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The Bogoliubov-de Gennes equations for the quasiparticle states of space-dependent superconductivity
are solved exactly for a two-parameter pair potential representing a normal-metal-superconductor interface.
For the simplest case of a superconductor filling the half-space z & O

h(z, T) = ILLO(T) + h, (T)e ''«], where Q is the bulk value of the gap and 6, and g are variational

parameters. For T - T„h, and ( can be determined by minimizing the Ginzburg-Landau free-energy

functional. In addition, the effect of self-consistency on the low-lying bound states of a super-

conductor-normal-superconductor junction is discussed.

It has recently been shown by Bar-Sagi and
Kuper that the pair potential n (z, T) = n, o(T) x
xtanh[z/$(T)], fora simple-interface problem, gives
rise to an exactly solvable Bogoliubov-de Gennes
equation for the superconducting quasiparticle
states u„(z) and v„(z). The parameter $(T) was
determined from the self-consistency condition
for T- T, and it agreed with the Ginzburg-Landau
value. Bar-Sagi and Kuper suggest that their po-
tential will be useful for all temperatures.

In this note we present another pair potential for
which the Bogoliubov-de Gennes equations are
exactly solvable. For a simple interface with the
superconductor in the z & 0 half -space, this poten-
tial is

&(z, T) = e(z)[&0(T)+&~(T)e '~'(r)] .
Note that as either of the variational parameters
6, or $ goes to zero, h(z, T) becomes the step po-
tential used with success by several authors2 for
T-0. We will see that the exponential form for
&(z, T) is also useful for T- T, . Although not pre-
cisely of the Ginzburg-Landau form, 40(T)+4,(T)
x e '~~(r) represents n, o(T) tanh[z/$(T)] exactly for
z/$(T) « I if A~= —no. The variational coherence
length $ can then be determined by minimizing the
Ginzburg-Landau free energy. The exponential
potential therefore is sufficiently flexible that it
should be useful for multiple interfaces at any tem-
perature.

To begin the analysis we note that for the simple-
interface problem the Bogoliubov-de Gennes equa-
tions in the Andreev approximations

—ikvz, —E u„z, 8, T + & z, T v„z, 8, T = 0,
r

d

(I)

fez, —E v„(z, 8, T)+&"(z, T)u„(z, 8, T)=0,
c

d

can be written in the uncoupled form'

(
d2—(I'v,)', +a'(*, T)e sv . a(*, )') —E„')

x f„(z, 8, T)=0, (2)

where v~, =-v~ cos8, E„ is the quasiparticle energy,

f„'(z, 8, T) -=u„(z, 8, T)+ fv„(z, 8, T)

and u„(z, 8, T) and v„(z, 8, T) are the particle and
hole components of the quasiparticle state
p(z, 8, T). The pair potential must be self-con-
sistently determined via

We thus obtain

d 2&Qg + &pe /$
(fz' (nv„,)''

x e '~'+a'e "«

-2.]~ E -~02 2 2

(5)

Defining the scaled variable z =- z/$ and the quanti-
ties

b, = &'(2~&, ~n, &v../&)l/(&v, P,-

g' n.'J(nv, .)', -

c' -=t'(&', —&')/(Sv .)',
(5)

Eq. (5) becomes

In the following we will suppress all arguments ex-
cept z. Consider the trial pair potential given by
&(z) = n 0+ &&e *~'. The necessary quantity to be
used in Eq. (2) is
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g 2 ~'4g cl k z 0
dzs

In terms of the variable y-=2 ae ' and the functions
1/Rf a

dy

where

bJ2s=(~Z gas„)+
Equation (8) is Whittaker's differential equation~

and the solution appropriate to the present analysis
(i.e. , regular at z = 0} can be written in terms of
the confluent hypergeometric function M(c+ &+ f/J
2a, 1+2c, y):

g~./„,(y)=e ' "y'" M(c+-,'+b+2a, 1+2c, y}

(~)
Because Eq. (8) is invariant to changing the sign
of c, a degeneracy exists and the general solution
is a linear combination of the solutions for + c.

We are now equipped to display the general form
for f'(z):

f (z) = (e ' )[Af e M(c+ z+ bj2a, 1+2c, 2ae ')+ Az e"M(- c+ z+ bJ2a, 1 —2c, 2ae ')] . (10)

The four coefficients A~, Az are determined by in-
serting M= ,'(f'+f ) and-e=(1/2$)(f'-f ) back into
the first-order Bogoliubov-de Gennes equations,
Eqs. (1), and then applying the boundary condi-
tions.

For E&howe see that c &0 and the asymptotic
form of Eq. (10) for either f ' or f is

f(z) z~i zan (~ / h vz~ &a (»)
where z = Ez —bzo. F-or E«owe have c &0 and

the appropriate asymptotic form of f is exponen-
tially damped,

f(
—

) -og -(I ~ I /hvar +)s (12}

for 0&z&d
(13)

r
e e'o"

(4-0) /&4~~ fop 'r
-/a(2e 1

where 2d is the normal-metal thickness and the
wave function for z & 0 is given by symmetry. Since
k~ » q the quasiparticle energy relative to E~ is
E= ,'Kv/, ,q= &a—costa, and (2)s~) = (no/kvz, )sinqo.
Bardeen and Johnson consider only the low-lying
states E «40. In this case the eigenvalues are

We return now to the self-consistency problem.
The parameters b ~ and $ are determined in gen-
eral by minimizing the free energy. In what fol-
lows, a simplified version of this prescription will
be carried out for the Ginzburg-Landau regime.
Before doing this, however, we present a brief
discussion of how self-consistency affects the
bound states that arise due to a normal-metal-
superconductor (NS) interface for T-O.

Bardeen and Johnsonz (BJ) studied the bound-

state contribution to the Josephson current through
an SNS junction for T«TO. Their wave functions
were calculated with the step-potential model and

are given by

given by E„=,'tv„,q„—, where n = 0, 1, 2. . . and

q„= (n+ ,')v/(d+ defer, /—2n,) = (n+ ,')v//f *-. —(14)

The normalization, J dzr(lul'+ I viz) = 1, requires
that IAI = IA I =1/4d*, and accounts for the
quasiparticle penetration of the interface.

We will now discuss the wave functions of the
exponential potential for the SNS junction. We will
also consider only the bound states. Because of
symmetry it will be sufficient to work with the re-
gion z & 0. In addition, the normal-metal states
are the same as in Eq. (13), but with different q„,
so that we need consider only the region z & d. We
will see that the self-consistency correction
amounts simply to a redefinition of the penetration
or renormalization constant d +.

By observing the behavior of M(c+-,'+ bg2a,
1+2c, 2ae + z'/~ }for E„«+, one can show that
the wave function modified for self-consistency is

pproximate]. ys

(
(4d* ) ( z z s I /(exp(uz (s-dl/4)-

V)
SC

I
Z

(16)
where d sc is given by

exp 2uz-telic
d zc = d+ (ffvr, /2Z 0) dz e *

(16)
and )zan = Ave, /2&0. It is evident from Eq. (16)
that d* &d*, since the integral is always greater
than unity for 4&, and therefore a, negative. The
bound-state energy modified for self-consistency
can now be written

E„"= n~„,(n+ ,')v/2d,', & E„"—.

Since d~~ & d* the self-consistency correction low-
ers all of the bound-state energies by allowing a
larger effective "box size" for the motion of the
quasiparticles in N.

We will now determine the parameters 4& and $

in the T- T, regime by minimizing the Ginzburg-
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4t=-40 (20)

Landau (GL) free-energy functional. This pro-
cedure is different from the method of Bar-Sagi
and Kuper who insure that their trial potential,
&(z) =&~tanhz/$, is self-consistent [i.e. , satisfies
E|l. (3)] to second order in bo for T T,-. However,
since the exponential potential does not solve the
GL equation, it is necessary to take this alternate
route of minimizing the free energy.

The GL free-energy functional, in a conventional
notation, is

F, =F„+a I d r
I g(r) I

+(—,'p) J d r Ig(r)I
+ (—'m) J d r

I
(- i tv —(2& Ic') A) g(r) I

+(1/8z)f d rI H-H, I, (l8)

and the order parameter P(r) is proportional to the
gap parameter b, (r). We therefore express our

variational or trial function as

g(z) =g~ +g~e
'~', for z&0 .

We also impose boundary conditions such that the
exponential potential fits &Otanh(z/$) for z/$ « l.
We choose

&'=~'/~~I I=BC. , (22)

where we have used Po= —n/P.
The above simple calculation leads to the con-

clusion that when using the quasiparticle wave
functions of Eq. (10) for T- T, one can use the
Ginzburg-Landau coherence length and a value of
b

& suggested by the boundary condition of Eg. (20),
i.e. , 4&= —40. This conclusion of course is only
valid when one is interested in effects that are
operative over distances of the order of )oL(T).

The author is indebted to Professor John Bar-
deen of the University of Illinois and to Professor
Wesley N. Mathews, Jr. of Georgetown University
for many helpful comments.

In the absence of a magnetic field, the free en-
ergy relative to a bulk superconductor in the half-
space z &0 can be written

» = ~ I d'~
I & I'

I

—
&0 1

')+ zff Jd'~(I & I' -I~01 ')
+ ( g '/2m) J d'y

I
Y q I' . (2l)

The optimum value of $ is of course determined
from the condition S&F/S) =0. A moderate amount
of algebraic manipulation results in
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