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Plasma Frequency of the Electron Gas in Layered Structures
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The approximations necessary to obtain the model of Visscher and Falicov for a layered electron gas are
discussed. The Hamiltonian is generalized to include the electron tunneling between adjacent planes. The

plasma frequency is calculated in the random-phase approximation using the equation-of-motion method. It
shows a very strong anisotropy, depending on the angle between the wave vector of the plasma wave and

the perpendicular direction to the layered structure.

I. INTRODUCTION

Recently, Visscher and Falicov' proposed a sim-
ple but very anisotropic model for an electron gas
in a layered structure. The system consists of
electrons constrained to move on parallel equally
spaced planes, any motion in the perpendicular
direction being completely forbidden. The static-
screening properties have been calculated. It is
the aim of this paper to make a detailed analysis of
the approximations involved in this model and to
calculate the plasma frequency of the system in the
random-phase approximation (RPA).

The second-quantization formalism is used. The
single-particle wave functions are given by the
product of a plane wave, describing the free motion
of an electron in the plane, and the exact solution
of the Schrodinger equation with a periodic poten-
tial in the perpendicular direction. In order to ob-
tain a localized picture, Wannier functions will be
used. The very localized model of Visscher and
Falicov is obtained in the tight-binding approxima-
tion when any overlap of the wave functions on
neighboring sites is completely neglected. This
analysis leads naturally to the introduction of an
additional term in the Hamiltonian, which permits
electron tunneling between adjacent planes. It is
of the form used some years ago by different
authors to describe the electron tunneling between
two metals separated by an insulating film, espe-
cially when one of the metals is in the supercon-
ducting state. Given this Hamiltonian, the plasma
frequency is calculated in the RPA using the equa-
tion-of-motion method. It shows a very strong
anisotropy, depending on the angle between the
perpendicular to the plane motion and the propaga-
tion direction of the plasma wave. It vanishes in
the model of Visscher and Falicov when the propa-
gation is along the perpendicular direction, but is
finite everywhere when the tunneling is included,
as is expected from the three-dimensional charac-
ter of the motion.

II. MODEL HAMILTONIAN

Let us denote the exact single-particle wave
function by PS(R}. It is given by

PR(R) =~& e p (z) .

The condensed notations R= (r, z), K= (k, z) will
be used throughout. Here r is the position vari-
able in the plane, A is the area of the region in
which the motion is confined, and k is the corre-
sponding two-dimensional wave vector. The Bloch
functions y„„(z), describing the electron motion in
the perpendicular direction (z axis), are solutions
of the Schrodinger equation with a periodic poten-
tial, written as a superposition of deep and narrow po-
tentialwellsoneachlatticesite, g U(z —mc) (c is
the lattice constant in z direction}. The eigenfunc-
tions of an isolated potential well U(z) are denoted
by y„(z}. One will assume that U(z) is arbitrarily
deep and narrow, so that only the lowest band is
occupied; consequently, the band index v will be
omitted.

In order to obtain a localized picture, we shall,
instead of working with the Bloch states y„(z), use
the Wannier functions defined by4'

1
a(z —mc)= X p„(z)e '" ',

pf (R)= e' ' a(z —mc) .
vA

Now we can define the field operator

4'(R) =Z Pr„(R) nt
lcm

(3)

nr (nt ) being the annihilation (creation) operator
cf an electron with the wave vector k localized
mainly in the plane m. Then the single-particle
part of the Hamiltonian becomes

t
+Itm +Itm+~ El m-mz l Qfm ™imam

Nm me k mm'

where E~,
~
is the overlap integral,

where N is the number of the planes in z direction,
and the summation is restricted to the first Bril-
louin zone. In the Wannier representation the sin-
gle-particle wave function becomes

1958



PLASMA FREQUENCY OF THE ELECTRON GAS IN. . . 1959

a' a'
E)~~i) = dz 8* z —mc —

p
2m~ Sz

~E rr(z — ,c)) (z — 'c) .
f5~

(4')

ize this model by including a tunneling term in the
Hamiltonian.

In order to calculate the Coulomb potential en-
ergy we start from its expression in terms of the
pair-distribution function, namely

y„(z):— Z e'" ' p(z —mc);1
(5)

then a(z —mc) = y(z —mc) as is easily seen from (2).
Assuming a very small overlap between two wave
functions y in two neighboring lattice sites, the
various overlap integrals (4 ) have different orders
of magnitude. We shall neglect all of them except
the energy contribution Eo of the lowest state of the
isolated potential well and of the integral

T = f dz y*(z) U(z) y(z a c) (5)

(nearest-neighbor approximation). By a suitable
choice of the energy scale we can take ED= 0 and
then the single-particle Hamiltonian (4}becomes

~Sk- t t
2 of~ nf~+ T Z (Qfm ofm-1+ Qfm @Em+1)

me mf'm

(7)
The first term in the Hamiltonian (7) describes a
system of free electrons in each plane, and the
second term describes electrons which tunnel from
one plane to its nearest-neighbor plane with the
tunneling constant T. If T is also neglected, the
very localized model of Visscher and Falicov is
obtained.

The expression (7) can be diagonalized by the
unitary transformation

1
(9)

with the result

~ &Roke'R~
R

(9)

where

)R= g k /2m, + 2T coszc . (10)

Expression (9) could be obtained directly, starting
with the single-particle representation (1) and us-
ing the tight-binding and nearest-neighbor approxi-
mation. Indeed, the transformation (8) brings back
a Wannier function into a Bloch state, and gm is
easily recognized to be the approximate eigenvalue
of the tight-binding method. But we have pre-
ferred to use the Wamuer representation in order
to arrive in a natural way at the model of Visscher
and Falicov and to have the possibility to general-

Up to now these relations are exact. To go
further one must make several approximations.
The first is the tight-binding approximation in which
the exact Bloch state is written as a superposition
of eigenfunctions of the isolated potential wells,

4 2

(11)cOQ1 2g ~ @3

where Q= (g, 8), 0 is the volume of the crystal and

S(Q) is the Fourier transform of the pair-distribu-
tion operator

S(R~, Rz) = 4'(R~) 4'(Rz) 4 (Rz) 4(R~) . (12)

We shall calculate S(Q) directly in the single-par-
ticle representation (1}, using the tight-binding
approximation (5) for the Bloch states. Neglecting
overlap integrals [no enhancement factor like U(z)
exists now, and we shall retain only the integrals
with wave functions belonging to the same lattice
site ] after straightforward calculations one gets

where

1 ~

/gal

~ t
lg(8)I &R+a &R'-a ~R ~R2~ aalu Q

(11')

t 1&=~ &R nR+ &„~ &(Q) oR.R oR a ~R oR,
R RRsg

(14)
where V(Q) =4zez/Qz and $R is given by (9). The
strong anisotropy of the system is reflected in the
dispersion relation (9) for the single-particle en-
ergy and in the shape of the Fermi surface, which
now has a cylindrical symmetry and a cosine pro-
file along the z axis. It can be shown that the value
of the Fermi energy of the independent electron
system is not influenced by the presence of the
electron tunneling, and is given by' p= K kz/2m„
k~~ = 2nn„n, being the electron density per unit
area. 6

III. PLASMA FREQUENCY

In order to determine the plasma frequency the
motion of an electron-hole pair of momentum (-Q)
will be followed. Using the equation-of-motion
method in the RPA, the calculations are standard,
and one obtains

g(8) = f dz e-'"l 9 (z)l'.
For a 5-function behavior of I y(z) lz (approxima-
tion used by Visscher and Falicov), g(8) = 1. This
is not an essential approximation for calculating
the plasma frequency, however, because in the
long-wavelength limit we have g(8)- 1; for sim-
plicity we sha. ll take g(8) = 1. Then the model Ham-
iltonian which will be used in further calculations
is given by the expression
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1 g f(K+Q) -f (K)
ft lt &a.a-&a-~~ (15)

where f (K) is the Fermi-Dirac distribution func-
tion corresponding to the energy $g. Formally,
(15}has the same form as for a homogeneous
three-dimensional electron gas. The differences
consist in a new form of the Fermi surface and in
the dispersion relation (9), and their effect on
the plasma frequency is notable.

Let us consider first the case of the very local-
ized model of Visscher and Falicov. Then the sum
over z is straightforward, and we remain with an
integral over the two-dimensional wave vector k.
In the long-wavelength limit the calculations are
easily done, and one obtains

2 2 ~ 2
co» = coosln p, (16)

(15')

where v I = (I/O') Vg )R is the group velocity. A
series expansion of the denominator gives

and the integrals are now straightforward. Intro-
ducing the tunneling velocity vr = Tc/g and the ve-
locity at the Fermi surface vz= (2 pm/,

~}i,zthe
final result can be written

2

&u» = +0
~
sin p+ 4 ~ cos p

2 2 ~ 2 VT 2

Vy
(17}

In contrast with (16), the plasma frequency given

by (17) is everywhere finite, but its strong anisot-
ropy is still present. This is the expected result
because when the tunneling is also included the
electron motion has a three-dimensional character
and the energy of the collective excitation has to be
finite. The obtained result shows the qualitative
difference between the layered-electron model and

where &uo = 4' n/m, , and P is the angle between
the wave vector Q of the plasma wave and z direc-
tion. It shows a very strong anisotropy, and its
vanishing when p-0 is related to the rigidity of
the model with respect to the motion in the perpen-
dicular direction. It is expected that in the extend-
ed model when the electron tunneling is taken into
account it will be finite everywhere.

Indeed, in the limit IQI -0 one can write (15) in
the form

a two-dimensional electron gas. Remember that
for a two-dimensional system, the plasma frequen-
cy vanishes in the long-wavelength limit. 7

The same result can be found from the dielectric
constant, In the RPA (or in the self-consistent
approximation ) this is given by

( ) ( )
1 g f(K+Q) -f(K)
0 g $gg —$g —S(u —ih n

(18)
One can compare (18) with the expression of zg, ~}
calculated using the Bloch states of the crystal.
If the periodic structure in the x, y plane is ne-
glected, we have to ca,lculate the matrix elements
of p~=e ' ' between two Bloch states y„„(z). Be-
cause the separation between two energy levels of
the isolated potential well U(z) is assumed very
great, all the interband transitions can be ne-
glected. Then in the tight-binding approximation
the matrix elements (z I p~l v+ 8) becomes equal
with g(e) defined by (13), and taking g(e) = 1 the ex-
pression (18}is found. In order to improve the
the model. , the first step would be to take into ac-
count the periodic structure in the x, y plane. In
the present form we have a simple but very aniso-
tropic model, for which simple results are easily
obtained, and which is opposite to the free-elec-
tron model,

From the experimental point of view the strong
anisotropy of the plasma frequency (17) could be
observed in energy-loss experiments. As it is
known for a high-energy-electron beam the trans-
ferred momentum is very nearly perpendicular to
the incident direction. Then varying the direction
of the incident beam one can vary the propagation
direction of the plasma wave and consequently, the
peak position in the characteristic energy-loss
spectra.

Note added in Proof. A strong anisotropy of elec-
tron energy losses in graphite was first found by
K. Zeppenfeld [Z. Physik 211, 391 (1968)]and a
theoretical interpretation was given by E. Tosatti
and F. Bassani [Nuovo Cimento 65, 161 (1970)] and

J. Cazaux [Opt. Commun. 3, 225 (1971)].
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