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The crystallographic and magnetic phase transitions observed in TbPO, and TmAsO, are described
phenomenologically. A symmetry-adapted spin Hamiltonian, involving various dipolar and quadrupolar
interactions, is constructed and treated in the molecular-field approximation. One or two phase
transitions are found according to the values of the interaction parameters, and it is shown that the
crystallographic distorsion in the paramagnetic distorted phase is monoclinic. The results are interpreted
in terms of the Pytte and Stevens model for rare-earth vanadates.

I. INTRODUCTION

Rare-earth vanadates, arsenates, and phos-
phates, which crystallize in the tetragonal zircon
structure, exhibit interesting crystallographic and
magnetic phase transitions. The crystallographic
distortions observed in DyVO,, ! DyAsO,, 2
TbVO,, * ThAsO,, * TmVO,, * and TmAsO,® are be-
lieved to be Jahn-Teller induced. In DyVO,,®
DyAsO,, 2 TbVO,, * and TbAsO,, * a second phase
transition is observed at a lower temperature and
corresponds to the onset of colinear antiferro-
magnetic ordering in the basal plane perpendicular
to the optical axis. Various theories of these
successive phase transitions have been proposed
recently, "1°

The properties of ToPO, are somewhat dif-
ferent.!'~!5 At T,=3.5°K, TbPO, undergoes a
crystallographic distortion from tetragonal to
some lower symmetry, !*'!* orthorhombic 0# mono-
clinic. At Ty =2.2°K, antiferromagnetism ap-
pears along a direction which is not in the basal
plane but well off the ¢ axis in the (110) plane, '*:!5
In this paper we shall give a phenomenological
description of these two successive phase transi-
tions, using the molecular-field appraximation
(no sublattice structure will be introduced, since
we shall not study the influence of a magnetic field).
The use of this approximation is justified at least
for the crystallographic distorsion, since the
Jahn-Teller interactions are suspected to be of a
long range. We shall prove also that the distor-
sions observed in TbPO, and TmAsQO, are of the
same nature.

This paper is organized as follows: In Sec. II,
we discuss the symmetry of the dipolar and qua-
drupolar operators used to construct the spin
Hamiltonian describing TbPO,. In Sec. I, we
use a quadrupolar Hamiltonian having the re-
stricted axial symmetry defined in Ref. 16 and we
investigate the possibility of an orthorhombic dis-
tortion of the lattice followed by a magnetic tran-
sition. In Sec. IV, we study the possibility of
successive orthorhombic and monoclinic distor-
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tions., Thetwo above situations, in fact, have to be
rejected and in Sec. V we suppose that the dis-
tortion below Tp is monoclinic. The two transi-
tions observed in TbPO, are reproduced and we
look for the possibility of three successive phase
transitions. In Sec. VI we discuss the properties
of TmAsQ, and compare them to those of TmVO,
and TbPO,. Finally, in Sec. VII the results are
interpreted in terms of the Pytte-Stevens model’
proposed for rare-earth vanadates.

II. DIPOLAR AND QUADRUPOLAR OPERATORS

The ion Tb* in TbPO, has three low-lying crys-
talline-field levels well separated from the excited
states'?: a non-Kramers doublet T's and a singlet
T'y (@=1, 2, 3, or 4), the exact symmetry of which
is not known (in fact this symmetry is likely to be
T, according to elementary crystal-field calcula-
tions—see Appendix A). In the following, we shall
neglect entirely the excited states, and construct
an effective S’=1 spin Hamiltonian,

We choose the x axis along the [110] direction,
that is parallel to a twofold axis, and the z axis
along the [001] direction, in agreement with Ref.
17. Since the moments are found in the (110)
plane, we need to know the form of the dipolar
operators S* and S* and of the quadrupolar opera-
tors (S*)%, (S*)%~ (S*)%, and S*S*+S%S*. The trans-
formation properties of these operators under the
operations of the point group Du=‘_12m are shown
in Table I (we show also the transformation prop-
erties of the spin states |M) for S=1, and classi-
fy some isomorphic compounds according to the
symmetry of their Jahn-Teller distortions or

TABLE I. Transformation properties of thedipolar and
quadrupolar operators in point group Dyy=22m; x is par-
allel to the twofold axis [110].

r, Ay (592 +(8Y)%; (59)?

T, A, N 10) DyPO,; GAVO,
Ty B, (892 - (§%)? TbVO,; TmVO,
r, B, S* §¥+8Y §* DyVO,

S* SYSE+&F §Y | +1)
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FIG. 1, Thermal varia-
tion of the parameter P
according to Hamiltonian
B (1), for L=2,2°K and vari-
ous values of the energy A.
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magnetic transitions). Since (I';)?=T,+T,+T;
+Tyand ', T';=T;5, we find easily the number of
their matrix elements. The exact form of the
operators is determined by use of orthogonality
relations or by comparison to the case of a true
spin S=1:

F4] 8as
St= -85 N S§*= gas |
0 8as Las
qs . Ds
(82= qs (897 - (8= |ps ,
9a
Pas
a
S*S* +S%5% = ) , -Pas ).
Das —Pas

Because of the lack of experimental information
on the coefficient g5, g5, g5, **, we shall re-
place the effective spin S’ =1 by a true spin S=1:

g5=1,  gas=1/Y2;
g5=1, q,=0;
ps=1,  pas=1/V2.

III. RESTRICTED AXIAL QUADRUPOLAR HAMILTONIAN

In this section we shall suppose that the dis-
tortion of the TbPO, lattice below T, has the or-
thorhombic symmetry already observed in TbVO,
and TbAsO,. ‘ Neglecting first the possibility of
magnetic ordering, we consider the following
quadrupolar Hamiltonian:

j=—-A2Q;-2i L,PP,, 1)
i 1]
with
Q= (85
and

T(°K)

2L

P,=(S7% - ().

This Hamiltonian has the restricted axial sym-
metry defined in Ref. 16. For A<O0, the situation
corresponds to that of the Blume!®-Capel’ model.

The molecular-field approximation will be used
throughout this paper (for details see Ref. 9).

The order parameter P = (S¥)% - (S3)? describing
the orthorhombic distortion is given by

A(°K)
P40
aF 4
0 + + t
2
i 4
BT c

1 1 1 1 1
T(°K)
FIG. 2. Phase diagram in the (A, T) plane for Hamil-
tonian (1), L=2,2°K, C is a tricritical point; &,

==—2,02°K and T,=1.46°K. The dashed line indicates
first-order transitions.
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P= +2cosh28LP ’ 2) " (@) + (b)
with g=1/KT and -

L=L(0)=%/_\L“. odl .
If the transition in P is second order, the transi-
tion temperature T is given by

48, L=2+ePL, (3) o

5 T(°K) 2 “T k)

If A is very large as in TmVO,, ' kT p~ 2L; if
A=0, kTp=%L. With Tp=3.5°K® and &
=2.2°K, * we find L = 2.2 °K.

We have performed a Landau type of develop-
ment of the free energy ¢ in order to find the in-
fluence of A on the order of the transition:

¢ =—(1/B)1n(e*® + 2 cosh2BL P) + L P*

=¢o+A(A, T)P2+B(A, T)PH+.... )

A tricritical point C is found for A(A, T)=B(A, T)
=0, or BA=-1n4 and BL=32. The thermal varia-
tion of P for L =2, 2 °K and various values of A

is represented in Fig. 1. For —L<A<A,, the
transition is first order. For A<-L, there is no
transition,

The phase diagram in the (7, A) plane is shown
in Fig. 2. It is easy to see that the application
of a magnetic field H, hinders and eventually sup-
presses the orthorhombic distortion, which on
the contrary is induced even at high temperatures
by the application of a field H,. The second ef-
fect should be much easier to observe in TbPO,
than in TmVO,° or TmAsOQ,, ® where A is large.

3
J*(°k)

P-0
My =0
s - P%0
L Mx=0
Z 1 1 1 1 1 1 1 J
0 2 4 6

T (°K)

FIG. 3. Phase diagram in the (J*, T) plane for Hamil-
tonian (6); A=2,2°K and L=2,2°K. A and B are tricrit-
ical points. The dashed line indicates first-order transi-
tions. The dotted line corresponds to A=L =0, Then
Ty, =35(S+DJ* =4 J%,

Ly " L a

>

T(‘{)’ 2 T(°K)
FIG. 4. Thermal variation of the parameters P and

M, according to Hamiltonian (6), A=2,2°K and L =2,2°K,
(a) J¥*=6°K; (b) J*=3°K; (c) J*=2.2°K; and (d) J*=2°K.

We shall now introduce various dipolar inter-
actions in the Hamiltonian (1) to see whether a
dipolar phase transition may follow the ortho-
rhombic distortion.. If the dipolar interaction

- %‘, JFS5St (5)

is added to the Hamiltonian (1), the molecular-
field equations for the order parameters P and
M, =(S*) are

_ 4LP sinhgR
"R Z, ’

M= 4J°M, sinhgR
Lo

R Zy, '

P

with

R%=4[L?P?+ (J*¥ M2]
and

Z,=e™®? +2coshpR.

(Z, is the molecular-field partition function.) As
in the case of TmVO,, ¥ ordering in P o7 M, is
found according to the value of J%/L.

We thus now consider the Hamiltonian

50==A2Q; - 21Ly; Py P; - 25 J%, SIS%, (6)
i i ij

(We do not need to introduce dipolar interactions
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along y since we shall study only domains with
P>0.) This Hamiltonian has already been studied
by Chen and Levy?® in the case when A=0. Ac-
cording to the ratio J*/L, a single transition in
M,=(S7) and P, or two successive phase transi-
tions are found (see Fig. 3). Thermal variations
of P and M, are shown in Fig. 4 for various val-
ues of J*, Figure 5 shows the thermal variation
of the single-ion energy levels of the system in the
case of two successive second-order phase transi-
tions.

Although two phase transitions are found at T,
=3.5°K and Ty,=2.2°Kfor L=2,2°K and J*
=~ 1,8 °K, these results do not describe correctly
the behavior of TbPO,, since in this compound the
magnetization appears along some direction of
the xz plane'! and not along the x axis. (The mag-
netic ordering in TbPO, is antiferromagnetic but,
as long as no magnetic field is applied, the sign
of the dipolar interaction is unimportant. °)

We have finally added the interactions (5) to the
Hamiltonian (6) and looked for ordering in the
three order parameters P, M,, and M,. We
found no solution with M,+0 and M,+0, in agree-
ment with the discussion of Chen and Levy?® who
examined the case A=0 and J*=J*. In the sec-
ond case, as noted above, there is only one phase
transition in M,: at any temperature, P=0.

Consequently our hypothesis of a Hamiltonian
with a restricted axial symmetry, that is of an
orthorhombic distortion below T, leads to the

conclusion that the magnetization may appear only
along x, in contradiction with the neutron-dif-
fraction experimental results.'*!® We are then
forced to give up this hypothesis, and in Sec. IV
we examine the possibility of a monoclinic dis-
tortion, the Hamiltonian having the fully axial
symmetry. Another possibility would be to intro-
duce excited electronic levels but, according to
Refs. 12 and 14, their influence is unlikely to
modify the above results: Although the entropy
variation between 0 and 20 °K is AS~ R1n4, '
there are numerous excited levels above 40 °K
which contribute to this entropy variation, so

that the value of AS is not the proof that a second
excited singlet should be introduced. Anyway,

the following sections will show that this introduc-
tion is not necessary.

IV. FULLY AXIAL QUADRUPOLAR HAMILTONIAN

A monoclinic distortion is described by the or-
der parameters

P=((S3?- (S1)?+0
and

P'= (S§S§+SiSi)=+0,
or

P = (8955 +55S¥)#0.

For instance when P’ is different from zero, y is
a principal axis of the quadrupoles, but the prin-

g1

E(°K)

FIG. 5. Thermal varia-
i tion of the single-ion energy

levels according to Hamil-

tonian (6) for A=L =2,2°K
and J*=2°K,

1
T CK)
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cipal axis in the xz plane are not the x and z axis.
In fact, if |P| is different from zero, P’ or P’

is different from zero, and the corresponding do-
mains differ in the sign of P. Moreover if |P’|

is different from zero, there are two types of
domains, differing in the sign of P'. The domains
P'$0 (or P''$0) are analogous to magnetic anti-
phase domains.

We now evaluate the angle 6 between z and z’,
one of the principal axes in the xz plane. Consid-
ering the components S*, S¥, and S* of the spin
as the components X, Y, and Z of a classical vec-
tor, we have

Q=2%
P=X?-Y? (7
2=X%+Y%+2%,
whence
X*=1(P+2-Q),
X2-7%=1(P+2-3Q), (7)
2XZ=P'.
We also have
2X'Z' = c0s26(2XZ) - sin26(X2 - Z%)=0,
so that

2PI
tan26= 5o (8)
Let us now consider the Hamiltonian
3=A2Q; =24 Ly; PPy~ 23 L}; P| P}, (9)
i i i

T T T T
4+ N
Monoclinic
(P+0;P+0)
3t J
L (°K)
A’ Quadratic
(P=P=0
2r 4
s Orthorhombic 3
(P40; P=0) |
1 1 1 A - i’ A1 J
0 2 4 6

T (°K)
FIG. 6. Phase diagram in the (L', T) plane for Ham-
iltonian (9); A=2.2°K and L =2.2°K. The point sym-
metries of the quadratic orthorhombic and monoclinic
phases are 42m, 2, 2, 2,, and 2,, respectively.

|0

PP Q)

05

0 1 2 3 T(°K)

FIG. 7. Results for Hamiltonian (9) for A=2,2°K;
L=0and L’=3.1°K. (a) Thermal variation of P, P’,
and @; (b) thermal variation of 6 and Q' = ((S,,)2 - (Sx.)z),

and look for ordering in the parameters P and
P'', for given values of A=2.2°K and L=2.2°K.
In fact, because of the similarity between the
operators S* and S*S*+S*S* (see Appendix B), the
phase diagram in the (L', T) plane is identical to
that of Fig. 3: We find either a single (first- or
second-order) transition in P and P’, or a sec-
ond-order transition in P followed, at a lower
temperature Tp, by a first- or second-order tran-
sition in P’ (see Fig. 6). Consequently we have
found here a situation where the orientation of the
principal axes of the quadrupoles is temperature
dependent (see Ref. 16 for a discussion of this
point), the dependence being continuous (see Fig.
7). Inthe case of a single transition just below
Tp, one has |P| < |P’'| and @=c?, so that tan26
=~ 20 is proportionnal to P’.

In TbPO, there is only one crystallographic
phase transition. We have two experimental in-
formations: T,=3.5 °K and the saturation value
6, of 0.5 (We suspect indeed that dipolar or-
dering will take place along z’ and not modify very
much the orientation of the quadrupoles since Ty
« Tp.) Consequently, we may choose the values
of the interactions L and L’ to reproduce T, and
6. Choosing, for instance, 6,=40° and Tp.
=83.5°K, we find L~0, L'=3.1°K. An external
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FIG. 8. Phase diagram in the (J, T) plane for Hamil-
tonian (10); A=2,2°K and L’ =3.1°K. A and Baretricrit-
tical points. The dashed lines indicate first-order tran-
sitions.

magnetic field H, would hinder or eventually sup-
press the monoclinic distortion, while a field H,
would on the contrary induce the distortion; H,
and H, would also select some crystallographic
domains.

Dipolar interactions may be added to Hamiltonian
(9). In Sec. V we study the resulting Hamiltonian
in the special case L=0, and finally the full Hamil-
tonian (L #0). Before going to Sec. V, we indicate
a situation where three successive phase transi-
tions are found. In Ref. 16 the following Hamilto-
nian was considered:

==A2 Q-2 K;yQ,Q,- 2 Ly P, P,.
i if ij
For A<0, the following possibility was recognized
for a range of values of K and L: a first-order
transition in @ followed by a first-order transi-
tion in P, If the interactions
ST

i

or

- DL, PP,

are added to 3¢, a third transition in the parame-
ter M, (or P') is found.

V. TWO-PHASE TRANSITIONS IN TbPO,

We study the Hamiltonian
j==-A2;Q,~-2 L}, P;P;
i i3
- %) Jiy (S7ST+S1SE).  (10)

We have taken J§;=J=J;, since it is known ex-
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perimentally that the magnetic interactions in
TbPO, are fairly well represented by a Heisen-
berg Hamiltonian.!* No interactions have been
introduced between the y components of the spins
and we did not look for magnetic ordering along
y. If J;;=0, the spin density below Tj is rep-
resented by an ellipsoid whose principal axes are
x’, y, and z’, and which is elongated mainly along
z' so that, when Jy;#0, we expect dipolar order-
ing to take place along or near z’.

The order parameters for the system are P’,
M,, and M,. The phase diagram in the (J, T)
plane is represented in Fig. 8 for A=2, 2°K and
L'=3.1°K. When J is small, a monoclinic dis-
tortion is followed at a lower temperature by a
magnetic ordering in M, and M,. Along the line
CB, the only transition is first order: The angle
0 varies abruptly from zero to some finite value

at the critical temperature. Beyond B, a second-
order transition in M, is followed at a lower tem-
perature by a second-order monoclinic distortion
which drives a rotation of the moments off the z
axis. These results agree with the Landau theory.
Magnetic ordering is described here by the two

P/'Mz}Mx
s

(a)

P, MzMx

(b)

T(K)

FIG. 9. Thermal variation of the parameters P’, M,,
and M, according to Hamiltonian (10); A=2.2°K, L’
=3.1°K. (a) J=6°K; (b) J=1.5°K.
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parameters S* and S which transform according
to two different representations of the paramag-
netic group, whence a single first-order transi-
tion or two successive second-order transitions.
For J=1.5 °K, the quadrupolar transition in P’,
at Tp.=3.5°K, is followed by a second-order di-
polar transition in M, at T, =2.2 °K (see Fig.
9), in agreement with the experimental results.
The thermal variation of the energy levels is
shown in Fig. 10. The phase diagram of Fig. 8
shows that the magnetic transition might be of
first order.' The fact that the moments order
along some direction of the xz plane and not along
the x axis as found in Sec, III is a natural conse-
quence of the monoclinic distortion of the crystal
above the Néel temperature. This distortion must
be very weak since it has not been detected by x-
ray and neutron experiments, 15 put is sufficient to
create a strong anisotropy along z’'. This anisot-
ropy favors a spin-flip mechanism for metamag-
netism, as shown by the ratio of critical fields

along the two directions [100] and [001]. !
The occurrence of a crystallographic phase tran-

sition in TbPO, has been discovered only through
a very careful measurement of the specific heat.!?
Following the suggestion of Sec. IV one might
reasonably ask whether there are in fact one or
two crystallographic phase transitions, followed,
of course, by a magnetic phase transition. Conse-
quently we consider the general Hamiltonian

sc=—A25Q;~2 Ly PP,
i i

E(°K) [2

J
01

1 L 1 ot

T(°K)

FIG. 10. Thermal variation of the single-ion energy
levels according to Hamiltonian (10); A=2.2°K, L' =3,1°K,
and J=1,5°K,
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- %} Li;P,P; —iZj) J;; (8387 +88s  (11)

and we look for ordering in the parameters P, P’,
M,, and M, and possibly for three successive
phase transitions in P, P’, and M. We find, how-
ever, that, once the orthorhombic distortion is
established, there is a competition between a
monoclinic distortion and magnetic ordering along
x, so that there are never more than two transi-
tions: two crystallographic distortions (Sec. IV),
an orthorhombic distortion followed by an or-
dering in M, (Sec. III), or finally a monoclinic
distortion. (ordering in P and P’) followed by an
ordering in M, and M, (Sec. V), which seems to
be the experimental situation. The following dia-
gram summarizes the possible sequences of phase
transitions in TbPO,:

~-M,
Paramagnetic \ ~* - M,
undistorted phase - P,
-P, P -M,
- P, Pl, st

VI. CRYSTALLOGRAPHIC DISTORTION IN TmAsO,

The ground-state level of the Tm® ion in TmVO,
is a I'; doublet, and the first excited level is a
singlet at 53.8 cm™, which is consistent with the
result g,~ 0 for the ground state. The crystallo-
graphic transition temperature is T,=2.1°K so
that clearly the singlet plays no role in this tran-
sition, in agreement with the specific-heat mea-
surements.” Consequently the distortion of the
lattice is orthorhombic or, more exactly, the
monoclinic component of this distortion is negli-
gible, since (T'51S*S*+S*S*|T'5)=0.

On the contrary, in TmAsQO, there is a low-ly-
ing excited singlet at about 14 cm™! above the
ground-state doublet, 2! and in fact g, is large for
the ground state.® (The exact symmetry of the
singlet is not known, but does not affect the form
of the dipolar and quadrupolar operators deter-
mined for ToPQ, in Sec. II.) Moreover, T, is
much larger than in TmVO,: T,=6.1°K. TmAsO,
cannot be represented by the doublet I'; alone;
possible couplings between the doublet and the sin-
glet cannot be neglected. Such an interaction has
been inferred from the specific-heat measure-
ments?': Indeed the position of the singlet has
been shown to be altered by the Jahn-Teller dis-
torsion. This result implies that the distortion
is in fact monoclinic, as in ToPO,. Dipolar in-
teractions must be weaker than the threshold value,
so that no further magnetic transition is observed.

VII. GEOMETRICAL INTERPRETATION OF ABOVE RESULTS
IN PYTTE AND STEVENS MODELS

We shall now interpret our results in terms of
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the Pytte-Stevens model proposed for rare-earth
vanadates.” According to this model, in the high-
temperature phase of DyVO, and TbVO,, the mo-
ments may occupy four equivalent positions in the
basal plane. Lowering the temperature reduces
the number of these positions from four to two,
which drives an orthorhombic distortion, then
from two to one, which drives magnetic ordering
in the basal plane. No monoclinic distortion is
possible since the moments always lie in the plane.
The same model applies to the arsenates TbAsO,
and DyAsO;.

Similarly in TbPO,, TmVO,, and TmAsO,, we
may postulate the existence of eight equivalent
positions [(xx, 0, +z) and (0, +x, +z)] as dis-
cussed in Appendix C. Their number may be re-
duced from eight to four in the xz plane (TmVO,),
then from four to two +(x, 0, z), and finally from
two to one. The successive symmetries are then
42m x1';2,2,2,x1’; 2,x1’; 2;. The number of
equivalent positions may also be reduced in one
step from eight to two (TbPO;, TmAsO;) or one,
or from four to one.

In the eight-position model, the total entropy
variation is AS=R1n8. We must then consider at
least eight crystalline field levels of Tb®* or Tm%*
to reproduce AS. In particular, we might use the
whole crystal-field band defined by Trammel?®
(in the present case I'y +I', + '3+ T+ 2T5). I an
effective spin S’ =1 is used to describe the system,
that is, if only the three lowest levels (I's+T',) of
the crystal-field band are considered, the exact
entropy variation cannot of course be reproduced
and it is not surprising that the maximum number
of successive phase transitions is not found.

In DyVO,4 and TbVO, on the contrary, the whole
crystal-field band (four levels) was considered,
and it was possible to describe the maximum num-
ber (two) of successive phase transitions. The
case of DyAsO,® might be somewhat similar to
that of TbPO,, and it is discussed in Appendix D.

VIII. CONCLUSION

The crystallographic and magnetic phase transi-
tions observed in TbPO,4 have been described
phenomenologically. An axial symmetry-adapted
spin Hamiltonian, exhibiting Jahn-Teller and
magnetic interactions, has been constructed and
treated in the molecular-field approximation. It
has been found that if the paramagnetic distorted
phase, which is stable between T, and Ty, is
orthorhombic, magnetic ordering appears neces-
sarily along the x or y axis. Magnetic ordering
takes place in fact off the ¢ axis in the xz oryz
plane and this situation can be explained only if
the paramagnetic distorted phase is monoclinic,
which implies a softening of the elastic constants
c13 and cgg near Tp.
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An elementary crystal-field calculation (Ap-
pendix C) has shown that, even in the undistorted
paramagnetic phase, the Tb®* moments have eight
equivalent easy directions off the z axis. How-
ever, the possibility of three successive phase
transitions has been discarded. This result does
not contradict the Pytte-Stevens model, since
only the low-lying levels of the crystal-field band
have been considered.

The behavior of TmAsO, is very similar to that
of ToPO,, except that magnetic interactions are
weaker, so that the onset of magnetic ordering is
not possible.
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APPENDIX A: CRYSTAL-FIELD PARAMETERS IN TbPO,
AND TmAsO,

The crystal-field Hamiltonian for rare-earth

ions on a site of symmetry D,; =42m is

3. = anO‘z)+B(V202+ Viod) +y (V303 + Viod).

The OT operators are Stevens operators; the a,
B, and 7 coefficients depend on the rare-earth ion;
the VT coefficients are the crystal-field parame-
ters which can be determined experimentally from
the optical spectrum:

Vi =ATO).

The V" have been determined for Er* diluted in
YVO,, % YAsO,, ®® and YPO,.?* It is then possible
to get approximate crystal-field parameters for
other rare-earth ions if the average values (")
are corrected by interpolating the values computed
for Kramers’s ions by Freeman and Watson. 2® If
these corrected parameters are used, crystal-
field levels can be computed which are in reason-
able agreement with the experimental spectrum,
at least for the low-lying levels of ToVO,,
TbAsO,, TmVO,, and TmPO,. The agreement
is not so good for TbPO; and TmAsO,: For TbPO,,
the calculated ground state is a I';, but the three
first excited singlets are equidistant (the first ex-
cited singlet is a Ty); for TmAsO,, the calculated

TABLE II. Transformation properties of_the wave
functions |JM) for J =6 in point group Dy; =42m.

r, I v | M

r, 0 0 10); 14)+1 —4)

r, 0 1 14) -1 -4)

Iy 2 0 12) =1 —=2); 16)—1-86)

r, 2 1 [2)+1=2); 16)y+ | —6)
al5)+Bl1)+yl —3)

Ts =1 (ozl—5)+ﬁl—1)+y|3))
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TABLE III, Compatibility table for point groups ZZm,
2,2, 2,, and 2,.

TABLE IV, Transformation properties in groups D,
=242, 2, and C,=2,,

2m 2,2, 2, 2

ground state is a singlet I'; followed closely by a
doublet I's, whereas the doublet is the experimen-
tal ground state (the symmetry-adapted wave func-
tions are given in Table II).

In the case of TbPO, we tried to fit the five V"
parameters to the known part of the experimental
spectrum (we used the results of Ref. 13, which
disagree somewhat with those of Ref. 14). How-

f3 P-0 P
SY
I P4
sx
c
g 5
2 P-4
()
B 10).
10 o>
s? s
[
|_2 lo>x’
2y ) %22, F2m

r, A (8% (89%; (59?
p, T B & §* 8% +5% % 10y,
® ry, B §° §*Sv+8¥ &* 10),
I, By &* SY SE+8% S 10),
¢ L, A4 s §* SE+5% & 10,
r, B ¢§,¢s° 10}, 10),

ever, only the positions of the three first excited
singlets are known, and the matrix elements of
¢, corresponding to the five V" parameters are of
the same order of magnitude, so that such a fit is
not possible.

APPENDIX B: SYMMETRY CONSIDERATIONS

We first consider a true spin S=1 in the sym-
metry 42m. The representation D, of the rota-
tion group is reducible according to D;=T,+T;.
The compatibility relations for the sequence of
point groups 42m, 2,2,2,, and 2, is given in Table
IOI. Transformation properties of the operators
are given in Table IV.

R .0 5

loy

s and| B R
7,5 o

I P-4
0%
(b}
— &
7
SASITE Y
— 1l f 3
SX
2yS
1
(d)

FIG. 11. (a) Energy levels of a spin 1 in the case of an orthorhombic distortion for the domains P> 0; (b) same as (a)
but for P< 0; (c¢) successive orthorhombic and monoclinic distortions; (d) the experimental situation in TbPO,.
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In the case of an orthorhombic distortion, the
ground-state wave function for the domain with
P>0is (|1)+|-1))/V2=0), (the index y means
that y is the quantification axis): In this state of
symmetry I';, the spin density is mainly in the
xz plane. For the domain with P<0, the ground-
state wave function is (11)— |- 1))/V2=|0), and
its symmetry is I'y.

In Sec. I, we examined the possibility of an
orthorhombic distortion followed by a magnetic
transition; we selected the domain P >0 and looked
for ordering of the dipoles along x, neglecting the
interactions - J3;SyS}. Figure 2 shows that if P
is positive, S* indeed has no matrix elements con-
necting the ground state and some excited level,
so that dipolar ordering along x is favored.

In Sec. IV, we considered again an orthorhombic
distortion and the possibility of a further mono-
clinic distortion. We found in our numerical cal-
culations that when P’ is different from zero, P
is negative, so that the monoclinic distortion in
the x-z plane is possible only for domains with a
I'y ground state (P<0).

Comparison of Figs. 11(a) and 11(b) shows that
the two situations examined above are similar
once P is replaced by — P and S* by S*S* +S*S*,
This explains the similarity of the phase diagrams
in Figs. 3 and 6 and the fact that orderings in M,
and P’ are competitive once the orthorhombic dis-

(a) (b)

100+ 4 F .

(e DYV,
L Tmvo,

45° 909

-100

+~DyPO,
-200+ 1t .

2] ]

FIG. 12, Angular variation of the classical energy
E(6, ¢g). (a) TbPO; and TmVOy; (b) DyPOy and DyVO,.
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FIG. 13. Angular variation of the classical energy
E(6, ¢g): ExPOy and ErVO,.

tortion is established, as stated in Sec. VI. Al-
so, Table I shows that S* and S*S*+S*S” are or-
thogonal in the space of the I'; representation.

Figure 11(c) illustrates successive orthorhombic
and monoclinic distortions, In the axes x’, y, and
z', the point symmetry of the quadrupoles is or-
thorhombic and, as we checked by numerical cal-
culation, the eigenstates are |0),.,10),, and |0),..
Finally, Fig. 11(d) illustrates the experimental
situation.

Let us now consider an effective spin 1. The
above considerations about the sign of P and the
symmetry of the ground state in an orthorhombic
phase do not hold since these two properties are
not necessarily related to each other. For in-
stance, in TbVO,, % the ground level separated
from I'; is I’y when P>0. However, the over-all
discussion of this paper holds since the dipolar
and quadrupolar operators we have used have been
determined only by symmetry considerations.

APPENDIX C: JUSTIFICATION OF PYTTE-STEVENS MODEL

It is possible, knowing the five crystal-field
parameters V/, to calculate a classical expres-
sion of the crystal-field energy as a function of
the orientation (6, ¢) of the magnetic moment:

E(6, ¢)=aVys%(3cos?6-1)
+BV2J%(35 cos*6 — 30 cos6 + 3)
+BV:J"sin49 cos4¢
+yV3J%(231 cos® - 315 cos*6 +105 cos? — 5)

+yVad®sin*6(11 cos?0 — 1) cosdep.
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We look for a minimum of E(f, ¢). The term in
V‘: is larger than the term in Vs‘, so that if we
choose V¢> 0 (the sign of Vis not determined by
the spectroscopic studies), E(f, ¢) is minimum
for ¢¢=0(Tb, Er, Tm: 8>0) or ¢o=45° (Dy, Ho:
B<0). I is sufficient then to compute E(6, ¢q).
The minimum of E(8, ¢,) is found for 6=90° in the
case of TbVO,, TbAsO,, DyVO,, and DyAsO, and
for #=0° in the case of DyPO,, in agreement with
various magnetic measurements (Fig. 12). The
difference between vanadates and phosphates is due
to the difference in sign of V3.

In the case of TbPO,, TmVO,, TmAsO,, and
TmPO,;, a minimum of E(6, ¢,) is found for 6=90°,
but another minimum is found for 6y~ 35°. In fact,
&g, and g,#0 in TmAsO4; in TmVO,, g,=0 for the
ground state I's but this does not mean that the mo-
ments are along the ¢ axis, since g, is not char-
acteristic of a whole crystal-field band. The rela-
tive values of the two minima should not be taken
too seriously, since we used only approximate val-
ues of the crystal-field parameters for this cal-
culation (see Appendix A). We think that the pos-
sibility of a monoclinic distortion in TbPO, and
TmAsO, is a consequence of the existence of easy
directions for the moments in the paramagnetic
phase which are well off the ¢ axis. Also, the val-
ue of 6, is in agreement with the neutron-diffrac-
tion results on TbPO,. 1 The similarity between
TbPO,; and TmAsO, (or TmVOy) lies in the fact
that aV3 has the same sign in the two compounds.

The fact that the moments in ToPO,, TmVO,,
and TmAsO, are off the ¢ axis could have been pre-
dicted from the consideration of the possible Tram-
mel’s crystal-field bands: If the moments are in
the plane, as in TbVOy, the crystal-field band is
I'1+T5+Tg; if they are along the ¢ axis, the band
is I'; +T';. The same remark applies to the three
Er® compounds: I the moments are in the plane,
the band is I'g+I'; as in DyVO, and DyAsQ,; if
they are along the ¢ axis, the band is made of a

JEAN SIVARDIERE 8

doublet I's as in DyPO,;. The observed spectrum
shows no well-defined band and the ground state is
T';, so that the moments are off the ¢ axis. This
is in agreement with the classical picture (see Fig.
13) confirmed by the experimental values of g,

and g, for the ground state, 2" which are of the same
order of magnitude.

APPENDIX D: DyAsO,

According to the neutron-diffraction results, 2

the moments lie 22° off the x axis in the xy plane
and it is likely that their direction is fixed by the
crystal field and not by the exchange interactions.
Once more we may postulate the existence of eight
equivalent positions for the moments: (+x, +y, 0)
and (+y, +x, 0) with tan 22°=y/x. In DyAsO, the
following sequence of phase transitions is found:
The number of equivalent positions is reduced from
eight to four, then from four to one, so that we have
to describe ordering in (S*S¥+S”S*) and then in
(%)% - (*)%) and S* (x’ being one of the principal axis
of the quadrupoles in the xy plane below the
second-ordering temperature). In Ref. 10 only
four levels of the crystal-field band were in-
troduced, as for the case of DyVO,. Distortions
along [100] and [110] are then competitive so
that three successive phase transitions, and

even the experimental situation, cannot be de-
scribed unless the whole crystal-field band is
introduced.

The above model, however, lies onthe hypothesis
that the easy direction of the moments in the xy
plane are off the [100] or [110] axis. This is not
possible if the point symmetry of the rare-earth
site is 42m, since the classical energy of the mo-
ments is then a function of cos4¢. However, it be-
comes possible if the point symmetry of the site is
only 4, the crystal-field parameter V2 being dif-
ferent from zero, or if this parameter Vi becomes
different from zero in the orthorhombic phase as a
morphic effect.
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