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The third frequency moments of the electric and magnetic response functions of a homogeneous
electron gas are shown to reflect the short-time (or high-frequency) motion of an electron relative to its
correlation hole. It is found that the relaxation of the local correlation hole effects the magnetic

response much more strongly than the electric response, particularly for long wavelengths. Available
models for these response functions are found to miss this particular aspect and, therefore, they cannot
be valid both for low and high frequencies. An interpolation model, which in a more proper way

includes the relaxation of the correlation hole, is used for some illustrative numerical calculations. It
leads to damping of the long-wavelength plasmons in good agreement with earlier calculations based on

diagram techniques and including multiple particle-hole excitations.

I. INTRODUCTION

In recent years considerable progress has been
made in calculating transport properties of clas-
sical as well as quantum liquids. ' Difficulties
due to the strong interactions have been partially
circumvented by formulating the theories so as to
satisfy certain exactly calculable sum rules. In
this paper we shall be concerned mainly with the
electron liquid, although our conclusions have im-
plications for other systems as well. Most treat-
ments of the density and spin-density response of
the electron liquid have been concerned with im-
proving upon the random-phase approximation
(RPA) by correcting the Hartree self-consistent
field for effects due to strong short-range correla-
tions. So, for instance, Hubbard' very early
introduced a correction the the RPA dielectric
function arising from the Pauli-exchange hole and
this has been generalized to include both the ex-
change and Coulomb holes in a self-consistent
way. ' Later developments along this line have
led particularly to improved results for the long-
wavelength low-f requency response.

The response properties of a degenerate homo-
geneous electron liquid under external disturbances
have provided the basic model for the behavior of
valence electrons in metals. The main features,
such as the perfect screening of charges at large
distance and long-wavelength plasma oscillations,
follow from general properties of the density re-
sponse, or of the related dielectric function e(q, m),
and do not depend on its detailed form. More spe-
cific knowledge of the q dependence for low fre-
quency is needed, for example, in the calculation
of phonon-dispersion curves in simple metals.
However, different choices of &(q, 0) together with
the ion-electron pseudopotential V(q) have led to
essentially the same dispersion curves. The cor-
relation energy involves an integration of c(q, &u)

over q and & and is insensitive to its detailed
form. The pair-correlation function g(r) also re-
quires a full knowledge of e(q, +) and is fairly sen-
sitive to the q dependence' but again involves an
integration over frequency. Optical properties
provide, in principle, a more detailed test on the
frequency dependence of &(q, ~) but only after band-
structure effects have been sorted out. There-
fore, we have at present no stringent tests of the
detailed form of either the density or spin-density
response functions. The strongest requirements
on the various models have been that they should
satisfy certain exactly known sum rules, in par-
ticular, the compressibility sum rule and the one

giving the static-pair -correlation functions, in-
cluding the requirement that the latter should be
positive for all distances. No existing model satis-
fies these requirements exactly although a recent
model of Vashishta and Singwi comes rather close
to doing so.

.It was recently noted by one of the authors
(B.G. ) that the third moment of the spin-density
response function has a singular q dependence in
the long-wavelength limit as compared with the
full density response function. ' This difference
between the two response functions is not con-
tained in any theoretical model known to us.
Knowing that the odd positive low-order moments
are connected with the high-frequency response
functions, one may guess that they do not directly
have any large effect in determining the low-fre-
quency response. However, they do indicate that
the available models are not appropriate to de-
scribe the high-frequency response, particularly
not the magnetic response. The first moment, or
f-sum rule, is connected with particle-number
conservation and is satisfied by any model which
gives free-particle behavior in the high-frequency
limit. The third moment has not been used until
recently and its physical contentIhas not been in-
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vestigated before.
The purpose of this paper is to clarify the sig-

nificance of the third moment. It is shown why
conventional mean-field theories miss an essential
aspect of the dynamics contained in the third mo-
ment. The singular behavior in the long-wave-
length magnetic response is a direct consequence
of the Coulomb correlation hole following each
electron and of its dynamics. It is the short-time
motion of this correlation hole relative to its elec-
tron which is not handled properly in available mo-
dels. What is said here for electrons is equally
valid for particles with short-range interactions.

The outline of this paper is as follow: In Sec.
II a derivation of the third moment is given and its
physical implications are discussed in some de-
tail. In Sec. III we analyze the mean-field theories
and show why they all disagree with the third mo-
ment. A recent momentum-dependent modification
of the conventional mean-field theories of the di-
electric response by Toigo and Woodruff' is dis-
cussed in Sec. IV and is shown to be a high-fre-
quency approximation closely related to the third
moment. Extending their treatment to the spin-
density response leads to a zero value for the static
spin susceptibility, confirming that the method is
basically suited to high frequencies only. Section
V contains a brief discussion of the Landau theory
of Fermi liquids in relation to sum-rule argu-
ments. ~ Finally, in Sec. VI we present results
from some numerical calculations.

Xa~(~) = Xa~(t)e dt

Xa~(~ )
co —(d —z0

(2. 2)

and from this follows the asymptotic expansion

II. THIRD MOMENTS OF PARTIAL DENSITY
RESPONSE FUNCTIONS

A. Neutral System

We start with a brief summary of some well
known relations which we need for the following
discussion. Let us consider a weak external dis-
turbance V acting on our system and coupled direct-
ly to a dynamical variable A through a term
H'= VA in the Hamiltonian. The retarded response
of a variable B is then, according to linear-re-
sponse theory, given by ~

Xa (t)=(ih) ([B(t), A(0)]) e(t)= »Xa (t)e-(t),
(2 I)

where [ ] is an ordinary commutar and ( ) means
averaging over an equilibrium ensemble with no ex-
ternal disturbance present. For brevity we have
also introduced the notation Xa„(t). In Fourier
space we get

~0

Xaa(&) Z ),)
~=o

(2. 3)

where the coefficients are the moments of Xa'„(&o),

Mr, a~ =— ~ Xax(~)

1 d'
= i' —,B(t), A(0}

h dt' '
qo

The Taylor expansion of xaa(t) is

Xa„(t)=e(t}Q™„';",

fno

(2 ~ 4)

(2 6)

X„.(q, t) = ()KA)
' ( [n, (%, t), n, , ( —

&7, 0) ]& e (t),
(2. 7}

0 being the total volume of the system. We intro-
duce separate notations for the full density and the
spin-density response functions [s,(r) =—n, (r) —n, (r)];

(2 8)x..= Z x.~,
aa'

Xsg=xsp = ~ && Xra' ~ (2. 9)
aa'

The even moments of these retarded response func-
tions are zero and this holds true also for the mag-
netized state.

The three lowest even moments of the density
correlation function S(q, &u) were first used by
Yvon for classical fluids to estimate the fre-
quency dispersion of short-wavelength density fluc-
tuations. He showed that the fourth moment of
S(q, &u) could be calculated from the static-pair-
correlation function g(r) and the interatomic poten-
tial. DeGennes applied later the same moments
together with approximate forms for S(q, &u) to cal-
culate inelastic-neutron-scattering cross sections.
Recent work on the scattering function in liquids
has been rather close to Yvon's idea of high-fre-
quency collective motions. Related developments
of semiempirical scattering functions using mo-

This shows that the low-order moments are re-
lated to the short-time and correspondingly high-
frequency behavior of the response function. These
low-order moments are often easily evaluated and
Egs. (2. 3) and (2. 5), therefore, provide us with
some useful exact statements concerning the re-
sponse of the system. The case of interest to us
is when A and B stand for the number densities
n, (r, t) for particles of spin index o = + I; a =+ I
for spin up and —1 for spin down. The correspond-
ing response functions

x„,(r, r'; t) = (i k) ([n,(r, t), nz (r ', 0) ]}e (t)

(2.6)
depend only on the difference r —r', and their spa-
tial Fourier transforms can, therefore, be written
as
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ment relations' have also been based on the con-
tinued fraction representation of Mori. ~

The application of Eq. (2.4) to y„.(r, r'; f) is
simplified somewhat by transferring time deriva-
tives from B to A and using the continuity equa-
tion

n. =-V X, (=V J.), (2. io)

[J„(r), n; (r ') ]= (i h/m) n, (r)V„, 5 (r —r ')5,~ .
(2. 12)

For a uniform system Eq. (2. 11) gives us in Fou-
rier space the familiar f-sum rule

2
M~ „,(q) = s„,n, q /m, (2. 13)

where n, is the equilibrium density.
The third moment is evaluated similarly from

J, being the current densities. The first moment
is easily evaluated and gives

M~,~ (r, r ') = —(i/k) V„([J,'(r), nz (r '
) ])

=m 5,~V„'V„.(5(r-r')(n, (r))),
(2. 11)

where m is the mass of the particle. In deriving
Eq. (2. 11)we have used the operator relation

the expression

Mq(1, 2)= (i/1)Vg Vg([J (1), J (2) ])

=My (1, 2)+My (1, 2), (2. 14)

m J (1)= —V&T (1) —f V fv(r~m) [n(1)n(3) ]'d(3) .
(2. iS}

Here T ~ is the kinetic part of the stress tensor in
operator form, v(r} is the interaction potential,
and d(3) = g, drs means summation over the spin in-
dex and integration over space. The prime in the
integrand means that the self-force term should be
removed, and this will be understood, even when
the prime is omitted. We give the explicit form in
ordinary space of M3 only because it is helpful in
visualizing the short-time response. The full ex-
pression for M~ „.(q) will be given afterwards.
Inserting the potential term of Eq. (2. 15) into Eq.
(2. 14}yields

where here 1= (r, o) and 2 = (r', o '), and the conven-
tion of summing over repeated Cartesian indices
is used. The two parts M3~ and M3 come from the
kinetic and potential terms, respectively, in the
equation of motion for the current-density operator:

M3(1, 2)=(i&m) v~ V2 f d(3)V~ v(r, s)([n(1)n(3}, J (2)])

= (imam)
' V,' V, f d(3) Vf v (r&z)((fn(1), J (2)J n(3)) + (n(1)[n(3), J' (2)])j

=m Vf Vz(V~ 5(l, 2)f d(3) Vq v(rqs) (n(2)n(3))+ V~ Vq v(r~m) (n(1)n(2))) . (2.16)

By considering an external vector field coupled to
the particle current operator, we get a simple
physical interpretation of the commutator in the
first line of the equation above, namely, it gives
the instantaneous response of the equal time den-
sity correlation function (n(1)n(3)). The second
line tells us that this can be viewed as arising
from separate responses from the particles at
sites r& and r„ taking into account the spatial cor-
relation of the two particles. So, for instance, the
particle at r& sits in the correlation hole of its sur-
rounding particles while responding to the external
vector field.

In Fourier space the full third moment takes the
following from

M, , (q) = n, 5, (q /m)2((p /m&, + 8'q2/4m]

+m'q F,g(q) q, (2. 17)

where (P ), is the true mean square momentum of
particles of spin o with the effects of the interac-
tion included. The first term is the kinetic part
Mz. The potential part M3 is the term containing

the tensor

F., (q)=5, T. (0) —T.~(q),

with

(2. 18)

and

T,",gq)= f dre"''(n, (0)n, .(r)) V'V v(r) (2. 19)

T". (q) = & T."." (q) ~ (2. 20)

M„„„(q)= m q ~ [T (0) —T (q)] ~ q (2. 23a)

=(nq /m ) f dr[(q V) v(r)](1 —e"')g(r),
(2. 23b)

Let us now consider y„„and X„and their mo-
ments. From Eq. (2. 13) follows

M~ „„(q)= M, „(q)= nq /m (n = n, + n, ). (2. 21)

Correspondingly the third moments are given by

M~ „„(q)= Mq „(q)= n(q /m) ((P /m )+8 q /4m),

(2. 22)
and further
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and

M~ „(q)=m q ~ [T(0)—Z o&r T„.(q)] q (2.24a)
afy~

= (n q /m ) f dr[(q V) v(r)]((1 —e" )g(r)

+4f f r, (r)'f. (2. 24b)

Here T (0) = g, T,(0), f,= n, /n and q is the unit vec-
tor along q. The various pair-correlation func-
tions entering in the equations above are

modes, the optical modes give a singular contri-
bution of order q to the third moment of the dis-
placement response function.

A spin-independent driving force moves the up-
and down-spin systems in the same direction, as
in acoustic mode motion, while a magnetic field
along the z axis drives them in opposite directions.
Thus the form of the moments in Eq. (2. 17) is
characteristic of a two-component system.

B. Charged Systems

n g(r) = (n(0) n(r)) —n5 (r),
n,n, g„(r) = n, n,g„(r) = (n, (0)s,(r)},
n g (r) = (s, (0)s, (r)) —n5(r),

(2.26)

In order to include a neutralizing positive back-
ground, we replace n, (r, ) in Eq. (2. 15) by n,~(r, )
—n, . This has the effect of changing g, to (g, —1)
in T, (0) while leaving T„~(q) unchanged. We may
write

where the effect of the prime in Eq. (2. 15) is
shown explicitly. In the paramagnetic case g

1
2(hatt gtl)
The expression for M, „„is familiar and it was

first derived by Yvon for a classical fluid, in
which case the curly bracket in Eq. (2. 22) be-
comes 3ksT/m. Puff' appears to be the first to
use the quantum-mechanical form of M3 „„, where-
as the corresponding expression for M3 „was
given more recently. ' ' We note from Eqs.
(2. 22)-(2. 24) that, for small values of q,

M, „.(q) = m q [5„.I",(0) —I'„(q)] q

+m n, n, q v(q), (2.28)

where I'„. is obtained from T„.by replacing g„
by g„—1; in this way separating out the Hartree
term which appears as the last term of the equa-
tion. The integrals contained in I" now converge
at large r. For X„„and X„we have

M3 „„(q)=nq or~/. m + M, „„(q) (2. 29)

M~ „„(q)~q and M~ «(q)~q (2, 26) and

The reason for the difference in the small-q
forms of p„and X„„lies in the last term of Eq.
(2. 24b), containing g„(r). It will be referred to
in the following as the singular Part of Ms „. Its
appearance depends on the existence of a correla-
tion hole around a particle due to the particle in-
teraction and it would, therefore, not appear in
the Hartree- Fock approximation.

The difference between M3 „„and M3 „has an
analog in the motion of a diatomic lattice. There
the 6x6 dynamical matrix contains 3&3 subma-
trices of the same form as in Eq. (2. 18) with o
now referring to the two sublattices, and

T„.(q)= —ZV V v„~(R„.)e't '&', (2'. 27)
RAO

where the summation runs over the lattice vectors
R„.. The first term in Eq. (2. 18) now deter-
mines the Einstein frequency of the atom o and it
represents the motion of a single atom while the
other atoms are held fixed on their lattice sites.
For small values of q and considering acoustic
modes, the two sublattices move in phase and the
square of the phonon frequency' is determined
from the combination [T (0) —T (q)] analogous to
that appearing in M, „„(q). For the optical modes
the sublattices move out of phase and a matrix
combination like that for M3 „gives a finite opti-
cal frequency for q= 0. Relative to the acoustic

= 4f f [I-Z (0)lb~,', (2. 31)

and it depends on the short range correlations. It
gives the ' Einstein" frequency of, say, a spin-up
particle moving in a rigid correlation hole of down-

spin particles.
From these low-order moments alone we cannot

determine whether there exists a fairly well defined
' optical" spin mode at some frequency co, or
whether such a motion is heavily damped. Neither
could we tell that undamped plasmons exist at small

M, ,«(q) = (nq /m)of, f, ) &u~+ &u,—j+M3 „(q),
(2. 30)

where Ms, „„is obtained from Eq. (2. 23b) by chang-
ing g tog —1. Ms „is given by Eq. (2. 24b) with
the g„ term removed and g(r) replaced bye(r)
-g(~), where g(~)= (f, -f, ) . Both Mo, „„and M~„,
are proportional to q for q - 0. Relative to these
the first terms in Eqs. (2. 29) and (2. 30) are singu-
lar and the two terms proportional to co~,
= (4mne2/m)'~' being the plasma frequency, come
from the long-range Hartree field. The first one
is connected with ordinary plasma oscillations and
the second with the coupling of charge and spin-
density oscillations, which only occurs if f, +f, . 2'

The remaining singular term in Eq. (2. 30) is pro-
portional to

&u, = (4f,f,/3m) f d r V v(r) [g„(r)—1]
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q without additional consideration such as conser-
vation of the total internal momentum of the elec-
tron system. However, the momentum is not con-
served for the up and down spin electrons separate-
ly and the situation for spin-density oscillations is,
therefore, different from that for the full density
oscillations. Since at metallic densities &,- ~+~,
an optical" spin mode is probably overdamped
because the correlation hole does not remain rigid.
The possibility of an absorption maximum in the
high-frequency spin susceptibility is not ruled out.

III. COMPARISON WI 8 LOCAL MEAN-FIELD THEORIES

Various mean-field models for the dielectric re-
sponse ' ' and for the spin-density response ' '

of a system are based first on the assumption that
a singleparticle responds as does a free-particle to
some effective field. This means

6&s.(q, ~)) =X"'(q, ~)~."'(q, ~), (3. 1)

where X' ' is the free-particle response function.
The second assumption is that the effective field
contains an induced part proportional to the induced
density of the surrounding particles. %e may sepa-
rate out the Hartree effective field and write

(q ~) = l (q ~)- "(0)+G t(q ~)

x6{n;,(q, &u)), (3.2)

where the quantities G,~{q, &u) are the local field
factors. For the paramagnetic state the resulting
expressions for X (q, ~) and for the screened den-
sity response function ~,(q, &o) = y„„(q, &o) «(q, &u),

«(q, ~) being the dielectric function, are very simi-
lar since neither response function involves the
long-range interaction of charge fluctuations. %'e

get

X-(q, ~)= X"'(q, ~) [I+o(e)G.(q, ~) X"'(q, ~)] '

(3.Sa)

X (q ~) = X"'{q, ~) [I+o(e)G (q, ~) X"'(q, ~)] ',

(S.Sb)

where

LocalfieldfactorsG, (q), whichdonotdepend on

&, cannot describe properly the short time re-
sponse which goes into the third moments. This
deficiency shows up clearly in the spin-density
response. To get the singular q term in Eq.
(2. 30) requires that u(q) G (q) vary as q for small
q. Since }t' '(q, 0)- —mPr/«8 as q-0, the static
spin susceptibility limy 0)t„(q, 0) would then be
zero. Modifications of Eq. (3. Sa) have been pro-
posed in which y w'(q, e) is replaced by a different
single-particle response functio~. If this single-
particle response function has physical meaning,
it should be used in Eq, (3. 3b) also and the effect
is to change M3 '(q) in Eq. (3. 5). The difference
between v(q}G (q) and v(q)G, (q) must still be singu-
lar in order to reproduce the difference in the third
moments and the difficulty above with the static
susceptibility will remain.

The third moments of y,„„and X„differ just by
the plasma term in Eq. (2. 29). Therefore, the
moment for the screened density response is pro-
portional to q' for small q, owing to the cancella-
tion of the singular ' Einstein" term V(0}via the
particular combination [I'(0)-7(q)] which occurs
in Eq. (2, 29} as a results of translation invariance
of the whole system. The cancellation is not com-
plete in Eq. (2. 30) for the spin-density response,
the remainder being the term with &o,'= [I-g„(0)]

3 ~ . However, as discussed below present
mean field models give G,(q, ~)~ q as q - 0, which
is qualitatively correct for X„only. One may ask,
therefore, why the "Einstein" term seems to can-
cel out in both response functions.

Let us consider the simplest local-field model, 7'8

which corresponds to the replacement

{s(1)n(3))- (n(1)) (n(3)) g"(1, 3) (3.6)

in the equation for the mean current density in the
presence of an external disturbance [see Eq. (2. 15)].
In Eq. (2. 16) it is equivalent to replacing the com-
mutator term by

{[n(I)n3+n, n(3), Z~(2)]}g"(I, 3)

= —(i}f/m) [V~ 5(1, 2)+ V35(3, 2)]

G, (q, ~) = k [G (q, ~)+G. (q, ~)] . (S.4) xn, n, g"(I, 3),

This gives for both X„and X„the asymptotic ex-
pansion

+ ~ M3"(q) — ~(q)G.(q, ") + ",{3.5)

where nq /me comes from the first moment of
'(q, &o), and Mp'(q) is the corresponding third

moment and is proportional to q' [cf. Eq. (2. 22)].

where n ~
=n, , and n 3=n, . This givesog y a3.

MB(1, 2) = m ~
V~ V&(V~~5(1, 2) f d(3) V, o(r„)

x{n(1)n(3)) + V~~ [Vf v(rq3) (n(1)n(2))]], $3. 7)

and it differs from Eq. (2. 16) in two respects. (a)
The coordinate 2 is replaced by 1 in the integral
and the integral now vanishes, making the Ein-
stein" term disappear. Physically it means that
particle I is always kept at the center of its corre-
lation hole. (b) In the second term of Eq. (S. 7)
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the pair-correlation function is also differentiated,
unlike in Eq. (2. 16). The extra term —Vfv(r, a)

&&&zg(1, 2)n, ,n, represents a displacement of

g(1, 2) with particle 2 when the latter is moved.
These two features show that, in making the ap-
proximation in Eq. (3. 6), one ignores the finite
relaxation time of the correlation hole. This re-
sults in a frequency-independent local-field factor
G~.(q) in Eqs. (3. 3) and (3. 5) with

v(q) G,z(q) =q 3 J dre"'[-iq 0v(r)] [g,z(r) —1],
(3.8)

which is finite for q = 0.
It is interesting to compare the form of the in-

tegral above with the corresponding integral in

Eq. (2. 19) which appears in the third moment. We

first notice that the coefficient of the & term in

Eq. (3. 5) is the third moment in the local field
theory. Comparing with Eq. (2. 28) and noticing
that the "Einstein" term for the local field vanishes,
we find that G,~(q) has replaced [q ~ I'„.(q) ~ q] ex-
cept for a constant factor. The former is propor-
tional to q at small q while the latter goes to a
finite value. This means that in the local-field
theory all the partial moments go as q' whereas,
in the exact moments, this is true only for the full
density response and is the result of cancellations
between the two terms in Eq. (2. 28).

The translational invariance at small q is re-
tained (3. 7) even though its "Einstein" term has
vanished. The explanation lies in remarks (a) and

(b) above. It may also be phrased as follows: Each
electron carries with it a rigid, symmetric corre-
lation hole and the force on a particular electron
arises from a displacement of other such quasi-
Particles. At equilibrium their density is uniform
and a rigid displacement of all spin-up particles,
for instance, will not create any force on the spin-
down particles. This is the reason for the ab-
sence of a singular term in M3„,.

A similar assessment can be made of the theory
of Ichimaru which takes into consideration the
effects of triplet correlations in (n(1)n(2)) but

uses a static approximation for the triplet function.
This has the effect of replacing the interparticle
potential v(r) by a screened one v(r) = fdr' v(r+ r')
&&s(r), where s(r) =5(r)+n[g(r) —1].

There are various generalizations of the Ansatz
in Eq. (3. 6). We may write generally

5(n(l, t)n(3, t)) = J dt' J d(4) Q(1, 3, 4; t —t')

x5(n(4, t')), (3.9)

where Q(1, 3, 4; t —t') is the retarded response
function of the equal time correlation function to
a change in the local density. As before 1, 3 and

4 stand for both space and spin coordinates. This
leads in general to a frequency-dependent local-

field factor in Eq. (3. 3), namely,
«I

v(q)G ~(q, e)= s
l

3 (q' q }v(q

x Z ))..-x (-*'q-q', i; )), )3 M)
pre S~ss

where Q(k, q; (o) is the Fourier transform of

Q(r„r„r4; t —t') with respect to the variables
r3 rg, 2 (r, + r, ) —r4, and (t —t'), respectively.
g(k, q; (u) is the corresponding quantity with the
Hartree term n, 5(3, 4)5(t —t') removed. Equation
(3. 10) differs from Eq. (3.8) in having the term
in large parentheses replaced by S,z(q- q') —1,
which is the Fourier transform of g„.—1. In or-
der to get the correct third moments the term in

large parentheses must, for &-~, go as q for
small q. For &- 0, on the other hand, this singu-
lar behavior must disappear in order to get a
finite static spin susceptibility. Interpreting
Q (1, 3, 4; t) as the response of the short-range pair
correlation to a change in the local density does
not immediately suggest such a singular behavior.

The Ansate in Eq. (3.6) corresponds to choosing

Q(1, 3, 4; t) = 5(t)g,~(l, 3) [n, 5(1, 4)+n, 5(3, 4)] .
(3.11}

Vashishta and Singwi" have modified this to allow
for the dependence of g(r) on the density. This
adds to Q a term

Q'(1, 3, 4; t) =n~n~5(t) 5(R(1, 3) —r4}

g"(1, 3; n) (3.12)
an

where R(1, 3) is a somewhat arbitrarily chosen
point at which to evaluate the density change in g.
Their procedure seems to be well suited to get
the static properties of the electron gas, like the
static compressibility and the static pair-correla-
tion function. In order to get the proper high-fre-
quency response it is, however, essential to con-
sider the response of the pair-correlation function
to be noninstantaneous.

We conclude this section by making the remark
that a local mean-field approach, where the effec-
tive potential acting on a particular particle de-
pends only on the induced local mean density, does
not seem suitable for handling high-f requency re-
sponses, not even if the local field factor G„.(q, &a&)

is assumed to be frequency dependent, unless one
is willing to let G .(q„tu) h,ave a singular q depen-
dence for small q. It does not conveniently de-
scribe the short time self-motion of a particle rela-
tive to its correlation hole, and would therefore
not give the "Einstein" term entering in the third
moment. This will give an incorrect description
of the transition from the high- to low-frequency
response, particularly for the spin- response function.
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IV. METHOD OF TOIGO AND WOODRUFF

In the theories discussed in Sec. III the interac-
tion term in the appropriate equation of motion was
factored into a local-field factor times 5(n(q, &o)),
where the local-field factor was assumed indepen-
dent of the momenta of the electrons. Recently
Toigo and Woodruff' have made a generalization
in this respect by introducing a momentum-depen-
dent local field factoring in the equation of motion
for the individual component ng(q) = a;,/2a~;/2 of
the density operator

n(q) = e "'n(r)dr=Zngq) . (4. 1)

They obtained an expression for the screened den-
sity response function of the form

x..(q, ~)=x"'(q, ~)i[I-P(q, ~)l,
where

P(q, cv)=2Z

(4. 2)

(4. 3)

and X' ' is, as before, the free-particle response
function. The quantity Ag(q) can be written in the
form

&Wq)=(nV/~ —n,-, /a ) v(q)G&q),

where ng is the free-particle Fermi function and
(0) .

the p-dependent local-field factor GN(q) is given
later in Eq. (4. 35). The factor two in Eq. (4. 3)
comes from summing over the two spin states. If
G~+q) were independent of p, we would recover the
static local-field model discussed in Sec. III.
Equation (4. 2) can be brought into the form of Eq.
(3. 3a) by defining

v(q)G, (q, (o)—= —P(q, (u)/x' '(q, (u),

and it thus implies a frequency dependence in the
local field factor G, . Since any function of q and
+ can be written in the form of Eq. (3. 3a), there-
by defining G, (q, ~), the frequency-dependent
G,(q, &u) introduced via Eq. (4. 5) does not neces-
sarily mean an improvement in X„(q, to) For in-.
stance, it can be seen from Eqs. (4. 3-4. 5) that
ImP(q, ~) and ImX+'(q, &u) are nonzero in precisely
the same region of (q, &u), namely, for
to &m 'q iP~+ 2q I, and the same holds for ImG, (q,&o)

and for X„(q, &o) itself. Therefore, the fre-
quency dependence of the local-field factor in this
case does not lead to any damping of long-wave-
length plasmons. In this respect it does not lead
to any improvement of the previous static local-
field models.

In this section we will discuss some of the physi-
cal implications of the Toigo-Woodruff (TW) meth-
od. It will be shown that the procedure for deter-
miningAg(q) would satisfy the third moment if it

xw, (q, o'; t) = (tw)-'([ns. (q, t), n. (-q, O)]&e(t),
(4 7)

which gives the response of the density component
(oS ~/~„qs~/3, ) to an external spin-dependent po-
tential V;(q, t). In terms of XS,(q, o; t) the partial
density response functions are

x.~ (q, t) =+ xg. (q, &; t), (4 3)

and, with the help of the continuity equation, the
third moments can be written

M~„,.(q)= —tQ Xa, (q, o; 0+).
PPX

The equation of motion for X~, (q, o; t) is

(4 9)

~~

Xg, (q, o; t) = 0 6„,5(t)

&I/2 s& nSof/Sic)

+O-'p'v(k) X&. (&,o",q, &';t), (4. 10)
P( fys s&

where g„- means omitting 4= 0, and

were carried out exactly. On the other hand, there
is no guarantee that the zeroth moment will be
well satisfied (cf. Refs. V-9 and 11), i. e. , that

r oo

0

=1+n
~

e "'[g(r)- 1]dr . (4. 6)

The basic difference from the procedure in the
above mentioned references seems to be that the
latter use the zeroth moment to determine the lo-
cal field factor, whereas T% use a quantity closely
related to the third moment.

We shall extend the TW method to a, spin- and
p-dependent local-field factorization, introducing
a quantity A~+(q) in such a way as to give the
correct third moments MB„,.(q) for the partial den-
sity response functions. This local-field factor
is appropriate for short times and it is assumed to
hold approximately for all times. One consequence
of this turns out to be that the singularity in Ms „(q)
at small q persists down to zero frequency and the
resulting static spin susceptibility is zero. At the
end of this section we will also show that some of
the approximations made by TVf in evaluating
Ag(q) of Eq. (4. 4) can be avoided, with the result
that the unperturbed occupation numbers n ' are
replaced by the true average values (ng. This
leads to somewhat less satisfactory values for the
static compressibility than those obtained using
n '. For the spin susceptibility the same approxi-
mation. loses entirely the dominant q term for
small q and, therefore, violates the third moment.

Following Toigo and Woodruff, we start with the
function
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XS, (k, o, q, o '; t) = (ihA) ' 8 (t)

x (f: (Q g/~, (t) gI f~/3, (t)

—+)-, g/z, (t) at~/~ ~ (t))n; (k, t):, n; (-q, 0)$
(4. 11)

where: (. ~ ~ ); denotes normal ordering of the op-
erators inside, that is, with the creation operators
to the left. The last term in Eq. (4. 10), which
arises from the interaction between the particles,
vanishes for t = 0*" and we get the following initial
values:

Xs (qc '0)= t&'5 (ni)~/, ny~/, )'

XN (q &.'0')=-t(p q/n))XI. (q, o';0);

4 «v'0')=-t{p q/~)4. (q, v'; o')

x..rq ~) = x
'

(q, )/ [I - Prq, ~)1;

x..rq. .) =x&'(q, .)/ [I -~r&,.)],

(4. IV)

(4. 16)

(f) ( ) 2fl-lg 't))7-g/8 ++g/2)

p ' q/)n
(4. 19)

is the density response function for a system of
noni "teraeting particles with the same momentum
distribution as in the interacting system, and

have, by condition (4. 16), the same first time de-
rivatives for t=0 . The basic approximation of
Tg is to assume them equal for all times.

When Eq. (4.10) is summed over a, o' and the
expression (4. 15) is inserted, the resulting equa-
tion is easily solved for y„„and ~,. The expres-
sions so obtained are

—iQ 'P v(k) Xa, (fc, v., q, a; 0') .
foal

j
(4. 12)

Inserting these in Eq. (4. 9) yields

I'(q, a)) =2K A; (q)

-=~r~.) "rq) x rq, .) .

(4.20)

(4.21)

—Q ' Z v(k)X&, (k, o, , q, e; 0') . (4. 13)
g f

tyler

RZ

The first line of Eq. (4. 13) is readily seen to agree
with the kinetic part M~ „.in Eq. (2. 17), and by
folloming the procedure in the Appendix it can be
verified directly that the second line gives M3 „..

Toigo and Woodruff considered only the total
density response in the paramagnetic state to an
ordinary spin-independent external potential and
so summed Eq. (4. 10) over o'. They were partic-
ularly concerned with finding an appropriate ap-
proximation for the interaction term

Equation (4.21) can be written in the form of Eq.
(4.3) by defining

g {q)= A; (q) —fi ' (n" ~, —n~~,) v(q) .

Z A~~. (q) x,-,. (q, t), (4. 23)

The subtracted term is the BPA or Hartree field.
Equation (4. 16) differs from TW's results, given

~ in Eq. (4. 2), by having X~), which contains the true
mean occupation numbers (n;), in place of x' '

which contains n& '.
The same method can be applied to the partial

density response functions. The last term in Eq.
(4. 10) is now replaced by the approximate form

Z v(k) X~ (k, a",q, e'; t), (4. 14) where, in analogy to Eq. (4. 16), the coefficients
A-, , (q) are determined from the condition

which they replaced by the approximate form

A+q)x (q, t). (4. 15)

To determine A+@) they chose the condition that
the first frequeocy moments of the two expressions
should agree. This means equating the first-time
derivatives at t=0, i.e. ,

0-' Z v(k) X;, (k, o",q, o'; 0') =A;(q) X„„rq, 0').
(4. 16)

Referring to Eq. (4. 13) makes it clear that this
ayyroxirnation mould give the correct value for the
third moment of the density response function,
provided the left hand side of Eq. {4.16) were
evaluated exactly. The quantities in Eqs. (4. 14)
and (4. 15) both have the initial value zero and they

n ' Z v(R) X~ (k, o", q, v'„' 0')
y tyts

=Z A- ... (q) x,„,, rq, 0')
tys t

=A-,, (q) n. q'/m. (4. 24)

4~ {q)=A-. 4)-tl '&n;;/a. -g.;/2, .) v{q) .
(4.25)

Equation (4. 13) shows as before that the approxi-

The evaluation of the left-hand side of Eq. (4. 24) is
discussed in the Appendix. The BPA term comes
from the k=qterm in Eq. (4. 24) and it can be
split off from the rest by introducing new coeffi-
cients A~,. (q) as in Eq. (4.22)
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+ v(q) X
~'

(q, (z) ]X,.„(q, &), (4.26)

mhere

p - & p'gjpg
(4. 2'I)

) g2«, . q

(d p ' q/rig
(4. aS)

Equation (4. 26) is a 2&& 2 matrix equation in the in-
dices o, O'. - For the paramagnetic state the forms
of the screened density response and the spin-den-
sity response obtained from it are similar to those

'

in Eqs. (3.3), namely,

x =x"(1-P,) ' ~d x, =x"'(I-P) '
(4.29)

P, (q, (g) =P„(q, (o) +T'„(q, (o) ~ (4.30)

Let us first consider the spin-response function.
For &=0 we have, from Eq. (4.28),

e+II

P (q, 0)= —Z [X;„(q)-2;, (q)]
(4. 31)

This is to be compared mith the corresponding ex-
pression for the third moment:

M, „(q)= q Z q [X;„(q)-2;„(q)]
FI1 .

y FB (4 32)
Since Mg„(q) is proportional to q for small q, the
sum in Eq. (4.32) has a nonzero limit for q = 0.
Correspondingly P(q, 0) is proportional to q so
that the q =0 static spin susceptibility is zero. The
similar structure of Eqs. (4. 31) and (4. 32} shows

clearly that the reason for this unphysical result
is that the p-dependent local field approximation
in Eq. (4.23) forces the same type of structure on
the short- and long-time behavior of the interaction
between a particle and its surroundings.

Since M, (q) [=M)„(q}; cf. Eq. (2.29)] ispro-
portional to q for small q, P,(q, 0) has a finite
limit for q= 0. On comparing Eqs. (4. 16) and

(4. 24) one sees that

A;„(q)+ A;„(q) = 27ly+q), (4. 33)

so that P, (q, ~) is the same as P(q, ~) in Eq.
(4. 21). This means that the same density response
is obtained from the TVY approximation in Eq.
(4. 15) as from the spin-dependent local field in Eq.

mation in Eq. (4.23) together with Eq. (4.24) would

guarantee the correct third partial moments M3 «.(q),
if the left-hand side of Eq. (4. 24) were eval-
uated exactly. The resulting equation for ~~ is

x. (q )=6 ~ xÃ'(q, )+~ [P,"(q, )

(4, 23). If the exact expression for A~, (q), which

is given in Eqs. (A4)-(A6) of the Appendix, is
evaluated by making the additional factorization
approximation,

&njn2ns~4 & = &std & &sass &
—&nis3 & &std &

(4. 34)
the result ls

(4. 36)

From Eqs. (4.28)-(4.29) and (4.35) we get after
some algebra

«, /«= (1--,' p'x)/p, (4. 3V)

1 i d&~
pr. , dp

and x= AT+/pz =0. 663m„kTr being the Thomas-Fer-
mi wave vector. Setting &n~& = n~~ gives p = 1 and

«0/« = 1 —4X ~ (4. 38)

the result obtained by Toigo and Woodruff; and this
is also the result obtained from differentiating the
Hartree-Pock energy. This value is slightly
higher than the best values obtained when the cor-
relation energy is included. The effect of p in Eq.
(4. 3V) is to raise the value of «0/«. For example,
for ~, = 5, p is estimated~ to be 0.92 and «0/«
= 1.9 «0/«». Therefore, the static properties are
not as mell reproduced as it might appear from
Ref. 16(a), when a more consistent evaluation of
the approximation in Eqs. (4.15) and (4. 16) is
made. This is not unreasonable since the T% pro-
cedure is based on satisfying the equation of mo-
tion at short times. This is opposite to the Vash-
ishta-Singwi procedure, ~ which is based on a long-
time approximation. Similarly, following TW for
spin susceptibility gives the value obtained from
differentiating the Hartree-Fock energy with re-
spect to the magnetization. 33 The factorization in

A;(q) =- &~;,.—~;„&(nq'n)-'

xQ v$)(q. k)(n, ; -q, n- g, ,q, &.

(4. 35)
This is precisely the form obtained by Toigo and
Woodruff, who used the same factorization as
above. Homever, at an earlier stage they made an
approximation in evaluating the left-hand side of
Eq. (4. 16), using only the Hamiltonian for a non-
interacting system. This means that (n;& is re-
placed by the Fermi function ng' in Eq. (4. 35).
The replacement of (n;) by n 0' in both X'I' and P,
in Eq. (4. 29) ean have a significant numerical
effect on y . Consider the static compressibility
ratio
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Eq. (4.84), therefore, gives a result which con-
tradicts the exact property of P (q, 0) in Eq. (4. 31).

The factorization (4. 84) evidently has some re-
lation to the Hartree-Pock picture. It leads to lo-
cal field coefficients 7L~.(q) which vanish for anti-
parallel spine (see Appendix). Also the third mo-
ment Ms ~, (q) is given by Eq. (2. 18) where now the
density correlation function in Eq. (2. 19) has the
Hartree-Pock factored form Single

pair

Multipair
Collective Translation No transl.

mode invariance invariance

TABLE I. Matrix elements, excitation energies, and
sum-rule contributions to S~(q, ao) in the long-wave-
length limit. The values in parentheses refer to S~{q,~)
The table also applies to S~(q, ru) if s~(q) is replaced
by 3 Pq) in the first column. ru is an average excita-
tion frequency for multipair states of zero total momen-
tum, and s is the velocity of the collective mode if it
exists.

(m I n, (q.) l 0) 1/2

(4. 89)
The Fourier transform of &,(v) =g, (r) —1 is

(4. 40)
( )

which corresponds precisely to the exchange hole
for noninteracting particles with the momentum
distribution &~, ). The short-time pair correla-
tions which are contained in Eq. (4.35) or Eqs.
(AV)-(AS) are therefore due just to the exchange
hole. Here, this approximation is made, of
course, at a different stage in the calculation from
what is done in the ordinary Hartree-Fock ap-
proximation for the density response functions.
There Eq. (4. 34) would be applied directly to the
interaction term on the second line of Eq. (4.10).
The latter approximation is usually called the gen-
eralized HPA and, like the HPA, it is still a weak
coupling theory and would presumably give a poor
prediction of short-range correlations.

The long-time density response predicted by Eq.
(4. 35) must include some adjustment of the ex-
change hole to the change in local density. This
follows from the facts that Eqs. (4. SV) and (4. 38}
have the same structure and that by differentiating
E„~one explicitly includes the density dependence
to the exchange hole. This is also consistent with
the observation in Ref. 11 that using g" (r) in the
density-dependent local field of Eqs. (3.11) and
(S.12) also gives the Hartree-Pock value of the
static compressibility.

V. REMARKS ON THE LANDAU FERMI-LIQUID THEORY

The different high-frequency behavior of the den-
sity and spin-density response at long wavelength
raises the question of whether the domain of valid-
ity of the Landau theory of Fermi liquids may be
different for density and spin-density fluctuations.
Safir and Vfidom ~ have suggested that the Landau
theory may not be applicable to spin-density fluc-
tuations. In this section we make a more conser-
vative restatement of the implications of the sum
rules for the Landau theory.

This theory assumes that for sufficiently small
q and ~ the response is dominated by single quasi-

Pauli principle
restriction

P I (mt ff (g) j 0) (td }

L=-1„0, 1,

& l~(q) l0&=q.~ &-l~.(q&10u-... (5.1)

where i 0) and i I) are the ground state and some
excited state, respectively, and 8 0 is the excita-
tion energy. For a multipair state i m& it follows
from conservation of total momentum that

particle and quasi-hole-pair excitations and co-
herent superposition of these. The quasiparticles
and quasiholes interact through static f;;, param-
eters. In this sense it is similar to the mean-field
theories discussed above. The response of the in-
ternal structure of a quasiparticle is not consid-
ered. Such response would correspond actually to
multipair excitations.

In support of the above assumptions, Pines and
Nozieres have given a table of the contribution at
small q from different kinds of excitations to the
low-order moments of the dynamic density corre-
lation function 3 (q, ~~) for a system of neutral
fermions. 35 At zero temperature this quantity is
equal to —)("(q, ~)/x for ~ &0 and is zero for ~ &0.
Therefore, the odd moments of S and X are the
same but 8„„has even moments also.

Their table would be different for the partial
density correlation functions and for the spin-den-
sity correlation function 3„. To show this we list
in Table I the corresponding contributions to the
positive moments of ~(q, &), the density correla-
tion function for particles of the same spin o,
again for neutral fermions. This particular com-
ponent is similar to 3 in that it is non-negative
and is related to the response function X in the
same way as $ is to X . TaMe I applies to 9„
also.

Multipair excitations contribute to the order q'
to the moments of S„whereas they contribute to
order q4 to the moments of S„„and, therefore, are
significant only in the third and higher moments.
The difference lies in the matrix elements
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(ml J(q)10)-0 as q-0.3' On the other hand, the
momenta 5, = mJ, (0) of the separate spin densities
are not conserved so that (ml J,(0) t0)qq0. [In Ta-
Me I of Ref. 1V it seems to have been assumed that
multipair excitations contribute in the same way to
both S„„and S„, which is evidently not the case.
Their table, if right, would imply that M, „(q)
would have to go as q4 for small q instead of q~ as
found. ] Table I shows that the f-sum rule (I = I)
for S is exhausted by single-pair excitatlons and
coherent superpositions of these (collective
modes), whereas this is not true for S„. This ls
brought out by the Landau theory itself, which pre-
dicts» for (q)/(Ikp && l»

y„„rq, (d) -nq'/mw', x„rq, (u) nq'-/m*(d',
(5.2)

ppg* being the effective mass. The correct asymp-
totic form of y, is ~q /m(d~ [recall Eqs. (2. S)-
(2.4)], and the difference between this and that in
Eq. (5.2) has to come from multipair excitations.

The role of momentum conservation in differ-
entiating between y~ and X„ is connected of course
with the different ways the up- and down-spin sub-
systems move under the influence of a spin-inde-
pendent and a spin-dependent external disturbance,
as described in See. II. In the spin response there
is a net rate of momentum transfer between the
subsystems and at the same time there occurs a
dynamic adjustment of the correlation hole of par-
ticles with opposite spins, when the two subsys-
tems move relative to each other. This dynamical
effect is not taken into account in the Landau theo-
ry and it shows up in the f-sum rule for the spin
response function. The above remarks are already
contained in the work of Leggett. 36

TaMe I and the table in Ref. 35 say nothing di-
rectly about the domain of validity of the assump-
tion of the Landau theory. This is because they
do not show where or how the transition from high-
to low-frequency behavior occurs, The fact that
the Landau-theory excitations exhaust the f sum for
S„„for a pure Fermion system with no external
interactions is really a special case and does not
apply, for example, to S„„for ~He-4He mixtures
nor to electrons in metals.

We are at present unable to suggest a more
px oper model for the electric and magnetic re-
sponse functions, which would be consistent with
the third moments and also be valid for low fre-
quencies. Nevertheless, we would like to have
some idea of the changes to be expected from such
a model and for this reason we shall consider a
simple interpolation scheme. %e assume a fre-
quency-dependent local-field factor of the following
form

G, (q, ~) = G, (q, -).&(~) [G,rq, 0) —G,rq, -)],
(6.I)

where $(~) is a certain relaxation function, and

G,(q, ~) and G,rq, 0) are the limiting values of the
local field factors. %e choose

5((o) =(I -~7) ' (6.2)

a.(q, q) =() + an —
) G'(q), (6.4)

where 8=3 and G (q) ls given by Eq. (S.8) with

g„.(r) replaced by g(r). This expression seems
to give a good description of the low-frequency re-
sponse. For G (q, 0) we use the semiempirlcal
formula

G (q, o) = P(q/f. )'1(q)/f(0), (8.5)

where I(q)/I(0) is taken from the calculation in
Ref. (9) and y is chosen to give the long-wave-
length static susceptibility. '~ In Ref. S8 an expres-
sion of the form of Eq. (6.5) is shown to lead to
reasonable values of the Korringa constant and
nuclear -spin-relaxation rate in alkali metals.

For small q the expressions (6.S)-(6.5) reduce
to

G,(q, -)- y. (q/P, )', G.(q, o)- P(q/pp)',
(6.6)

G rq, ")-—l [I -g„(0)l, G (q, 0)- P(q/p, )',
where

))»» (O

y,"= ) [S(k) - I]dk
5p

and

are the same as —', y and y in Tables I and ID re-
spectively, of Ref. 11, while

with 7 I/-(d~.

Comparing Eq. (S.5) with the moment expansion
suggests taking

G.(q, )=-( /nq', ')M„„rq),
(6.S)

G.rq, -)=-( /.&'.,')M;.,rq) .
The kinetic part [APg(q) —Mg (q)] ls not included in
the local field factor. It would give G~ q~ for large
q and this would lead to a divergence in the pair-
eorrelation functions for r- 0. %e argue that this
contribution to the moment shouM instead be con-
nected with a modification of g( )rq, (d) as, for ex-
ample, in the appearance of l "'rq, (d) in the Toigo-
Woodrull procedure.

For G,rq, 0) we adopt the expression given by
Vashista and Singwi, »'
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TABLE II. Values of the coefficients r, , r,", and ro

for various r, .

0
Y»

0. 18

0. 24

0. 20

0 ~ 06

0. 20

0. 26

0. 17

0. 06

0. 20

0, 27

0. 16

0. 07

0. 22

0. 28

0. 14

0. 07

0. 22

0, 29

0. 13

0. 08

0, 23

0. 30

0 ~ 12

0. 08

)e ee

Y

(() = (dp [1+ (s( q/pp) + ' ' ' ] )

with

() ( alpr)Ren=Re&RpA 2 r, + s(r, -r", ) 1 21+ (cop7)

1 + ((dp&)

(6.8)

(6. Qa)

(6. Qb)

The dispersion curve is somewhat closer to the
RPA value than that given by Vashishta and Singwi,
but the change is small. For v- w~~ the values of
—Ima are 0.015 and 0.017 for Al and Na, respec-

These coefficients are listed in Table II for differ-
ent values of r,.

For large q some simple calculations give

G,(q, )- -', [1--,' g„(o)],
G (q, )---,'[1-2g„(0)],
G.( q, 0) - () + am —[) ——,

'
g „(0)),

n

G.(q, o)- -a(0)=-,'g„(o),
where we have put g„(0)= 0. From Eqs. (6. 6),
(6. 7), and the fact that g„(0)= 0 for r, & 4, we may
expect that G (q, ~) will be close to the value ——,

'

for all q.
A. Dielectric Response

We notice that G,(q, ~) is not very different
from G,(q, 0) which was used by Vashishta and
Singwi. Both G's are proportional to (q/pr) for
small q and the proportionality factors differ by
about 30%. Their asymptotic values at larger q
differ by roughly the same amount. Therefore,
we do not expect large changes in the dielectic
response and it is difficult to know whether or not
the frequency dependence in Eq. (2. 1) leads to an
improvement without carrying out more extensive
calculations.

However, there is one significant change. Owing
to the relaxation effects built into the interpolation
(6. 1), plasma waves are now damped at long wave-
length. The plasma dispersion becomes

tively, in good agreement with the plasmon damp-
ing rates calculated by Hasegawa and Watabe' and

by DuBois and Kivelson. s ( —Imc( is the same as
,'b in—Table III of Ref. 38. ) They used diagram
techniques and included multiple electron-hole ex-
citations, which corresponds in our language to
including the relaxation of the local field. The
numerical agreement suggests that, for small q
at least, the relaxation time is of order &~ . The
above calculated values of the plasmon damping
are significantly smaller then experimental
values 3 and damping mechanisms involving the
lattice appear to dominate. ' 4 The neglect in our
calculation of the kinetic contribution to the third
moment can have a significant effect on the values
of n. How it should affect the plasmon damping is
not clear, in view of the remark below Eq. (6.3).
Since the change in M3 is accounted for by using
y(~)(q, e)), its effect on the plasmon frequency can
be estimated by replacing (v ) ' ' in o.app, by (v ).
The increase in Rex cancels most of the y-term
contribution in (6. Qa) and gives a dispersion curve
much closer to the RPA curve.

nq 1
egg q) a')= — s

S

for (d «1/r and (d,r small, and

(6. 10)

m(o,
'

[((d/(u, )' —1]'+(I/(dr)'

(6;11)
for +» I/r. Thus, for +,v& 1 we get a, resonance
peak around (d = &o, (= (o~ /W). In Fig. 1 is shown
as an illustration the spectral function for q = 0. 2p~
and with 7= I/(d~. The result is compared with
that obtained from the model in Ref. 9. The two
curves differ significantly but the difference would
decrease as. we go to larger wave vectors. We
recall that

e0

X„(q, O)=-~~ Imp„(q, o)) —, (6.12)
e0

and this means that the two curves give the same
value for the integral above. Figure 2 shows the
spectral function for q= 0. Ipz and with v=1/+& and

B. Magnetic Response

The major change will enter in the magnetic re-
sponse, where the two limiting local field factors
are very different. For the static response we get
the same result as in Ref. 9, except for the ad-
justment of the long-wavelength limit. With a
static local field factor, as in Ref. 9, the spectral
function, Imp„, vanishes where ImX' ' does and
for long wavelengths this happens for ~ & qvr.
our extrapolation model, on the other hand, this is
not true and for small wave vectors we have ap-
proximately (v & qv~)
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FIG. 1. Magnetic spectral function Imp (q, ~) for
q= 0.2' and ~~= 4 with the frequency-dependent local-
field factor G (q, u)) (curve 1) and with the frequency-&&-
dependent one G.(q, 0) (curve 2).

1.0

r= 2/or~. In the latter case we see the beginning
of a resonance peak.

An important test of the accuracy of the response
functions is obtained through the static pair-cor-
relation functions g„(r) and g„(r). We have found
them sensitive to the detailed form of the local
field factor and to the choice of v'. At present
there is no clear indication that our extrapolation
scheme would remedy the existing defects in the
pair-correlation functions, as shown in Ref. (9).
Our calculation gives a significant change in the
magnetic response, whereas the change in the di-
electric response is much less pronounced. A
basic remaining problem is to understand in more
detail how the relaxation of the local field actually
occurs.

ACKNOWLEDGMENT
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(n, q /m)A;„(q)= 6„.B"~(q)+C;„.(q), (A3)
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d

J3
L.0

where

p
I

J. ( - q) =Z —a,".„./I, . a, ,/I„ (A2)

The commutators in Eq. (Al) are readily evaluated
with the help of the following relations:

[ay+q/a, a t q ' J '( q )] 6.. (q p/m) Q-q/a, a y
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[n ~ (k), q J,.( —q ) ]= 6,„,.( q k/m)n, .(k —q ) .
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APPENDIX: EVALUATION OF Ag, (q)

The time derivative on the left-hand side of Eq.
(4. 16) can be evaluated by differentiating Eq.
(4. 11), transferring the time derivative over to
n~( —q, 0) and finally using the continuity equation.
This gives

j;,(k, a ", q, a'; 0') = (i}IQ)

5 1 0 ~!Ir3 1.5
Std(~

FIG. 2. Magnetic spectral function Im~(q, co) for
q= 0. 1p& and w~= 4 with the frequency-dependent local-
field factor G (q, ~) and ~ = 1/u& (curve 1) and ~= 2/(d&
(curve 2).
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The first term in Eq. (A5) is the RPA term and it
corresponds to k= q, which is removed from the
sum in Eq. (A6}.

To check that the last term in Eq. (4. 13) is the
same as M ~ „,(q) in Eq. (2. 17) is mainly a question
of reproducing (n, (0) n; (r)) in Eq. (2. 19). The
procedure for doing this will be indicated without
giving the detailed steps. From Eqs. (4. 13) and

(4. 24) we notice that what is required is to multiply
Eq. (A3) with (p q) and then sum over p. We also
notice that both A,",(q) and C",. (q) in Eqs. (A4) and

(A6) are of the form gf [F(p, k) -F(p+k, k)]. This
means that after performing the summation over
p we obtain an expression of the form gi(q ~ k)
x [g;F(p, k) ], where the last factor contains the
required density correlation function. An explicit
evaluation of the sum leads to M s „,(q) in Eq.

(2. 17).
Applying the factorization approximation (4. 34)

to the expression in Eqs. (A4) and (A6) yields

x(('+y~/2, 5)(ny+rK+q/2, 0) +(ny-Il/2, tr)(+94M/2, 6) }

C;...(q)=(mg') '5„, Q v(k)(k q)((n;;, /a, ~)
k&0, ti

x(ny p q/Q p) +( np ~g/g)(ny+f+q/a, )) . (A6)

Equation (4. 35) follows directly from the above two
equations. In this approximation A;„(q}= 0, so
that the whole local field comes from parallel
spins, as the ordinary exchange potential.
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