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Second-Order Green's-Function Theory of the Infinite-Chain Heisenberg Ferromagnet
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A second-order self-consistent random-phase-approximation decoupling similar to that used by Kondo
and Yamaji for spin-1/2 and by Scales and Gersch for the antiferromagnet is applied to the isotropic
infinite-chain Heisenberg ferromagnet for arbitrary spin in zero applied field. At finite temperatures,
well-defined spin waves and a finite correlation length are found. In the zero-temperature limit, the
correlation length becomes infinite and the exact ground state and spin-wave spectrum are obtained.
The correlation functions are isotropic, as required in the absence of magnetization, and are
asymptotically exact in the high-temperature limit. Results are compared with extrapolations from finite
chains by Bonner and Fisher for spin-1/2 and by geng for spin 1, and with the rigorous solution by
Fisher for the classical infinite-spin limit.

I. INTRODUCTION

The infinite-chain Heisenberg magnet has been
of interest to theorists for some time. In the ab-
sence of an applied magnetic field, the Heisenberg
Hamiltonian for a chain of N atoms is given by

N

H = —(2 8) Z» S~ ~ S~~, (1 1)
&=0 tt=y1

where Z is the exchange constant, fz is the spin
operator at site j, d is the nearest-neighbor index,
and where periodic boundary conditions may be ap-
plied to require SN =$0, since the limit N-~ is to
be taken. The case J )0 is the ferromagnet and the
case «0 is the antiferromagnet. Theoretical in-
terest in linear chains has been heightened by re-
cent experiments which show that a number of
materials behave as linear-chain ferromagnets
and antiferromagnets' to a first approximation.

The only exact solution for the specific heat and
other thermostatic quantities of the Hamiltonian
given by Eq. (1.1) for arbitrary temperature is
that obtained by Fisher in the classical infinite-
spin limit. Some of the features of his solution
are that magnetization can exist only at zero tem-
perature, that the correlation functions are spatial-
ly isotropic, as required in the absence of magne-
tization, and that the correlation length for both
the ferromagnet and antiferromagnet at low tem-
perature varies inversely with temperature. Mer-
min and Wagner have proven that the infinite-chain
Heisenberg model cannot support magnetization' at
nonzero temperature in the absence of an applied
magnetic field. Hutchings et al. have found that
the substance (CH3)4NMnC13 (TMMC), a linear-
chain Heisenberg antiferromagnet of spin--,', has
a correlation length which varies inversely with
temperature over a considerable temperature
range and has a spin-wave spectrum which is well
defined at low temperature. Steiner and Dachs
have found that CsNiF„a linear-chain ferromagnet,

has a rather large correlation length at low tem-
peratures that decreases with an increase in tem-
perature. These results lead one to expect that,
even though the one-dimensional ferromagnet can-
not support magnetization at nonzero temperature,
the spins remain highly correlated over a consid-
erable distance at low temperature, so that spin
waves whose wavelengths are short compared to
the correlation length exist, at least locally. On
the other hand, spin waves whose wavelengths are
long compared to the correlation length may possi-
bly not exist, and if they do exist, may have greatly
renormalized excitation energies in comparison
with short-wavelength spin waves.

Extrapolations from finite-chain Heisenberg
ferromagnets by Bonner and Fisher for spin-&
and by%'eng' for spin 1 yield estimates for the
specific heat and other thermostatic quantities
which become rather uncertain at low temperature
and shed no light on the behavior of the infinite-
chain correlation length in this temperature re-
gion. Neither ordinary renormalized-spin-wave
theory' nor the first-order self-consistent random-
phase-approximation (RPA) Green's-function theo-
ry of Tyablikov' can be applied, because the tem-
perature renormalization of the spin-wave excita-
tion energy in these theories is independent of
wavelength and proportional to the magnetization,
which vanishes in absence of an applied field.

Self-consistent RPA decouplings of the Green's-
function equations of motion at second order, rather
than first, have been used by Kondo and Yamaji
for the spin-y infinite chain and by Scales and
Gersch' ' for arbitrary spin for one-, two-, and
three-dimensional lattices. These decouplings lead
to spin waves with excitation energies whose tem-
perature renormalization is greater for longer
wavelengths and proportional to the correlation
functions, so that the existence of spin waves does
not depend on having magnetization. Scales and
Gersch' have also shown that self-consistent sec-
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The retarded double -time temperature -dependent
Green's functionfor operatorsA and 8, &(A(t), 8(0))},
is defined by'

«A(f), 8(o) » = —fe(f) &[A(f), 8(o)l&, (2 I)

where t is the time, 8 is the unit step function,
[A, 8]=AB —BA, A(t) = e'"'A(0) e 'z' (where H is
the Hamiltonian operator), and the average of an
operator over a canonical ensemble at temperature
T is indicated by enclosing that operator within

ond-order RPA Green's-function theories obey the
principle of detailed balance and satisfy zeroth-,
first-, and second-moment relaxation-function sum
rules for the spin-wave excitation energy. The
ferromagnetic chain cannot be treated by the de-
coupling method of Ref. 13 without modification,
since the proper ground state would not be found in
the zero-temperature limit. In the present paper
we construct a self-consistent second-order RPA
Green's-function theory for the infinite-chain Hei-
senberg ferromagnet in zero applied field for
arbitrary temperature and arbitrary spin, which
yields the proper ground state in the zero-tempera-
ture limit, gives a correlation length which varies
inversely with temperature at low temperature,
and has the required spatial isotropy in the corre-
lation functions in the absence of magnetization.

II. GREEN'S FUNCTION FORMALISM

angular brackets.
If we denote the time Fourier transform of

«A(t), 8(0))) as

((A, B))„=(2v) J «A(t}, B(0)))e "'dt, (2. 2)

the first-order equation of motion for «A(t}, 8(0}))
may be written'

(o«A, 8&)„=(2s} ([A, 8])+(([A, H], 8))„. (2. 3)

If the operator A appearing in Eq. (2. 3) is replaced
by the operator [A, H ], the equation of motion for
the Green's function (([A, H], 8))„appearing on
the right-hand side of Eq. (2. 3) is obtained, as

(o«[A, H], 8))„=(2s) '([[A, H], 8])+ (([[A, H], 8]))
(2 4)

From Eqs. (2. 3) and (2. 4) it is seen that an infinite
heirarchy of Green's-function equations of motion
is obtained unless the Green's function on the
right-hand side of a higher-order equation turns
out to be identical to a Green's function in a lower-
order equation, and this does not happen for the
Hamiltonian given by Eq. (1.1). It is convenient
to let A = S~ and 8 = So in Eqs. (2. 3) and (2. 4) be-
cause the equations of motion are simpler than for
the frequently used choice S& and So. «[S&,H], So))„
may be eliminated in Eq. (2. 3) by using Eq. (2. 4),
to obtain a second-order equation of motion for
«Pz', So)) given by

&'«Sg, So&) =(2z} '~+ &SoSg+SOSg)(5g, o
—5g~, o}+~ ~ (&(Sg'Sg.PJ~., -Sy. gy~.g Sg~), So&&

d eu'

+Z Z «(Sq~ S~~.S~ —S~,P~ ~ S ~j, , }So&& (2. 5}

where 6;, is the Kronecker 6, after using the
angular-momentum commutation relations together
with Eq. (1.1). '

III. DECOUPLING THE EQUATIONS OF MOTION

The higher-order Green's functions appearing on
the right-hand side of Eq. (2. 5) may be approxi-
mated in terms of a first-order Green's function of
the kind found on the left-hand side, in order to
close the equations of motion at second order. The
decoupling approximation is rather arbitrary in
comparison with that at first order, due to the
combinations of more complicated operators ap-
pearing in the higher-order Green's functions.

Perhaps the most "natural" generalization of
the first-order Tyablikov random-phase-decoupling
approximation" is found by expressing the commu-
tators of three spin operators with one spin oper-
ator in the higher-order Green's functions as sums
of terms having commutators of only one spin
operator with another, in order to satisfy the defi-

+ &Sp' &«S&, So»„+&S™S'&«S;, So»„, (3 1)

where n may be x, y, or z and «S'S~ S, , So))„ is
approximated in the same manner. If n is x or y,
the correlation functions &8~ S' ) and (S, S') vanish, "
and the only Green's function which appears is
«S', So))„. When Eq. (3.1) is substituted into Eq.
(2. 5), the terms in this approximation for n = z
vanish when summed over, as they must, since in-
spection of Eq. (2. 5) reveals that the operators in
the Green s-function arguments for n = z vanish
rigorously when summed over.

The spatial isotropy and translational invariance
of the Hamiltonian give the relations

&SJS) ) = &S~S & ) = &SOS' g ~ ) (3.2)

for any j and l. The equation obtained by substi-

nition of the first-order Green's functions as given
by Eq. (2. 1}, obtaining the approximation

«S;S",S', So)&„=&S, S™,)(&S', So)&„
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tuting Eqs. (3. 1) and (3. 2) into Eq. (2. 5) can easily
be solved in terms of the lattice Fourier transform

G&(~)= e" (&S*, Sp)) . (3.3)

Gp(&o) will involve the unknown correlation functions
(Spsf) and (SpSp ), which must be determined self-
consistently. (Sps'p) may be found in terms of
(SpS|) and (SpSp) from the spectral theorem"

(Sps' ) =& ' Z (SpS'p ) cosmk. (3.5)

Since

(Spsp) = 3 (Sp Sp ) 3 S(s+ I), (3.6)

Eq. (3.5} for m = 0 yields an additional equation
which (Spsf) and (SpSp) must satisfy, and we have
three equations in two unknowns. An additional
temperature -dependent unknown is required.

The arbitrariness in the decoupling approxima-
tion may be used to introduce the required un-
known. It is not reasonable to use Eq. (3.1) for
all values of j, l, and m. Different temperature
dependencies of the decoupling might be expected
for the cases Ij-iI=0, 1, and 2. In addition, the
decoupling may be modified when m =j or l, which

(Sps'p) = i lim [G,(&o + yi}-G, (&o iy-)]
y» p»pa

xn(pp/ks T) d+, (3.4)

where n(x) = (e" —1) '. The self-consistency equa-
tions are then given by the inverse-lattice Fourier
transforms

occurs in Eq. (2. 5) only for (j -l I= l. In fact, for
the special case of spin-&, the operators for m =j
or l in the Green's-function arguments of Eq. (2. 5)
vanish rigorously when summed over. ' Since
only one additional temperature-dependent unknown

may be introduced if the temperature dependencies
are to be self-contained in Eq. (3. 5), we choose to
modify our decoupling procedure as follows, calling
the new unknown Tp. For a =x or y, ((Sysg S Sp))„
is approximated as ($&S;)((S', Sp))„ if j=l;
7 p (Sz SN)((s', Sp))„ if Ij—l I = 1 and m 0j or l;
e|7'p(s&s, )((S', Sp))„ if I j —i I= 1 and m= j or l; and

prp(SJ S, )((S, Sp)) if I j —l I= 2. ((S $&si, Sp))„
is approximated in the same manner. It is not
necessary to be concerned with terms for n = z,
since their net contribution to Eq. (2. 5) is zero.
The constants e, and e2 are to be determined by
physical considerations in the zero- and high-tem-
perature limits and are given no physical signifi-
cance in our theory, other than as fitting param-
eters that allow the decoupling to yield correct re-
sults in these temperature limits, so that the theo-
ry can give a good approximation at arbitrary tem-
perature.

It is convenient to introduce the normalized cor-
relation functions

r.=(Sp S )/Y=3(S*,S')/Y, (3 7)

where &p= 1, from Eq. (3.6). Then with our modi-
fied decoupling approximation, Eq. (2. 5) becomes

where Y= S(S+ 1), and to make the change of va, ri-
ables

(3. 8)

' Z(5. , 5.„,)+~, Z((s:„„., s;))„

—[I + (e, + 1}T, + ep 7'p ]2 ((S'~, Sp))„+2[1 + (e, —1)&|+ ep &p ] ((S~i Sp ))& .
d

(3 8}

Gp(&o)= 2'&, (1 —cosk}/3vp p(~ —ep),

where Gp(+) is defined by Eq. (3.3) and

ep = 8YJ 7'&(1 —cosh)(1 —h cosk)/3h,

(3. 10)

(3. 11)

Taking the lattice Fourier transform of this equa-
tion, we find

lim (xsiy) '=S'(x ') +iw5(x),
»p

(3. 14)

expressing the equal a priori probability for the
creation of a magnon of energy EA and a magnon
"hole" of energy —E~, as required by the spatial
isotropy of the Hamiltonian. '

From Eqs. (3.4) and (3. 13) and the identity

where

h = 2&,[1+(e, —1)7', + ep &p ]

G, ((u} may be written

G, (u&) = [YJ7',(1 — sco)/k3H ]pe

x [((o —ep) —((d + ep} ], &p )0

(3. 12)

(3. 13)

2' &,(1 —cosk)[2n(ep /ks T) + 1]
3 pEA

Then from Eqs. (3.5), (3. 7), (3.8), and (3. 15) we

(3. 15)

where 6' denotes "principal values of the integral, "
5(x) is the Dirac 5 function, and the limit y-0 is
to be taken after integration, we have
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obtain

3&ah 1/2 t
t 1 —cosk

in the sections to follow.

IV. HIGH-TEMPERATURE LIMIT

T +1 cosmkdk 3. 16

in the thermodynamic limit N- ~. Equation (3. 16)
provides the self-consistency conditions for m=0,
1, and 2 and for m&2 expresses the remaining
correlation functions in terms of 10, 0&, and 0z.

Once the values of 7' have been found which
satisfy Eq. (3. 16), the other thermostatic quantities
may be found from the correlation functions. From
the translational invariance of the Hamiltonian
[Eq. (1.1)], the internal energy is given by

r, ,„=(Y/38)(1 —«8),

g„=ks(Y /38 )(1 —28),

&3„=(F/38) (1 —j8),
X..= us@'(Y/3J8)(I+ 2Y/38),

(4. 1)

where 8=ksT/J and 8»1. In addition, to first
order, one has for any m,

The first few terms of the exact high-temperature
expansions are easily found using the properties of
the traces of the spin operators. To second or-
der, the exact thermal averages are

(H) = —NYJ7l, (3. 17) (Y/38)% (4. 2)

so that the specific heat per ion is

c=- rz "&
BT

(3.16)

Assuming the dominance of excitations of wave-
length long compared to the lattice spacing a, so
that the correlation length has meaning, we have
from Eq. (3.15) the Lorentzian form

38[1-(1-h )'I ]~ y &g

2 Y(1 PP)»k~-~ +
38 (4. 3)

To obtain results to second order in the high-
temperature limit from Eq. (3. 16), it is sufficient
to keep only the terms 2keT/e, + c~ /6ksT from the
expansion of 2n (e~ /ksT)+ 1 = coth(e~ /2ksT). The
integrals are easily evaluated ' to obtain

k T"'-'- Z-.,[k"2(1 k)/k)
(3.19)

where y, =1, y, =- &, andy, =0. We may substitute
r, from Eq. (4. 3) into Eq. (3. 12) to obtain an equa-
tion for h as a function of 8,

Then from Eq. (3.5), we see that (SOS' ) takes the
form e ' ' ', where l is the correlation length,
given by

l = a[h/2(1 —h)]'~~ . (3. 20)

X= u', g'& (SOS')/ks~, (3.21)

since (S' ) = 0 for all m and the Hamiltonian is
translationally invariant. In Eq. (3.21), p, s is the
Bohr magneton and g is the Lande factor. From
Eqs. (3.5) and (3. 19), we then have

2 2 2 2

(3. 22)

No further justification will be given here for
our decoupling approximation, since ultimately its
validity rests on its ability to produce physically
meaningful results The zero. -temperature, high-
temperature, and classical limits, for which the
exact thermal averages are known, are investigated

We shall retain this definition of the correlation
length in terms of (SfS'~) for small k even for high
temperatures at which many short-wavelength ex-
citations are present, because this definition is
appropriate for comparison with neutron quasi-
elastic scattering measurements. The suscepti-
bility per ion X is found from the fluctuation rela-
tion, ' to be

N 1

2Y'8(l + &68)k(I k ) &~

= 3[2+ (1 —e,)k][1 —(1 —k')' '), (4. 4)

and we find

&i = (Y/38)[1+ (ei —1)Y/38],

v'z = (Y/38) [1+3 8 + 2(e~ —1)F/38 ),
X=us g( Y~/)(8+I2Y/38).

(4. 5)

We now choose constant e& so as to make ~& =7'&„
to second order, so that

e& = 1 —«F= (2S —1)(2S+3)/4Y, (4. 6)

and we see that e, vanishes for spin-&, as required

where the 72 term is omitted because it gives only
a third-order contribution to h. Assuming
lim, „h= 0, 3' Eq. (4.4) may be solved for k to the
first two orders, and the thermal averages may
be found up to second order from Eqs. (3.6),
(3.12), and (4. 3) for comparison with the exact
series results. In first order, h=2F/38, 7'0=1,
and we find that all relations in Eqs. (4. 1) and
(4. 2) are satisfied in first order by our theory.
Through second order,

k=(2Y/38)[l+ $8+(e, —1)F/38],

7'0=1+ $8+ (e& —1)Y/38,
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in Sec. III. Then, through second order, h=(2Y/
38)(1- ~o 8), ro = 1 —$8, and all relations in Eq.
(4. 1) are satisfied by our theory except for ro,
which becomes

= (Y/38)'(I —~ 8) . (4 7)

If one chooses e, such that &2 rather than 7'1 is cor-
rect to second order, then ~1, and of course the in-
ternal energy and specific heat, become incorrect
in second order and the requirement that e, vanish
for spin-2 is not satisfied. The choice for e1 made
in Eq. (4. 6) is obviously better. Since e, does not
appear in the first two orders of the high-tempera-
ture expansion, our decoupling approximation can-
not give both 71 and 7'2 correct to second order. A
different decoupling or additional fitting parameter
is required to do this.

From Eq. (3.20), the correlation length becomes

I = (Y/38)'+(I+ Y/38 —$ 8),

and we find from Eq. (3. 11) that

lim e, = 2J'[ o Y(l —cosk)] '
g» oo

so that E~ is proportional to k for small k.

(4. 8)

(4. 8)

V. LOW-TEMPERATURE LIMlT

In the limit T-0 in Eq. (3. 16), h-1" and it is
more convenient to use the variable

q = (1 —h)/2k= [1+ (e, —3) r~+ coro] /47', , (5. 1)

since q- 0 as T- 0. If we define x= 2 k, from Eq.
(3. 11) we see that e, may be written

e, =e, =44(o Yr, )'~ ~sinx~(sin'x+q)'~ .

Then Eq. (3. 16) becomes

(5. 2)

p cpt-1 1/2

P1= qPo —q
1/2

p =(2+3q)p +q'"
(5. 4)

As q-0, we see that the major contribution to
the integrand in Eq. (5. 3) comes from small x
values, so that the leading term of w, m ~ 1, is
given by setting n(e, /ksT) = ks T/e„The integrals.
are readily evaluated ' to obtain

=38[(1+q)'"-q' '] ~/4Yq' (1+q)' ' m&1
(5. 5)

since p does not contribute to the leading order.
From Eq. (5. 5), we see that 7' = r, and consequent-
ly 7 =&1, m &1, to first order, as expected for

6r, l,' ' ' sinxcos2mx e„
Y ) o (sin x+q)'~ ksT

(5. 3)
where p = Jo'~ sinxcos2mx(sin x+q) ~ dx. The
integrals p are easily evaluated for m~2 to give

the ground state. Equation (5. 5) is not valid for
m = 0 because po does contribute to 7'o in first or-
der. We may find &o to first order from the dif-
ference 7 o

—r„since the integrals in Eq. (5. 3)
will then cancel out in first order, to yield

Q 4 x (614 /Y)' (po-p4} = (3r4/2Y) (5. 6)

lim e, = 2JS(1 —cosk),
e-o

(5. 7)

which is the expected dispersion relation for the
excitation of a magnon out of the ground state at
zero temperature. However, we see from Eq.
(5. 2) that for small k, e, is proportional to k,
rather than k, when T &0, indicating a greater
degree of temperature renormalization of the ex-
citation energy for long-wavelength spin waves than
for those of short wavelength. The requirement
7, =S'/Y when T=O determines eo by Eqs. (4. 6)
and (5. 1) to be

eo =[(3—e,)&, —1]r4' ~r o= (4S+ 1)o/12Y, (5. 8)

since q=0 when T=O. According to Eq. (5. 5) the
leading term in q is

82/4S4 (5. 8)

Then from Eqs. (3.20}, (3. 22), (5. 1), and (5. 9),
we have the leading term in the correlation length,

I =a/2q'~ =aS 8 (5. 10)

and in the susceptibility,

l(= Peg /4lroq =2Pst S /3J8, (5. 11)

both of which go to infinity as T- 0, as expected.
As done by Kondo and Yamaji' for spin-&, the

next order of terms in ~ may be found from the
differences &1 —&2 and &o —7'1 by the replacements
sinx- x, cos2mx- 1 - 2m x, and q —0 in the inte-
grands of the differences in Eq. (5. 3) to obtain

6~ 1/2
4(2m+ 1)

g/2 x'dx
p[4( 'Y~ )'"28'] —1 ~ -~"')

(5. 12)
The integral may be extended to infinity, with er-
rors at most pf prder 8, tp get 3

3(2m+ I)v(8/2S) i
n+1 2(S + 1)

At zero temperature, the system must be in its
ground state, which in the absence of magnetization
consists of an isotropic linear combination of fully
aligned spine. Then at T=0 we must have (SoS')
=S, which we can satisfy by requiring 7', = S'/Y at
7.'= 0, since we have one remaining undetermined
constant eo. Then r4=S ro/Y and Eq. (5. 6) yields
7'o=o to first order. From Eq. (5. 2), the excitation
energy becomes
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6~ i
+v ' ' (p -p „)+O(8 ), (513)

V1. NUMERICAL SOLUTION AT ARBITRARY
TEMPERATURE

From Eq. (5. 4) we see that pa-p, =r~v+O(8 ), and
from Eqs. (5.13) and (5.14), we have

3 vS (80S +64$ +14$+3) 8
0 2 ) 16~ 2S

(5. 15)

Then from Eqs. (3. 8), (5. 14), and (5. 15) we find

7'~=($ /F)[1 —vS f~( S)( )9/2$) +], m= 1 or 2

(5. 16)
where

fi($) = (16$ +80S +40$+ 3)/16(S+ 1),
fa(S) = (64S + 224S + 184S+ 51)/16(S+ 1)

From Eqs. (3. 18) and (5. 16), we have the specific
heat to first order,

C = [f ksv f,($)](&/2$)'+ O+(8) . (5. 18)

Although the simple spin-wave picture is invalid
here, since (S' ) = 0, it is interesting to compare
Eq. (5. 18) with the spin-wave-model specific heat.
The ratio of our T' term to that of the spin-wave
model is just f~($), which is () for S= z, slightly
greater than unity for S ~ 1, and approaches unity
as S-~. The exact solution for the specific heat,
if it could be found, .ivould probably exhibit the
same power-law dependence on the temperature as
our solution. However the exact solution probably
would not have the same functional dependence on
S at low temperature, but f (S) may be viewed as a
rational function approximation to the correct re-
sult. Our low-temperature results are identical
to those of Kondo and Yamaji" for S= ~. In fact,

1for spin-2, e, = 0 and e, = 1, so that our self-con-
sistency equations become identical to those of
Kondo and Yamaji and the solutions are identical
throughout the entire temperature domain. The
specific heat T' ' coefficient from Eq. (5. 18) for
S= & is about 8%%uo larger than estimated by Bonner
and Fisher in their extrapolation from finite
chains, and is probably within their extrapolation
error.

where v = (2w) '~'
L (2) = 1.042, f is Riemann' s zeta

function, and r, has been replaced by 3$ /2Y in the
first term. From Eq. (5. 4) we can see that P, -P2
is of order 9, and Eqs. (5. 9) and (5. 13) may be
solved for 7', and ~2 to order 8' ' to obtain

Sv (avs(48+ ()')( v

) (,)

(5. 14)
3S QvS(8$ +8$+3) 8

If the parameter X = 2(2«, /3)'~ & ' is intro-
duced, the solution of the self-consistency equa-
tion can be reduced to the problem of finding the
value of h for a given value X that satisfies, Eq.
(3.12), where r, and &, are given by Eq. (3. 16) in
terms of h and X. Then v0 can be found from Eq.
(3. 16) and the remaining quantities of interest can
be easily calculated. An estimate h' is picked,
and 72 are calculated, and h" is found from Eq.
(3. 12). Then h' and h" can be used to obtain a
better estimate of h for a new iteration. If h"= h',
h' is the correct solution for h. By noting from
Eqs. (3. 12) and (3. 16) that h'& h" implies that the
correct h& h', a convergent iteration scheme may
be constructed.

The stability of the iteration scheme with respect
to the initial estimate of h was found to be greater
for smaller X. Therefore, the solution was found
for smaller X values first, and the initial estimates
of h were improved for successively larger X

values by use of an accumulative Lagrange extrap-
olation. A convergence criterion of l(h' —h")/h'l
& 10 was used in the iteration routine.

Numerical integrations were done by the Rom-
berg algorithm with an absolute convergence
criterion of 10 . For X~ 10, the forms for ~„
given by Eq. (5. 3) were used and the integrals
were split into two parts about x= &, since the
integrand peak occurs for x~ V' . Once 7& had
been found as a function of 8, the specific heat was
calculated from Eq. (3. 18) using the Newton for-
ward-and-backward divided-difference formulas of
fourth order for unequal intervals. '

The numerical computations were performed on
the Georgia Institute of Technology Univac 1108
computer for spins-~, 1, and -&, in the tempera-
ture range 10 ' 8~10 . The correlation functions,
specific heat, inverse correlation length, and in-
verse susceptibility are shown as functions of tem-
perature in Figs. 1-4, respectively. Accuracy of
the computation of all quantities shown is estimated
to be better than 0. I%%uo for 8 &0. 025 and better than
1. O%%ua for 8& 0. 025.

One feature of the numerical solution which can-
not be seen from the displayed figures is the ap-
proach to the low-temperature power-law behavior
derived in Sec. V. Full logarithmic graphs of the
specific heat, correlation length, and susceptibili-
ty, as functions of temperature (not shown here),
reveal that according to our theory the low-tem-
perature power-law behavior does not set in until
0 becomes very small, -10 for spin-2, -5&&10
for spin 1, and -10 for spin--,'. It should be men-
tioned that our theory may have no meaning for
real physical systems at such low temperatures,
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tween our specific heats and those of Bonner and
Fisher and Weng' is fairly good for temperatures
above the maxima, where there is the least uncer-
tainty in their extrapolation estimates.

VII. CLASSICAL LIMIT

Fisher's classical model is obtained by taking
the limit S-~, J-O, g-0, such that ~, =2Y~and
g, =2Y g are constant. In this limit, the tem-
perature region in which the low-temperature
power-law behavior is valid shrinks to zero and a
finite specific heat is obtained at zero temperature,
in violation of the Nernst postulate of thermody-
namics. Nevertheless, an examination of our the-
ory in this limit is in order because the exact solu-
tion of this model is known throughout the entire
temperature domain and because the model may be
a good approximation to high-spin systems for
temperatures not too close to zero.

The classical limit of our theory is very much
like the high-temperature limit. From Eq. (3.11),
we see that ei, -0, so that 2n(t, /ks'T)+ I-2ksT/e„
in the classical limit, and we need merely to
transcribe the first term of Eq. (4. 3}to obtain

Eqs. (V. 1)-(V.4) in Eq. (3. 12), the relation be-
tween &&, and 8, can be found,

8, = (1 —~ '„)/2~„(3 —7'„) . (7 8)

1,=1-28, —28', , 8,«1 (7. 10)

where the first two terms agree with the exact
solution, but the 8~ term is spurious. In fact, a
Green's-function theory with the simple type of de-
coupling approximation we have used is incapable
of describing T„ to higher order than 8, in the low-
temperature limit, because the remaining terms
in the expansion of the exact solution are of expo-
nential order. From Eqs. (V. 7) and (V. 10), we
find the specific heat to be

In the high-temperature limit, Eq. (7. 8) yields

'ic =( s 6c)(I —6 6c» (7.8)

to the first two nonvanishing orders in 8,'. The
first term of Eq. (V. 9) agrees with that for the
exact solution and the coefficient of the second term
is only 10%%uo larger in magnitude than that for the
exact solution. In the low-temperature limit, Eq.
(7. 8) yields

—38 [1 (1 k2 ) &~ ] ~/2(I k~ } &2k~-i (7 1) C, =k~(1+28,), 8, « I (7. 11}

&i, =[1—(1 —k, )'~'] k, ' (7 2)

Equation (7. 2) may be inverted to obtain

k, =27'i, (l++„) '.

(7.3}

(7.4)

Then, from Eqs. (3. 20), (3.22), (7. 1), and (V. 4),
we have the correlation length

l, = a&„(1—r„)
and the susceptibility

Xc= lisgcac(I+ric)/» c(I - ic)

(7.5)

(7.6)

According to Eq. (3. 18), the specific heat is given

(7. 7)

Inspection of Fisher's calculation reveals that the
exact solutions for T, l„X„and C, obey Eqs.
(V. 3) and (V. 5)-(V. 7) in terms of the exact solution
for Tq„so that our results for these quantities
will approximate the corresponding exact solutions
to the extent that our Tj approximates the exact
solution for T&,.

From Eqs. (4. 6) and (5. 8), we see that e,- 1
and e2-+ in the classical limit. Then by use of

where 6, = ksT/J, and the subscript c indicates the
classical limit of our theory. From Eqs. (3.8) and
(V. 1) we find

where the first term agrees with the exact solution,
but the 8, term is spurious.

By finding 8, for a wide range of T„values from
Eq. (7. 8), &„was compared to the exact solution
coth(1/28, ) —28, at arbitrary temperature. Very
good agreement was found throughout the full tem-
perature range, with T„always slightly greater
than the exact solution. The maximum difference
is -1.7%%uo, at 8, -0. 1V, the difference being con-
siderably less than this at most temperatures. The
specific heat C, was then found at arbitrary tem-
perature in the same manner as described in Sec.
VI, and is compared to the exact solution in Fig.
5. Agreement for C, is not quite as good at low
temperature as for T&„as expected, but the small
peak is only -6. 5%%uo above the exact solution and
agreement is very good for 8, &0. 15.

In addition to the decoupling scheme used
throughout this paper, with e, determined by Eq.
(4. 6) and e2 by Eq. (5.8), a slightly simpler scheme
was investigated in which the fitting parameter e,
was eliminated by requiring that e, =1 and e, was
determined by requiring ~i = 8 /F at zero tempera-
ture. It was found that e, = 2(2S —1)/3$, so that
Kondo and Yamaji's results' for spin-& are repro-
duced by this scheme as well. However, a some-
what different temperature dependence was found
for higher spin. In particular, T, agreed with
exact high-temperature series only to first order
(except for spin-2), and in the low-temperature
limit, f,(S) is replaced by S(4S+ 13}/4(S+1)~ and
fz(S) is replaced by (16S + 37S+ 12)/4(S+ 1) in Eq.
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(5. 16)-(5.16). In the classical limit, Eq. (7. 1)-
(V. V} remain valid, but e,- + and Eg. (7. 6} is re-
placed by

ri, = [(I —28, + 98,) 'i2+ 38, j i,

leading to the high-temperature expansion

(V. 12)

ri.=(48.)(1+k 8.), (7. 13)

where the second term is spurious, and the low-
temperature expansion

(7. 14)

where the 8, term is spurious. From Eqs. (V. 7)
and (7. 14), we have

C, =ks(1 —68, ), 8, «1
where the 8, term is spurious. As seen in Fig. 5,
the simpler decoupling scheme yields better agree-
ment with the exact classical syecific heat for 8,
&0. 1 and worse agreement for 8, &0. 1. The
simpler scheme gives generally worse agreement
with the exact classical correlation functions, the
maximum difference for v„being - 6%, at 8, 0. 4,
with &&, always smaller than the exact solution.
The simpler scheme does however yield better
agreement with the exact correlation functions for
8, & 0. 1. The better agreement of the simpler
scheme with the classical model for 8, & 0. 1 is
less significant than its worse agreement for

~, &0. 1, since the classical model violates the
Nernst postulate, so that the behavior of high-spin
systems will deviate from the classical model at
low temperatures. This scheme was rejected be-
cause it is felt that the other decoupling scheme,
with e, and e~ determined by Eqs. (4. 6) and (5.6),
yields generally superior results throughout the
full temperature range.

In comparing Figs. 2 and 5, one sees that in the
vicinity of the specific-heat maxima our (accepted)
solution bears approximately the same relationship,
for spin-&, to Bonner and Fisher's result as it does
to the exact solution in the classical limit, in that
our solution gives a somewhat higher and narrower
peak in the specific heat. One might be tempted to
think this indicates the Bonner and Fisher result is
closer to the truth than ours for spin-~. This is
faulty logic, because the classical infinite-spin
limit is a very different case from spin-2. For
example, the simpler decoupling scheme discussed
in the preceding paragraph, which gives the same
result as our accepted scheme for spin-~, is seen
in Fig. 5 to yield a specific heat in the classical
limit which has a generally lower and broader peak
than the exact solution. All that can be stated is
that the specific heat derived from our accepted
decoupling approximation may tend to have a peak
which in the case of high spin is too high and too
narrow to some extent.

VIII. CONCLUSION

I

/

IO

0.9—

07—

Cc
"8Q.5—

0.4—

0.3—

0.2—

O. I

I I I I I I I I

0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ec

FIG. 5. Specific heat C~ in the classical limit vs 8~

=k&T/J, . Solid line is the exact solution, dashed line is
our theory with accepted decoupling scheme, and dotted
line is our theory with simpler decoupling scheme.

In the preceding sections, we have developed a
Green's-function theory for the infinite-chain Hei-
senberg ferromagnet of arbitrary spin in zero mag-
netic field that yields reasonable results throughout
the whole temperature domain for the equal-time
spin-correlation functions, the correlation length,
and related thermostatic averages. The required
isotropy in the absence of magnetization is con-
served by a decoupling of the equations of motion
at second order with a random-phase approxima-
tion, yielding a set of three self-consistency equa-
tions for the first- and second-neighbor correlation
functions and a decoupling parameter which reduce
to the equations of Kondo and Yamaji' for spin-&.
The solution of these equations yields well-defined
spin waves with a finite correlation length at finite
temperature. In the zero-temperature limit, the
correlation length becomes infinite and the proper
ground state and spin-wave spectrum are obtained.
The correlation functions are all asymptotically
exact in the high-temperature limit as well. At
arbitrary temperature, fair agreement is found
with extrapolations from finite chains for spin-~
and 1 and good agreement is obtained with the
exact solution in the infinite-spin classical limit.

The thermal averages obtained by extrapolation
from finite chains have been found only for spins-&
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and 1, because each spin case must be considered
separately and larger matrices must be solved to
obtain the larger number of eigenstates involved in
this approach for higher spins. With minimal
numerical computation, our theory yields results
for arbitrary spin which are not of course subject
to the uncertainty of such extrapolations. On the
other hand, the accuracy of our decoupling approxi-
mation at arbitrary temperature is difficult to
ascertain. As with any random-phase approxima-
tion, it leads to a sharp magnon excitation energy.
Magnon-magnon interactions, which add a linewidth
and an energy shift to the excitation energy and
also result in bound magnon states of lower ener-
gy,

' are accounted for in our theory only on an ap-
proximate average basis by the temperature-de-
pendent renormalization of the magnon excitation
energy, which in our case is wavelength dependent.
We can only state that we are interested solely in
thermostatic, rather than thermodynamic, averages

and that the leading low-temperature term in our
specific heat for spin-& is very close to that found
by Bonner and Fisher from extrapolation of finite-
chain calculations which account for all eigenstates
of the Hamiltonian.

A comparison of our theory with the spin 1 lin-
ear-chain ferromagnet CsNiF3 would be interest-
ing. However, the spin of the Ni ion in this crys-
tal appears to experience a rather large uniaxial
anisotropy of the easy-plane type, requiring a
modification of our isotropic Hamiltonian. The
proper decoupling of the Green's-function equations
of motion in the presence of anisotropy and the
comparison with experimental data on CsNiF3 is a
problem for future investigation.
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