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Inelastic-Neutron-Scattering Study of Acoustic Phonons in Nb, S
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Transverse-acoustic-phonon frequencies and line shapes have been studied as a function of temperature

in Nb, Sn. There is a substantial (c 10%) reduction in all of the mode frequencies studied between

300'K and the cubic-tetragonal transformation temperature TM ——45'K. Even more pronounced elastic

softening is observed for [g0]T, phonons with q & q /10. As T~TM from above, phonons in

this latter group acquire an unusual quasielastic "central" component in addition to the phononlike

sidebands. The evolution of this central component is adequately described by a phenomenological

theory which assumes an additional low-frequency ralaxation mechanism for the acoustic phonons.

Finally, abrupt changes in certain phonon lifetimes are detected near the superconducting transformation

temperature T, = 18,0 K. This behavior is traced to the the inability of phonons with energies less

than that of the superconducting gap 26(T) to decay by creation of excited electron-quasiparticle pairs.

These measurements give an estimate of 26(0) = (4.4 + 0.6)k~ T, and reveal a strong anisotropy in

the electron-transverse-phonon interaction.

I. INTRODUCTION

Very high suyerconducting transformation tem-
peratures occur in many binary or pseudobinary
compounds of the P-tungsten structure. ' This fact,
coupled especially with the occurrence among these
same materials of structural phase transforma-
tions known to involve lattice vibrational instabili-
ties, ' ' has created a lively interest in the lattice
dynamics and in particularly the nature of electron-
yhonon interaction in materials with this structure.
Very rewarding in this respect have been experi-
mental studies of the temperature dependent elastic
properties which have revealed in V3Si and
Nb, Sn ' a shear wave whose velocity nearly
vanishes at the structural transformation tempera-
ture T„. This elastic instability is thought to re-
sult from what has been called a band Jahn-Teller
(JT) effect. The basic idea, first proposed by
Labbb and Friedel" and since elaborated by various
authors, ~ ' is that one is dealing with a nearly
empty set of d-electron bands whose degeneracy is
removed by the elastic strain. The re-equilibration
of the electrons within the split bands of the strained
structure can in favorable conditions balance the
normal increase in elastic energy. This destab-
ilizing d-electron contribution is one, however,
which increases with decreasing temperature as
the Fermi surface becomes sharper.

Experimental information bearing upon the lat-
tice dynamics of these compounds has been chiefly
limited to that available from elastic-constant and
specific-heat measurements. '7' However, a recent
inelastic-neutron-scattering study of VSSi was per-
formed which established that the elastic softening
associated with the phase transformation extends,
though to a lesser degree, over a significant region
of the Brillouin zone. " These experiments were
made difficult owing to the fact that the vanadium

nucleus has an extremely unfavorable ratio of the
coherent to incoherent scattering cross section.

From the point of view of nuclear properties
NbsSn is much more favorable for neutron investi-
gations, but single crystals of a size sufficient for
a thorough inelastic scattering investigation are not
available. However, a recent study 0 of the elastic
neutron scattering has revealed previously unde-
tected "forbidden" Bragg reflections (see Fig. 1)
resulting from Nb-sublattice distortions in the
tetragonal phase. The full implication of this dis-
tortion, and the linear piezo-optic coupling "a'
from which it arises, on the superconducting prop-
erties of Nb3Sn have yet to be fully explored.

The present investigation extends to much short-
er wavelengths the study of the elastic instability
near T„-45 'K in NbsSn using inelastic neutron
scattering. In addition the yhonon dispersion rela-
tions were measured in as many other branches as
the small sample volume would permit. These
general results are presented in Sec. II. Two very
interesting and rather unique phenomena discov-
ered in the course of this investigation are singled
out for further study in Secs. III and IV. A pre-
liminary account of the first of these, having to do
with unusual phonon line shapes in the soft TA
branch at temperature near T„has already ap-
peared. Section IV is devoted to a description
of phonon linewidth changes with temperature in the
vicinity of the superconducting transformation tem-
perature T, =18.0 'K and which have direct bearing
on the electron-yhonon interaction parameters of
most importance in understanding the superconduc-
tivity in NbsSn.

II. ACOUSTIC PHONON DISPERSION

The experiments to be described were carried
out on a triple axis syectrometer at the Brookhaven
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FIG. 3. Dispersion relations for transverse acoustic
phonons in Nb3Sn at two temperatures. The ultrasonic
velocities are taken from Rehwald et al. (Ref. 8).
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FIG. 2. Representative inelastic neutron scattering
peaks from [/$0) T& phonons in Nb3Sn at room temperature
and just above the structural transformation temperature
T&=45'K. The cubic reciprocal-lattice vector a*= (2~/a)
= 1.189 A. ~ at 46 'K.

FIG. 1. Comparison of the intensity of the "forbidden"
(300) reflection in Nb3Sn with the square of the tetragonal
order parameter [(a/c) —1t. The insert shows the nature
of the Nb-sublattice distortion which produces this reflec-
tion and which accompanies the tetragonal distortion of
the unit cell.

high-flux beam reactor. The NbeSn crystal grown
by Hanak and Berman~3 was the same sample used
in our previous study. Although of excellent qual-
ity (mosaic spread & 0. 10' in cubic phase), the
sample volume (-0.05 cmJ) is indeed quite small
to attempt inelastic-neutron-scattering studies. As
a result our measurements were limited to the
lower-energy portion (& 20 meV) of the phonon spec-
trum. Even this range of energy transfer would
have been impossible to investigate without the use
of highly efficient vertically focusing pyrolytic-
graphite monochromating crystals, used wherever
possible in conjunction with pyrolytic graphite fil-
ters. Some care was also necessary to adjust
the incident neutron energy (between 5 and 45 meV)
and other instrumental parameters to achieve an
acceptable compromise between resolution and in-
tensity. While much more could undoubtedly have
been accomplished with a larger sample in the way
of detailed quantitative results, the present experi-
ments were very rich in terms of novel phenomena.

An example of the quality of the phonon data which
was obtained under somewhat better than average
conditions is shown in Fig. 2. These phonons lie
along q = [ffO] with eigenvectors e along [gO] in the
limit g-0. These T, modes have a velocity pro-
portional to (C&& —CJJ)' and it is this combination
of elastic constants which softens and nearly van-
ishes at the transformation temperature T„.
As was observed in V~Si, there is an appreciable
shift of the T, phonon frequencies with temperature
even at quite substantial values of q. Data taken
at room temperature and at T„ for transverse
acoustic modes along [$00] and [ilO] are summar-
ized in Fig. 3 and Table I. At room temperature
all the neutron data fits smoothly with extrapola-
tions of the ultrasonic velocities. Al/ of the mode
frequencies measured soften as the temperature is
lowered, contrary to the slight stiffening that most
materials experience on cooling.
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TABLE I. Nb3Sn acoustic phonon energies (me V).

46 'K
[$00]T

295'K 46 'K
[/$0] Tg

295'K 46 'K 295'K

0. 05
0. 1
0. 15
0.2

0.25
0. 3
0. 35
0.4
0.45
0. 5

3.26+ 0. 1
~ I ~

3.65 + 0. 1

4. 55+ 0.25 5. 10+ 0. 1

5. 5+ 0.4
~ ~ 4

6.8+ 0. 8
7. 1+ 0. 2
7. 65+ 0.3

1.45 + 0. 05 1.79 + 0. 05
2. 6+ 0. 2
4. 49+ 0. 1
6.23+ 0.1
8.03+ 0. 1
9.8+ 0.3

11.5+ 0. 5
12, 5+ 0. 5

l. 52 + 0. 07
3.07+ 0. 05
4. 75+ 0. 05
6.35+ 0. 12
7.85+ 0. 15
9.45 + 0.25

10.75+ 0. 2
12.3+ 0. 3
13.5+ 0. 35
13.4+ 0.4

3.85+ 0. 15
5. 00 + 0. 1
6.22 + 0. 2

7. 18 + 0. 2

8. 70+ 0. 3

4. 50~ 0. 1
~ ~ ~

6.5~ 0.2

8.2+ 0. 5
~ ~ ~

The most striking feature of Fig. 3 however is
that for [)$0]T, phonons, the neutron data with

f &0.1 apparently now bears little relation to the
extrapolated ultrasonic velocity. Further, higher
resolution measurements were therefore made to
determine the nature of the dispersion in this re-
gion (qual [/$0], f ~0. 1). (In the previous study on

V~Si, ' this most interesting region was inacces-
sible to measurement because of the overwhelming
elastic incoherent background scattering. ) Some
of these measurements are summarized in Fig. 4.
It is apparent from Fig. 4 that there is no difficulty
in establishing a linear extrapolation of the m(q)
data at small q to q = 0, at least at temperatures
greater than - 55 'K. At lower temperatures, line-
shape anomalies introduce some complications (see
Sec. III and Fig. 6).

According to the existing band JT theory the
elastic instability in N13Sn is the result of inter-
actions specifically involving the nearly empty d-
electron bands. In the Migdal approximation the
dispersion of the acoustic phonons at small q is of
the form

formation, the long-wavelength acoustic instability
can be thought of as arising from such a Kohn-like
anomaly at a small but finite wave vector. It is
thus tempting to associate the wave vector at which
the temperature-dependent change in slope shown
in Fig. 4 with a linear dimension of the Fermi sur-
face. (The value of 2k~ given is that appropriate
to a linear band structure. For a spherical Fermi
surface 2k~ would be larger by v 2. More general
Fermi surfaces are not uniquely defined by a single
linear dimension. ) Schuster has calculated phonon
dispersion for V~Si based on Eq. (1) which are tlual-
itatively very similar to those of Fig. 4. The exact
shape of the phonon dispersion depends of course on
the assumed form of the d subbands &, (k), a point

I
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',,(q)= (v(c'+RA, (q&tI, (i))q',
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A, (q)II, (q) is the contribution of the nearly empty
d bands to the elastic stiffness and v (j) are all of
the remaining contributions which are assumed to
be temperature independent. q, (k) and f, (k) are,
respectively, the energy and the Fermi occupation
factor of the kth state in the ith d subband. A

characteristic feature of calculations based on Eq.
(1) is the appearance of a change of slope or per-
haps a stronger singularity in the phonon dispersion
for phonon wave vectors which span parallel re-
gions of the Fermi surface. In fact, as Barisic~~
has emphasized, the JT theory of the trans-

0.05 O.IO O. I5 0.20
PHONON WAVE VECTOR (()

FIG. 4. [$)0]T& phonon dispersion at small wave vec-
tor for three temperatures. The kink which appears at
low temperatures may perhaps be understood as a Kohn
anomaly which is in turn closely related to the elastic in-
stability.
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FIG. 5. Temperature dependence of selected [$/0]T&
phonons both above and below the cubic-tetragonal trans-
formation temperature. The frequency renormalization
below Tz is much less than that predicted by extrapolation
of ultrasonic velocities.

whi. ch is presently not settled.
It must however also be noted that a rigorous

justification of the interpretation of the origin of
the phonon dispersion in terms of q-dependent
screening is not possible at this time. The diffi-
culties in interpretation arise from the possible
importance of interband scattering effects and the
observation (see Sec. III) of sizable frequence de-
pendent self-energy terms not considered in Eqs.
(1) and (2). Neither for that matter do these equa-
tions [with v(q) independent of temperature] explain
the very noticeable softening of very-short-wave-
length phonons (q»2k~) which occurs not only for
the "soft" [$/0]T, modes but as well for all branches
investigated.

Below T„ the sample is composed of interspersed
domains of tetragonal material with the tetragonal
axis along one or another of the original cubic axes,
and this added complication caused us to concen-
trate most extensively on measurements above T„.
Nonetheless, the temperature dependence of the
principal TA modes below T„was explored briefly,
with the results shown in Fig. 5. More detailed
measurements taken in the vicinity of the supercon-
ducting transformation temperature T, will be pre-
sented in Sec. IV. Since no doubling or unusual
asymmetries were observed to develop in the phonon

line shapes below T„(intensity arguments assure no

components were missed entirely), the frequencies
are taken to be the appropriately domain-averaged
quantities. Above T„well-resolved [$/0] T, phonons
were observed with g as small as 0.02. At all tem-
peratures below T„only very broad scattering cen-
tered at w=0 could be observed for f & 0.1. For
f &0 1, well-re. solved [110]T,phonons were ob-
served but the frequencies were considerably

smaller than that predicted from extrapolation of
ultrasonic velocities. 8 The dispersion in &u(q) at
small q is very different for T& T„and T& T„. Ex-
trapolated ultrasonic velocities overestimate the
[/f0]T, softness for T& T„, but the reverse is true
for T& T„.

III. CRITICAL NEUTRON SCATTERING

Now we turn our attention to the neutron scatter-
ing from the soft [$/0]T, phonon branch with small
wave vectors. For )&0.1, very unusual and in-
teresting changes occur in the phonon line shapes
as the temperature approaches T„ from above. ~~

Typical of these observations are the data in Fig. 6
showing that as the temperature is lowered there
is a gradual evolution of a central component in the
scattering spectrum in addition to the familiar
"phononlike" sidebands. Although the sideband
structure continues to move to lower frequencies
as the temperature is lowered, far more dramatic
(note the logarithmic scale) is the growth of inten-
sity of the central component which completely
dominates the fluctuation spectrum near T„. The
apparent width of the central component can be
essentially accounted for by the resolution of the
instrument alone. Thus the intrinsic width which
adds in quadrature to the instrumental width is very
small, —,

' or less of the observed width. Figure 7
demonstrates that this central peak intensity maxi-
mizes at or very near T„and thus represents the
major contribution to the critical scattering asso-
ciated with the structural transformation. Rehwald
et al. have stressed the possibility that the trans-
formation occurs slowly over a range of -7 K in
order to explain certain features of their ultrasonic
results. Included for comparison in Fig. 7 is the
(300) Bragg intensity, which is proportional to the
square of the tetragonal distortion. At T& T„,
the intensity falls to a background level & 0. 5% of
the low-temperature Bragg intensity. This places
a very low limit on the possible amount of trans-
formed material present in our sample above 45 'K.
In particular, the gradual growth of the central
component in the critical scattering above T„can-
not be interpreted as arising somehow from al-
ready transformed regions of an inhomogeneous
sample. Figure 8 shows that of the modes propa-
gating in a I 100) plane only those with propagation
vectors nearly along the "soft" [110]direction have
an appreciable central component.

The presence of a similar "extra" central peak
in the critical Quctuations in displacive transfor-
mations in SrTi03 and KMnFS have recently been
reported. ~ 30 In all of these materials the phenom-
ena observed bear a close qualitative resemblance
to the divergent central Rayleigh peak which ap-
pears in the critical scattering of fluids. As is
well known, in this case the central peak results
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from a linear coupling of adiabatic pressure fluc-
tuations (the bare phonons) to thermal energy (i.e.,
entropy) fluctuations. On closer examinatjon it is
found that for the displacive transformations the
coupling constant is proportional to (dq/de, where

g is the appropriate order parameter for the trans-
formation. Thus although this mechanism can be
expected to contribute to a central component in the
ordered state it must vanish above the ordering
temperature where g = 0 independent of T. There
exists however alternate interaction mechanisms
which can give rise to similar modification of the
low -frequency behavior of the fluctuation spec-
trum. ' For example, Mountain~ has shown how

a similar central mode can arise from a coupling
of the pressure fluctuations to the internal degrees
of freedom of a nonsimple fluid.

One specific mechanism for similar structure in
the phonon spectra of solids near phase transfor-
mations was suggested by Cowley~~ and has its ori-
gin in the difference between the collision-free and

collision-dominated response of a phonon system.
Although Cowley proposed the idea in connection
with an optical-phonon-mode instability it is easily
adaptable to the present case. Briefly, the physi-
cal idea is as follows: The strains associated with
a given (long-wavelength) phonon mode produce
through anharmonic terms in the lattice potential
energy a time- and spatial-dependent modulation
of the frequencies of the remaining (higher-fre-
quency) thermal phonons. This frequency modula-
tion gives rise to corresponding time-space mod-
ulation of the occupation number n,„(r, t) of the
thermal phonons about an average value n~, the
equilibrium value in a state of zero strain at the
ambient bath temperature. If the frequency & at
which the long-wavelength strain varies is large
compared to r,„, the inverse lifetime of the ther-
mal phonon, this thermal disequilibrium (noh nth
has no time to relax and the energy involved in its
establishment contributes to the "stiffness" of the
long-wavelength strain. The long-wavelength
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b „and I'„being frequency-independent constants.
This gives rise to the familiar viscously damped
classical oscillator response with a characteristic
"quasiharmonic" frequency Id„(JI) given by

~2(~) g2 ~g0

%e wish to go beyond this and introduce in a phe-
nomenological way the changes discussed above
which occur as the frequency & is lowered into the
collision dominated regime.

&„and I'„must vary with frequency in a way con-
sistent with casuality. A simple modification of
Eq. (5) which guarantees plausible behavior is

FIG. 7. Closed circles show the onset of the struc-
tural phase transformation as monitored by the "for-
bidden" (300) Bragg reflection. The open circles repre-
sent the temperature dependence of the central component
in the neutron critical scattering spectrum.

(In the following the mode index JI will be sup-

(&)

(g)

phonon propagates in a collision-free (or zero-
sound) regime. In the opposite limit &d « I,hI, the
thermal phonons have sufficient time within a cycle
to relax to an equilibrium distribution spec ified by
a local temperature, in the process reducing slight-
ly the energy necessary to produce a given state of
strain. The elastic stiffness is thus reduced in
this collision dominated or hydrodynamic regime,
but in the relaxation process some of the strain
energy is now irreversibly lost to the thermal
phonon system, providing an additional damping
mechanism for the long-wavelength strain mode.

In order to see how the above considerations
modify phonon line shapes in a neutron scattering
experiment we note that the one phonon scattering
probability for energy transfer Sw and momentum
transfer hQ is given by

2000

1500—

LIII-
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where JI = (qj) is used to specify both the wave vec-
tor and branch index of a given mode, and E„(Q)
is an inelastic structure factor. The phonon wave
vector is reduced to the first Brillouin zone, i.e. ,
q=Q-G, where G is a reciprocal-lattice vector.
The phonon dynamics are described by A„(&u), the
spectral correlation function which rather general-
ly can be written in the form~4

0 0.02 0.04 0.06

FIG. 8. Transverse and longitudinal scans of the cen-
tral scattering component in the (100) plane. The abscissa
shows the value of g for [$/0] of both A and B type.
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pressed unless necessary. ) For frequencies (d «y
the characteristic restoring force for the mode is
shifted from its high frequency value cd~ to a lower
value &p given by

2 2 Q2(dp —(d ~

For small wave vector q we can identify v() = (d()/q
and v„= (d„as the velocity of (hydrodynamic) first
sound and (high-frequency) zero sound, respective-
ly.

A rigorous theoretical discussion of lattice dy-
namics valid in both first- and zero-sound regimes
is quite complicated. 3~ However, in the Appendix
we sketch the derivation of a simple interpolation
formula for the phonon self-energy connecting the
two frequency regimes using a single relaxation-
time approximation. It exposes some of the feature
which would be present in a more serious calcula-
tion and at the same time provides a microscopic
basis for the parameters 5 and y introduced above.
It is however only a very limited theoretical jus-
tification of Eq. (7) and (8) which we continue to re-
gard as primarily phenomenological in origin.

In order to see how the low frequency structure
in II ((d) is reflected in S(Q, (d) it is convenient to
assume that (i) (8a/y)» I'() and (ii) (d„» y. We shall
see that both inequalities are at least weakly satis-
fied in our results. With these assumptions S(Q,
(d) can be easily divided into two contributions
S(Q, (d)= S, , (Q, (d)+S„, (Q, (d) with

for a certain critical mode s as a phase transfor-
mation temperature T„ is approached from above.
At high temperature (td»8a) there is a central
component of width y which is small but growing
more rapidly ((d

d vs (d„a) than the phononlike side-
bands. As ~~ —52 this central component grows to
dominate the spectrum, its intensity diverging and
its width y - 0 when (d~ = 5~. Note that it is this
latter condition, i.e. , (dad(s)-0 not (da -0, which
marks the limit of stability of the high-temperature
structure.

In order to relate the experimental observations
to the discussion above we can proceed somewhat
differently than in the similar study of soft-mode
line shapes in SrTi03 and KMnF3 by Shapiro et al.
In both of these latter cases a sizable central com-
ponent was found only for modes with wave vectors
very close to the critical wave vector q, . Thus
very little could be directly inferred about the q
dependence of the central component, and very
careful instrumental resolution corrections were
necessary before a comparison of the experimental
line shapes with Eq. (IO) could be made. The small
size of the Nb3Sn sample limited the feasibility of a
comparably detailed study, but fortunately (as
shown in Fig. 8) the extension in reciprocal space
of the central component is much larger than the

, k, r
Setdeaand(Q +) I F(Q) I 8. (

2 a)2+ ( Fd)?

(io)
the familiar damped-harmonic-oscillator fluctua-
tion spectrum. The additional term

Q2
I

is a Lorentzian centered about (d =0 and with width

y = y((d()/(d„) . The integrated intensity is

(. (Q)=re(Q ")&

(Saldeaaad(Q) (d)+ central(Qr (d))d(d

I-z oo
0 0
0
z0
K
D
LLJz

I

—Oe6

= IF(Q)Ia
k T 1

'lT0 Cd@

The fractional integrated intensity in the central
peak is thus

f,„.„., (Q) (8'/~'„~', )

ft.t.t(Q) (I/~d)

Suppose we couple with these relations "soft"-
mode behavior, i.e. , aP (s) gradually vanishing

I

-2
5-0.08

I

0
%~ (meV)

FIG. 9. Critical scattering spectral profile at 65 K
for several values of momentum transfer, showing both
the central component and phonon sideband(s). (Note the
change in scale. )
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FIG. 10. Analysis of data similar to that shown in
Fig. 9 establishing that the central component scattering
amplitude 5(q) is linear in q and at most weakly tempera-
ture dependent.

corresponding q width of instrumental resolution.
While the observed line shapes are still subject to
considerable correction for finite energy resolu-
tion, within a reasonable first approximation the
relative integrated intensities of the central and
sideband components should be given directly from
the experimental data.

Consider, for example, a series of experimental
line shapes such as shown in Fig. 9 taken as a func-
tion of f along the soft [l'LO] direction. Since from
data such as this it is straightforward to obtain
both the ratio I „„,(Q)/I„„,(Q) and the value of
&o„(essentially the peak of the phonon sideband),
Eq. (13) can be used to deduce a value for p for
each set of data. The results of such an analysis
for not only the data shown in Fig. 9 but also for
similar data taken at other temperatures is shown
in Fig. 10. To be consistent with observations it
is seen that 5 must vary approximately linearly
with q. This is consistent with the wave vector
dependence predicted in the appendix and in fact
follows from more basic continuity considerations
as well. The observations admit at most a weak
temperature dependence near T„again in agree-
ment with the mechanism considered in the Appen-
dl.xi

Figure 11 demonstrates the agreement of the data
with the other principal prediction of the phenom-

30—
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0
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0 I I I I I

0.02 0.04 606 0.08 O.IO O.I2
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2
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FIG. 11. Although the total critical scattering intensity
diverges as T/coo, the intensity in the central component
alone is proportional to T/Q)Dc'„.

v'„= (o'jq' = (&o(') + V')/q' -=v20+ X', (14)

the value of X—= (5/q) determined previously may

enological theory, namely, that the central mode in-
tensity grows not in proportion to the increasing
intensity of the soft phonon sidebands (- T/&u ) but
rather at the much faster rate (-T/uP uP&). It is ap-
parent that this relation is approximately obeyed
over a reasonable range of temperatures for [&$0]T,
phonons with f & 0.025. Here we have used a value
of (p/f) = V. 1 meV obtained from the analysis of
Fig. 10.

There is one additional initially puzzling feature
of our data which is resolved by our present under-
standing of the significance of the central mode. At
room temperature the value of the [1LO]T& phonon
velocity derived from neutron measurements is
essentially equal to that obtained by ultrasonic
techniques. However, as shown in Fig. 12 there
is an increasing systematic discrepancy between
the two types of measurements. We may suppose
the ultrasonic frequency (40 MHz in this instance)
to be negligibly small compared to the inverse re-
laxation time y, so that one measures a collision-
dominated velocity vo. On the other hand, in ac-
cordance with usual practice, the frequencies from
which the neutron data is derived are obtained from
the phonon sidebands, i.e. , they are the collision-
free frequencies ~„, and thus lead to collision-free
velocities, v„. Since
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FIG. 12. (($0)T& phonon velocity determined by neu-
tron scattering differs from ultrasonic velocities by an
amount which is predictable from the amplitude of the
central component.

now be used to convert the ultrasonic values of vo

to v„. The results are in excellent agreement with

the neutron results. At room temperature the cal-
culated difference between vo and v„ is much re-
duced, again in agreement with observations.

Our discussion thus far has assumed from the
outset that the scattering associated with the cen-
tral mode is a part of the one-phonon response and

is dynamical in nature, but with a narrow frequency
response. However, in view of the fact that we have

not succeeded in demonstrating experimentally an

energy width, it is important to consider whether
an alternative static mechanism could explain our
observed central component. While it is true that
the divergent intensity of the central component near

T„strongly suggests its dynamical origin, it is pos-
sible to imagine a plausible and some~hat trivial
nondynamical mechanism involving scattering from
static strain fields, which is at least in qualitative
agreement with many of our .observations. It is
well known that point defects in a lattice will in

general give rise to displacements of neighboring
atoms from their equilibrium positions in the homo-

geneous impurity free crystal. These displacement
fields cause diffuse scattering of x rays or neutrons

sometimes known as Huang scattering. The mag-
nitude of the displacement field about an impurity
is calculated as a linear response to a force field
F(r) which the impurity exerts on the undisplaced
lattice. For our purposes it is convenient to Fou-
rier transform the resulting displacements and ex-
press them in terms of a linear combination of

phonon modes with wave vector q and branch index

j. The amplitude of this impurity-induced phonon

condensation (Q&,&„ is easily shown in the harmonic
approximation to be

(Q„)„=F„/(o,', ,

where

Z F,„M ' e" (qj) e "'
i%a

is the projection of F(r) =—F„upon the phonon eigen-
vector e(q, j). The intensity of this static diffuse
scattering can be calculated from the correspond-
ing expression for the integrated phonon scattering
under the same conditions by simply replacing
&Q,'y&t....«by (Q,g&i.,~t, .

I ~., I'
l~qj (QHsta«c tmyurny I &Qqg& I st

COqg

In normal materials the major contributions come
from acoustic modes (because of &u,&4) and the effect
of impurity concentrations of -10 2 can easily be
detected and studied against the thermal diffuse
background by x-ray scattering.

Our interest is in applying Eq. (15) to a material
with temperature-dependent mode frequencies
ur„,(T) which become anomalously small near a
structural transformation. If impurities are of
the proper symmetry to produce nonvanishing F,„
there will be a central component in the scattering
whose intensity grows more rapidly (&u,4) than that
of the collapsing phonon sidebands (~,s) as the
transformation temperature is approached. Near
q=0 for acoustic modes I', „-q so that II',„I,just
as 5~ „would be proportional to q~.

In spite of these obvious similarities, we do not
believe that this impurity mechanism provides a
satisfactory explanation of our observations. Al-
though we have not until now made the distinction,
it is clear that it is the low-frequency stiffness &0
which goes into Eq. (15) not u&, if there is a dif
ference bet&veen the tzvo quantities. However, the
static impurity mechanism acting alone provides
no frequency-dependent terms to the phonon self-
energy, so that &so= uP„and I„,«, (Q) ~ 1/&u'„. Our
measurements as we have already shown closely
follow (1/~~oru2), and there is a substantial differ-
ence between the two predictions especially near
T„. Simply put, &u~ (as obtained from the phonon
sidebands) saturates near T„while the central in-
tensity continues to increase. Also the observed
agreement with the discrepancy between the extrap-
olated long-wavelength acoustic velocities and our
measurements and the magnitude of the central
component would be entirely fortuitous for this (or
for that matter any other) static description of the
central component.

Although we conclude that the impurity effect
proposed above is not a dominant one in our ob-
servations, it is certainly a plausible one for pro-
ducing unusual line-shape effects near phonon in-
stabilities and as such deserves further study. It
should be clear from our brief formulation that the
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basic considerations are by no means restricted to
acoustic phonons, but are applicable for ferroelec-
tric and "antiferroelectric" modes as well.

IV. INFLUENCE OF SUPERCONDUCTING ENERGY GAP
UPON PHONON DAMPING
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FIG. 13. Widths of low energy [f)0)T& acoustic pho-
nons broaden appreciably at temperatures near Tc, the
superconducting transformation temperature. This figure
shows the same phonon profile above and below T~= 18.0
'K.

In addition to providing a plausible mechanism
for the elastic instability of Nb3Sn, Eq. (1) (or more
specifically its imaginary part) predicts anomalous-
ly large phonon damping for [ttO] T, modes due to
electron-hole pair production. Schuster and Klose~
have discussed in these terms the strongly temper-
ature-dependent ultrasonic attenuation observed in
VsSi. This phonon-damping mechanism is partic-
ularly interesting because it should be strongly
modified by the appearance of an electronic energy
gap, 24(T), in the superconducting phase.

In the superconducting phase it is useful to dis-
tinguish between two mechanisms for phonon damp-
ing. One is due to phonon scattering from ther-
mally excited quasiparticles and vanishes as T- 0.
This has been extensively studied by ultrasonic-
attenuation experiments. sv The other process in-
volves direct excitation by phonons of quasiparticles
across the superconducting energy gap. This pro-
cess is energetically impossible in ultrasound ex-
periments since W„«2d(T), except at T=T,
where the contribution is negligible. But the pro-
cess is important for higher-frequency phonons and
is worthwhile to study because it sets in abruptly at
a threshold phonon energy %o = 24(T). In principle
it thus provides a means for direct determination of
the temperature dependence and the anisotropy of
the superconducting energy gap. A theoretical analy-
sis of this superconducting-electron-pair breaking
contribution to the attenuation of longitudinal acous-
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tic phonons within the BCS model has been given by
Bobetic ss

Figure 13 shows an example of the change in the
phonon line shape of a [$/0]T, phonon observed in
NbeSn in the vicinity of the superconducting trans-
formation temperature, T, = 18.0 'K. s9 The in-
trinsic linewidth increases at least fourfold
(~ 0.3-1.4 meV) between 6 and 26 'K. [The low-
temperature value represents an upper limit since
the observed linewidth closely approximates the
instrumental resolution width. The intrinsic widths
were estimated using the Gaussian approximation,
(&aP),e, =(&uP), +(&~ )„« „.] A similar rather
sharp increase in the phonon damping occurs as
the phonon energy is varied (by varying 0) for
[t;$0]T, phonons at a fixed low temperature. If this
is identified with the onset of damping by quasi-
particle production, the characteristic phonon
energy at the onset can be estimated to be h~
= 24(0) = I + 1 meV = (4. 4+ 0.6)ks T, . Those previous
measurements thought to be reasonably represen-
tative of bulk NbeSn have given values of 2n(0) be-
tween 3. 5 and 4. 8 k~T, .

A summary of the temperature dependence of the
observed linewidth of various TA phonons is sum-
marized in Fig. 14. [$/0]T, phonon shown with
energy A~ & 7 meV has narrow linewidth which in-
creases rather abruptly at T T, in qualitative
agreement with theoretical expectation. [Indeed a
reasonably good quantitative comparison of the
phonon linewidths 21'(T) with the BCS model cal-

TEMPERATURE ('K)

FIG. 14. Summary of TA-phonon linewidths near T~.
The unusually large [ft;0]T& linewidth is suppressed if the
phonon energy h&& is less than the superconducting gap
energy 26{T).
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cuiations of Bobetic is found, even though such an
explicit comparison is open to question. ] The

[HO] T, phonon with energy greater than 26(0) has
a large and relatively temperature-independent
linewidth reflecting the fact that it is able to decay
by quasiparticle production at all temperatures.

Note from Fig. 14 that the [l'00]T phonon line-
widths are small and temperature independent at
low temperatures. This result is in agreement
with a one-dimensional model of the d electrons,
since a [I'00] shear motion produces no modulation
of the interatomic separations within a given Nb

chain. Also note in this connection that Klose and
Schuster4' predicted strong [$/0] transverse phonon-
electron coupling and enhancement of T, in the A-15
structure again using a one-dimensional model of
the d electrons. It was not possible to obtain suf-
ficiently high instrumental resolution to make a
study of longitudinal phonon linewidths.

The superconducting energy gap selectively nul-
lifies that part of the phonon linewidth y„due to
electron-phonon interaction. The relation of y„ to
quantities of fundamental interest in superconduc-
tivity was recently pointed out by Allen, ~ who de-
rived the following relation between (y„) the aver-
age phonon linewidth and the electron-phonon cou-
pling parameter X which plays a prominent role in
strong- coupling superconductor s:

(y.,) = ~X(0) (~') ~/ur,

where (~2) is the mean-square phonon frequency,
N(0) is the electronic density of states, and N is
the number of atoms in the crystal. Applying this
relation to NbBSn one estimates (y„)= 1.2 meV. '
Therefore, [I'$0]T, phonons (y„=1.4 meV) make a
somewhat greater than average contribution to the
phonon-mediated electron-electron interaction re-
sponsible for superconductivity, whereas [$00]T
phonons (y„&0.3 meV) contribute much less. These
conclusions do not, however, take into account the
recent conclusion of Allen'3 and Barisic, that
very soft phonons ((d & ks T,) tend not to enhance but

rather to destroy superconductivity.
There has been a recent emphasis in the litera-

ture on the importance of the phonon frequencies
in optimizing the transformation temperature of a
given class of superconductor and the extent to
which this optimization process can be limited by
structural instabilities. It is therefore interesting
to verify that in NbsSn, it is the same [$/0] T, pho-
non branch in which the 45 K structural instability
develops which seems to make the largest contri-
bution to the attractive electron interaction poten-
tial responsible for superconductivity.
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APPENDIX

We want to consider microscopic processes which
give rise to phonon self-energies of the type pro-
posed in Eq. (10). In particular, we examine the
familiar anharmonic three-phonon scattering pro-
cess with higher frequency thermal phonons, (acous-
tic) + (thermal) —(another thermal). We show that
contributions from thermal phonons near topolog-
ical critical points (i. e. , V,Q, «„„~)= 0) are
capable of producing the necessary structure in the
acoustic phonon self-energy. In second-order per-
turbation theory, the imaginary self-energy which
arises from real scattering process of this Raman
type is given by

Imri, ((u)=," 2
~ V„,, „~

' Su((v) . (A 1)
0'] gg

S&2((d), the imaginary part of a two phonon propa-
gator represents the density of states into which
the acoustic phonon with harmonic frequency Q„
can decay. V„„„is the third-order term in ex-
pansion of the Aamiitonian in phonon coordinates.
In lowest order one replaces the physical thermal
phonons by their harmonic counterpa. rts and ob-
tains the familiar result

S12((()) (&2 + 1)[5(~ 1 ~2 (() ) 5 (~ 1 ~2 + (d )]

For small frequencies it is not permissible to ne-
glect the finite lifetime of the thermal phonons them-
selves and a better approximation is obtained by
replacing the harmonic spectral functions for the
thermal phonons with approximate (Lorentzian) an-
harmonic ones. The result is

1 I' r
&„( )= ( +)))) —, (~ ),, ~, ~ (~, ), ,~,),

(A2)
where 4 = II, —Qa and I = (I', + I', ) is the sum of the
inverse lifetimes of the two thermal phonons. The
factor n&(n&+ 1)P(d results from an expansion of
n2-n, under the assumption that Q„Q~» ~. Equa-
tions (Al) and (A2) form the basis of interpolation
formulas between zero- and first-sound regimes.
It is important to note that the final form of II„((d)
depends largely on the form of the dispersion rela-
tion for the thermal phonon states which are
summed in Eq. (Al). Discussions to date have been
based upon a Debye distribution of acoustic thermal
phonons. This leads to structure in Il, (~) on a
scale of Q„which is insufficient to produce a sharp
central peak although it does contribute to the first-
sound response. W'e need terms which introduce
structure into II, (u&) on the finer scale of ~- I' «0„,
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X 4g)1d)1
0

P

~+~@$1 t -1 ~ —O'9&1x tan
&

tan

(A4}
We are concerned here only with that part of the
integral which is sharply peaked about ~ = 0 which
we can insure by replacing the upper limit $„by
$, such that nQt', —= I'. (The contributions from
larger values of $„being more slowly varying
with frequency, can be combined with other scat-
tering processes into a frequency independent damp-
ing I'0. ) Then it is permissible to expand the tan
in powers of (aQ)z/I'} after which the integral be-
comes proportional to I- f„ the effective volume of
phase space about the critical point. It is also con-
venient for numerical estimates to introduce the
Gruneisen approximation

I V. ,-.,-.I' = y'~'II'II. /3&kf~'

where M is the mass of a unit cell and v is an
average acoustic-phonon frequency. Equation (A4)
can then be cast in a form

Imli„((g) = X Qm 2+ p2 (AS)

with

X =36y ($,/$~) nq(nq+1)PA~(IQ~/M)

=36y'ksT((, /$n)', if )III, »k~T (A6)

where t'n is the Debye wave vector (6113N/V)'~s so
that ($, /$n)~ is thefracNonal volume of q space
about the critical point effective in contributing to
the low-frequency self-energy. For Q smaller
than a critical size (which depends upon the mag-
nitude of I') the full dimension of the critical re-
gion $„contributes to the narrow central compo-
nent

and such structure may arise from nearly disper-
sionless thermal phonons such as occur in the
neighborhood of critical points in the dispersion
surface.

For simplicity assume a critical-point maximum

or minimum locally of the form

1 c+ 2 +~1 &
(A3)

where g, = q, —q, is the vector distance from the
critical point. Assume for simplicity that this
description holds within a sphere of radius $„. Re-
placing the q sum in (Al) with an integral over the
surface defined by (A3), which can be carried out

in polar coordinates referred to the direction of
the acoustic-phonon wave vector Q, we find

Imii„((d) =
~a nl(nl+ I)P&dl Via -s -u I 8

36A„ V

(AVa)

and ii„(Q) is proportional to Q . For larger values
of Q,

$, = (I'/aQ), for Q& Q, (AVb)

and II„(Q) falls off as 1/Q.
The contribution to the real self energy which

corresponds to Eq. (A5) is given exactly by the
dispersion relation

~~ ( )
1 I" Imii„((g') „
1T g Q)

and is
p2

Reil~((g)) = X Qm (A8)

Q, depends both upon the dispersion and damping
of phonons near the critical points but for typical
cases it is expected that —,'0& Q, /$„& 1. To get an
estimate of the strength of the renormalization take
y = 1, M = 100 amu and k Q, /k =- T= 100 'K. Then
we find A~=3. 3x10'($,/)n)3 (cm/sec} so that a
critical volume fraction (from all critical points)
of the order of 10~ is sufficient to give X (the maxi-
mum renormalization of the phonon velocity) - 5
&103 cm/sec-, ~ (typical sound velocity). This
estimate of X represents a small but non-negligible
contribution in normal materials and is smaller by
-10 than is necessary to explain the magnitude of
the central component in Nb~Sn. There is however
good reason to suppose that the Gruneisen param-
eter y, for the "soft" modes in Nb3Sn is substan-
tially greater than unity. From measurements of
pressure-dependent shear modulus at higher tem-
peratures, Carcia et al. deduce y, -5. 5 near the
transformation temperature T„=20 K in V~Si. If
a value of y, of this magnitude were applicable in
Nb~Sn the mechanism appears to be a feasible one.

There are however some features that are not
easily understood from the above considerations.
The enhanced- mode GrQneisen parameter required
for adequate interaction strength would in this
model enhance equally contributions from all ther-
mal phonons td the soft-mode self-energy. Most
such contributions are not sharply peaked near
& =0, yet the experimental difference between zero-
and first-sound velocities is quantitatively accounted
for by this sharply peaked component above. Also
if, as is the case for VPi, the enhancement of y,
is strongly temperature dependent this should be
reflected in the temperature dependence of the
coupling parameter y2. A temperature-independent
y2 suffices to fit the experimental data. It is pos-
sible that some insight into these problems could
be obtained from a more sophisticated theoretical
treatment. It does not appear that so-called vertex
corrections will appreciably alter these results al-
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though they are very important for longitudinal

phonons. 4' Nevertheless, it is highly doubtful that
second-order perturbation theory works quantita-
tively near T„. In particular, perhaps an impor-
tant group of interacting phonons are those near
the critical point which develops on the soft branch
itself as v, -0. Then no clear distinction between
soft acoustic and thermal phonons is possible, and

some self-consistent treatment of all modes on an

equal footing would seem to be required.

Note added in proof. In a recent publication

[Solid State Commun. 11, 1361 (1972)], B. Horovitz,

H, Gutfreund, and M. Wegerdiscussthe nature of the

Kohn anomaly in systems with planar Fermi sur-
faces, taking care to include the effects from
imaginary self-energy terms. W. Dieterich has re-
cently studied the effect of d-electron scattering
on the Gruneisen constants of 215-compounds [Z.
Phys. 254, 464 (1972)], and finds that the effects
are large and temperature dependent.
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