated
identical parallelepipeds or two separated identical
prisms having trapezoidal cross sections. The
various conditions regarding the distances between
the ions can be deduced inthe same way as for n = 2'.

E. Case for n = 2~ (m & 5)

Generalizing in the same fashion as for the cases
in Secs. IVA-IVD, it is seen that the method is
applicable under appropriate conditions regarding
the relative lengths of the sides of the constituting
tetrahedrons when the ions are located at the ver-
tices of 2 "~ separated tetrahedrons of identical di-
mensions, which may or may not be parallel to
each other, depending upon the intertetrahedron
distances. (There are 2 "sublattices and 2
elements in the group of permutations. )

Special cases occur when the ions in the unit cell
are located at the vertices of 2 separated paral-
lepipeds or prisms with trapezoidal cross sections.
The conditions regarding the distances between the
various ions in the unit cell can be deduced in the
same way as discussed in the preceding examples.

V. CONCLUDING REMARKS

The main points of the investigation presented in

this paper regarding the general applicability of
the LT method using permutation groups can be
summarized as follows.

(i) It is possible to treat the cases of one and two
magnetically equivalent ions per unit cell for both
the DD, NN, and NNN exchange interactions.

(ii) It is also possible to treat, for the NN and
NNN exchange interactions, under appropriate con-
ditions regarding the configuration of the ions in
the unit cell as discussed in Sec. IV, those cases
of magnetically equivalent ions where the number
n of ions per unit cell can be expressed in the form
n=2 (m &I).

The conclusion (i) above has also been arrived at
by Niemeyer and Blote ' using the properties of
their matrix Y. Their method, however, fails to
bring out the conclusion stated in (ii) above.

It should be remarked that there may be cases of
more complicated configurations than discussed in
this paper for n= 2 (m& 3) where the method is
applicable. Nevertheless, the configurations of
ions in a unit cell discussed here do indeed amply
demonstrate the general applicability of the LT
method using permutation groups.

ACKNOWLEDGMENTS

The author is grateful to the National Research
Council of Canada for financial support and to Dr.
B. Frank for a critical reading of the manuscript
and useful comments.

J. M. Luttinger and L. Tisza, Phys. Rev. ~70 954 (1946).
J. M. Daniels and J. Felsteiner, Can. J. Phys. 42,
1469 (1964), application to cerium magnesium nitrate
(CMN); J. Felsteiner and A. Rabinovitch, Solid State
Commun. 7, 1649 (1969), application to CMN, neody-
mium ethyl sulfate (NdES), and DyES; J. Felsteiner,
J. Chem. Phys. 52, 2784 (1970), application to
Tb(OH)3, Dy(OH)3, Ho(OH)3, Nd(OH)3, Gd(OH)3, and

Er(OH)3, J. Felsteiner, J. Phys. C 3, L174 (1970),
application to ErC13 ~ 6H20; E. Lagendijk, H. W.
Blote, and W. J. Huiskamp, Physica (Utr. ) 61,

220 (1972), application to CMN, DyES, ErEs, and
ErC13 ~ 6H20; see also Ref. 3 for an application to
CMN, and Ref. 4 for application to GdC13, Gd(OH)3,
Tb(OH)3, Ho(OH)3, Nd(OH)3, and Er(OH)3.
Th Niemeyer Physica (Utr ) 57 281 (1972)
J. Felsteiner and S. K. Misra, Phys. Rev. B (to be
published); also see S. K. Misra and J. Felsteiner,
Phys. Rev. B (to be published) for application to
GdC13 6H20.
Th. Niemeyer and H. W. J. Blote, Physica (Utr. ) (to be
published).


