
SURFACE -IMPEDANCE THEORY FOR PURE TYPE -I. . .

Zh. Eksp. Teor. Fiz. 35, 265 {1958) [Sov. Phys. -JETP I, 182
(1959)].

' P. Pincus, Phys. Rev. 15S, 346 (1967).
"J. Bardeen, L. N. Cooper, and J. R. Schriefkr, Phys. Rev.

108, 1175 (1957).

"M. P. Garfunkel, Phys. Rev. 173, 516 (1968).
"C. Caroli, Ann. Inst. Henri Poincare 4, 159 (1966).
"K. Maki, Phys. Rev. Lett. 14, 98 (19663.
' J. F. Koch and P. A. Pincus, Phys. Rev. Lett. 19, 1044 (1967).
' J. F. Koch and C. C. Kuo, Phys. Rev. 164, 618 (1967).

PHYSICAL REVIEW B VOLUME 8, NUMBER 1 1 JULY 1973

Theory of Electron-Spin Resonance in Gapless Suyerconductors

Kazumi Make~

Department of Physics, University of California, I.os Angeles, California %624
(Received 21 December 1972)

The transverse dynamic spin susceptibility for conduction electrons in dirty gapless superconductors, in

particular, in the vortex state of type-II superconductors, is calculated. It is shown that in the gapless region

the dynamic susceptibility consists of two terms, the regular term and the anomalous term. In the

low-frequency region of experimental interest, the regular term reduces to the static spin susceptibility,
which is determined, for example, by the Knight-shift measurement in superconductors, while the anomalous

term has a pole, which is associated with a resonance of the spin of conduction electrons. The resonance

linewidth T, ' is determined from the imaginary part of the resonance frequency. It is shown that T, '

behaves quite differently in the superconducting state depending on whether T, ' in the normal state is

primarily due to the spin-orbit scattering or due to the exchange scattering from the magnetic impurities.

I. INTRODUCTION

Dynamical spin susceptibility for conduction
electrons has been studied extensively both theo-
retically and experimentally, since it provides use-
ful means to study the interaction between the spin
of conduction electrons and the impurities.

Gn the contrary, there appears no relevant cal-
culation for superconductors, partially because in
bulk type-I superconductors magnetic fields are
expulsed from inside of the bulk except in the thin-
skin layer at the surface, which makes the use of
the resonance technique extremely difficult. ' How-
ever, in the case of type-0 superconductors in the
high-field region or thin films, where magnetic
fields are considered almost uniform in the speci-
men, me expect that the electron-spin-resonance
technique can be used to study the spin-scattering
mechanism of conduction electrons from magnetic
and/or nonmagnetic impurities.

In this work we would like to report the calcula-
tion of the dynamical spin susceytibility for con-
duction electrons in dirty superconduetors in high
magnetic fields. %e consider that the supercon-
ductor is either a bulk and in the vortex state or a
very thin film so that the magnetic field in the
specimen is almost uniform. Furthermore, we
assume that the spin-relaxation rate due to the im-
purities is srnaQ.

In most of the calculations, however, we con-
sider a supereondueting thin film in the presence
of parallel magnetic fields, since in the gapless
region the result obtained can be easily general-
ized to describe the spin susceptibility of the type-

II superconductors in the vortex state, if we rein-
terpret appropriately the pair-breaking parameter
in the theory. ~

It is shown that in the gapless region the dynam-
ical susceptibility has a similar expression as the
one in the normal state. Besides the static part,
which is related to the g shift of the impurity spin,
the dynamical susceptibility has a contribution from
the anomalous region which contains a complex
pole. The real and the imaginary part of the en-
ergy corresponding to the pole is interpreted in
terms of the resonance frequency and the linewidth
Tz' for the transverse spin. 3 The linewidth Tl' be-
haves quite differently in the superconducting state
depending on whether Tq is primarily due to the
spin-orbit scattering or due to the exchange scat-
tering from magnetic impurities. In the former
case, T2' decreases rapidly in the superconducting
state, while in the latter case Ta' increases.
Therefore the measurement of T,' in the suyercon-
ducting state provides certainly useful means to
distinguish the two contributions to Tz .

II. FORMULATION

%'e will recapitulate here some of the properties
of a suyercondueting thin film in a parallel magne-
tic field, wliieh are necessary for the calculation
of the dynamical susceptibility. In the presence of
a magnetic field the properties of conductions elec-
trons are described by the Hamiltonian
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and 4 t{r),4', (r) are electron field operators, 8, is
the spin operator of magnetic impurity at the site
{i), &o, =g, psH, ~, g, p, sH, and subscripts i, j, and
k run over the positions of magnetic impurities,
impurities with the ordinary potential and impuri-
ties with the spin-orbit potential, and e„ is the
complete antisymmetric tensox.

Here Ko describes the free motion of conduction
electrons and impurity spins in the presence of
magnetic field H, which is applied parallel to the
Z axis. In contrast to the similar formulation in
the normal metal, we have to take into account the
orbital effect arising from the magnetic field, which
plays aD important x'ole 1D superconductivity. K~
is the simple BCS interaction, which gives rise to
the superconducting pairing below the transition
temperature. Lastly, X3 describes the interaction
between conduction electrons a,nd a variety of im-
purities (magnetic as well as nonmagnetic), which
gives rise to not only the relaxation of conduction
electrons but also that of the spins carried by con-
duction electrons. The first term is the exchange
interaction arising from the magnetic impurities,
while the second and the third terms axe the poten-
tial and the spin-orbit scattering arising either
from the magnetic and/or from the nonmagnetic
impurities. In order to describe the spin-orbit
scattering, we adopt here the model employed by
Abrikosov and Gor'kov previously in their study
of the Knight shift in superconductors.

Although we are ultimately interested in the elec-
tron-spin resonance inthe gapless superconductors,
either in the vox'tex state of dirty type-II supercon-
ductors or in thin films in parallel magnetic fields,
we assume for the moment that we are dealing with
a dirty thin film, where the order parameter is
constant all over the specimen. Then the thermal
Green' functions for electrons have been already
obtained and given in the four-component spinor
representation4'6:

1 +pso'g ~(d+ + kg„ps + ++ pro'1
2 ~++ $p+ 6

+ -~+
r

a 1 1
3 37. (1+ )'/
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~s, = c„~x(0)hei'(S', &,

-', a,'= c„mH(0)
~
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and a1 is the pair-breaking energy due to the mag-
netic field. In the case of a thin film of the thick-
ness d in a parallel field, aj is calculated as

a, = —,'D ((2eX)'& = ~a(eHd)' (9)

and D is the diffusion constant. In the above ex-
pression N(0) is the density of states of conduction
electrons at the Fermi level, and e„, c&, and e3 are
the concentration of the magnetic impurities, the
impurities giving rise to the potential scattering,
and the spin-orbit scattering, respectively. %e
may refer r and Sv.„to the electron lifetime and
the spin lifetime due to the spin-orbit scattering,
respectively, while 6a2 and Sam

' are the lifetimes
arising from the exchange scattering (with the par-
allel spin and with the tranverse spin, respective-
ly). In fact, Saz may be considered as the spin-
scattering time associated with the exchange in-
teraction from the magnetic impurities. Finally
p, and 0, are the Pauli spins operating in the par-
ticle-hole space and the ordinary spin space of
electrons, respectively. e

In the derivation of the Green's function, we as-
sumed that the impurities are distributed complete-
ly randomly and that there is no correlation among
impurity spine. Furthermore we neglect the dy-
namical properties of the impurity spins complete-
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ly and consequently the Kondo effect associated
with the impurity spins.

III. TRANSVERSE SUSCEPTIBILITY

and e,A, is the renormalized spin vertex. A, is
calculated by summing up the ladder-type diagrams
arising from the impurity scattering (see Appendix

A), and we have

X -(~)=&[a„o]&(0,~) . (10)

The above retarded product is obtained from the
corresponding thermal product by analytical con-
tinuation. The thermal product is, on the other
hand, expressed in terms of the single-particle
Green's function, Eq. (5), as

The transverse susceptibility is expressed in
terms of the retarded product of the electron-spin
operators:

A, = (A+ Bp1o'2)S)

where
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where n, are the spin operators in the four-com-
ponent representation, 4
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Finally, the thermal product is calculated as

3
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where we have introduced

&n. ++ 4
G+(P~ &n) = -2,2 n2n, ~+ &p++n, ~

(18)
n, ~+ &p++n, ~

In the static limit (i.e. , &o„=0) and in the limit I
—0 (i.e. , the vanishing Zeeman splitting of the
conduction electrons), Eq. (22} reduces to

00 2 1
X' (0)=N(0)~1 —2wTZ 1 (1+u ) 6(1+u ) —

2
——

2 + (19}

which is nothing but the static-spin susceptibility
of the gapless superconductors which appears in
the Knight shUt, for example. [Note that in the
limit I 0~ X (0)=X (0) ]

IV. ELECTRON-SPIN RESONANCE IN GAPLESS
SUPERCONDUCTORS

Equation (17) gives a complete expression of the
dynamical transverse susceptibility in supercon-
ductors valid for all field and temperature regions.
However, since the spin-resonance signal becomes
extremely small at lower temperatures where the
energy gap is finite, because of the reduction in the
quasiparticle number above the energy gap, it is
extremely difficult to observe the resonance at low-

er temperatures. In fact, from the experimental
point of view, the gapless region is of primary in-
terest. Furthermore, in the gapless region we can
derive rather simple expression for the dynamical
susceptibility, which can be analyzed in terms of
the one in the normal state. Therefore we will
limit ourselves to the gapless superconductors in
the following study. In the gapless region of a dirty
superconductor, we can formally expand the physi-
cal quantities in powers of the order parameter b, ,
although in some instances such expansions should
be handled with caution. It is then convenient to
separate the summation over n in Eq. (17) into the
regular region which corresponding to e„.(d„,„&0and
the anomalous region where (d„.(d„,„&0 and co„and
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are internal frequencies,

x' (- f~.) =x'...(- f~.)+ x.',(- f~.). (ao)

In the frequency region of practical interest, where
&o(=I), the frequency of the ac field, is much
smaller than 600, the BCS energy gap at T=O K
and II=0 (i. e. , +/+0«1), the regular term is es-
sentially given in terms of the static susceptibility
and we have

(21)

as defined in Eq. (19). In order to make further
progress, we notice that in the gapless region we
can solve Eq. (7) by assuming that

neglected small quantities sz/avT, O and 1/3vv, oT~
in the derivation. As expected then X',~(&o) is iden-
tical to the static spin susceptibility for a super-
conducting thin film obtained previously by Fulde
and Maki.

Now we will examine the anomalous contribution
which contains the basic information on the electron-
spin resonance. Making use of Eqs. (22) and (24),
X' (- ko„) in the gapless region is expressed as

Pm]

Xai( &(or) = —&TN(0) Z 2 —4 z +
n-"0

D '(~„,~. .), (26)
1 2

u, =X,/~+ 0(~). (22) where
Substituting Eq. (22) into Eq. (7) and collecting the
lowest-order terms in b, we have

a a' 1 ( 1 a~&X,
Q)+zI=Xg — ay+ + + +

3 3 3r„ I,37,. 3 /X,
(23)

or
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where

a = a& + q (a& + a&+ 1/r„), b = 3 (1/r —as),
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Now in terms of X, we express Eq. (21) as
OO Q2

X reg(& ) —= 1 —av TZ X (X
z'2/3 )

()(1 n,
2(avT) '(2 avT ji ' (as)

where g+'(z) is the tetragamma function. Here we
I

X& =X,(&o„), X& ——X (&o„),

X~ = iX ((o„)i=X,((o „),

X,'= ix,((o„„)i=x((o„).
Therefore, in Eq. (26) both the numerator and

the denominator are expanded in powers of 6 .
When 4/37„+ ~ (am+ as) is not extremely small, we
can expand the denominator in b, . [Note that con-
trary to the regular term, we have to keep the
terms like 4/3v and f(uz+ az) in the denominator
of the anomalous term. ] Then the summation over
n is somewhat tedious but easily carried out and
we have (see Appendix B for details)

(dp+ 2zI+ 2a 2 2gT

+ 21I+ s (Qg+ Qz) 1 4&

(u„+ 2iI+ Tp„(q, + 2iI+ 2a 2 2mT0 —+ " +p -0 a+p)
~I

+ aa, +arg + —g~ ' —+ " +p —t)t' '(z+p), (28)
GENT 7' 2 2mT

where p=a/avT;

T~„'= 4/37 + —', (a~+ am),

I

the linewidth in the normal state; and t)t(z) and
'(z) are the digamma and the trigamma functions.

Here we assumed that I, 1/r, az, and am are much
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smaller than &()() (or T,()) as before. Finally,
)(' (~) is determined by analytical continuation from

X ( —t&u„). In the present case this is achieved
simply replacing ~„by —i ~. Furthermore, noting
that the frequency (()(a 2l) is much smaller than

T,o, we have

2

x" (~)=( N(0)(( ~

larization. From Eq. (28) we conclude that the
resonance linewidth becomes narrower in the super-
conducting state, when T2, is primarily due to the
spin-orbit scattering, while the linewidth is broad-
ened in the superconducting state when T2„ is
primarily due to the exchange scattering from mag-
netic impurities.

We note also the residue of the pole is given by

where

x Ip '() "'(l ~ p) ~ ('"' (-', + p)]) r((w) ', (29)

+2(2 T)2 P 0 (2+P))l

((( )=-((~- &) (( ~ n t)' '(*'~
u))l ~ T'i g) i X.(o)—1+2(2 T)., g (2+P)= (34)

Q2
+2 (s2+s2)

2(2 T)2 P '0'"(2+P)

Q2
—: ":.' 22': "'-:.P

1 80 V

The electron-spin-resonance frequency is deter-
mined from the pole of Eq. (29):

U((d) = 0. (31)

We note first of all that the resonant frequency is
given by ~„,= 2I as in the normal state. On the
other hand, the linewidth is now given by

2

T2)) + 2 ((22+(22) 2(2,T)2 P '0'"( +2P)

)l 2(2 T)
(() ( +P)

(

2 1

X 1+ 2 p' '"-,'+p, 32

where T2„ is defined already after Eq. (28).
Equation (32) may be rewritten

2

2 =3 —
22 T 2 P 2+P —~ 2+P

Q2
+ —a g+ 2 p g

— p+2 —
p2 21rT

2

+ —a' 1+ p
—'

p
—'

p

(33)
where

a2 = (3/v, )[(S,)/S(S+ 1)]

az = (3/2v, ) [1—(S,)/S(S+ 1)],

and 7, is the electron lifetime due to the exchange
scattering, when the impurity spin has no net po-

which describes the strength of the resonance sig-
nal. R decreases monotonically in the supercon-
ducting state.

So far we limit our consideration to the case of
a superconducting thin film in parallel magnetic
fields. From an experimental point of view, it is
more interesting to study the electron-spin reso-
nance in bulk type-II superconductors in the vortex
state. In fact, Eqs. (25) and (29) describe the
static part and the anomalous part of the dynamical
spin susceptibility for conduction electrons in dirty
type-II superconductors, if we reinterpret some of
the parameters involved. First, the pair-break-
ing energy a& is given by

aj=DeH . (35)

dg, I 1 1 —H/H, 2(T) g '(2 + p)
&g„4voD [2z2(t) —1] p„+n y")(—,'+ p)

'

(37)
where ~g„and &g, are the shift in the g factor for
the impurity spin in the normal state and in the
superconducting state, respectively. Since

g ~'(2+ p) &0, we expect that the g shift decreases
in the superconducting state. In the vortex state of
type-II superconductors, Eq. (33) is rewritten

Second, the order parameter in the vortex state
in the vicinity of the upper critical field is ex-
pressed as'

+2 c2( ) [ (1)(1 )]1
o' [2tc2(t) —1]p„+n

where P„= 1. 16, o = r„e N/m is the conductivity
in the normal state, x2(t) is the second Ginzburg-
Landau parameter, ' n is the demagnetization
factor, ' and H is the external magnetic field. Sub-
stituting Eq. (36) into Eq. (25), we have

4 . 1 1 —H/H, 2(T) 1 g g (2+ p) ')(

37'„42oD (2xz(t) —I )p„+n ()) "'(2+p) &
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1 1 H-/H„(T}
2

g"'(-.'+P)
4m' [2n', (t ) —1]p&+n g (4+P)

I-H/H2. (T) 0' '(2+P)
(33)

and
4 1 1 —T/T, (H)

3v„4mo D [2n (f) —1]p„+n

4 1 1 1-T/T, (H)
3v,' 4maD [2n2(t) —1]P~+n

(40)

for the randomly oriented impurity spins and for
the completely polarized impurity spins, respec-
tively, where

(1) & 1 p g (~+p)(2)
S) (t) =( [p& (2 + p) ] —1) 1 ——

(q)2q ' —,+p

We expressed so far the linewidth in the supercon-
ducting state as a function of magnetic field H.
However, since the experiment is usually carried
out with a fixed magnetic field in variable tempera-
tures, it will be more convenient to express Eq.
(38) as a function of temperature. In a constant
magnetic field we have then

4 1 1 —T/T, (H)

37„4poD [2tcz(t) —1]P„+n

3q, ~ 4poD [2na(t) —1]p„+n I

(2)
S2(t)=([P4 (.+-P)l -I& I+» «)( )

(g) 1 1 3 0 (2+P)
—+p

(a&

~, t~) (lPt'=" 8+Pal' «(~+-~P „,(*"}-+p
(41)

and r,' = [S7,'f(S+ 1)] and T,(H) is the transition
temperature in a magnetic field II. The universal
functions S,(t), S2(t), and Sz(t) are shown in Fig. 1
as functions of the reduced temperature f = T, (H)/
T and T~ is the transition temperature in the
ahsence of field. All S,(t), S2(f), and S~(t) are pos-
tive except S2(t) and S~(t) at lower temperatures,
which implies that the linewidth becomes narrower
when T2„ is primarily due to the spin-orbit scat-
tering, while it broadens when T~„ is primarily due
to the exchange scattering as stated before. Fur-
thermore, the second term in Eq. (40) is exactly
what one expects from the detailed balance' be-
tween the decays of the polarization of the spins
of the conduction electrons and those of the im-
purities, since the relaxation rate of the impurity
spins in the superconducting state is expressed in
terms of the same function as that for the nuclear
spins. '

l.5

I.O-

S)(t)

0.5-

0.0

—0.2
0

FIG. 1. Universal functions S&(t), S2(t), and S3(t) which
appear in the expression of the resonance linewidth Tz
in gapless superconductors are shown as functions of the
reduced temperature T~(+/T~.

V. CONCLUDING REMARKS

We have calculated here the dynamical trans-
verse spin susceptibility for conduction electrons
in dirty gapless superconductors, in particular, in
the vortex state of type-II superconductors. We
find that in the gapless superconductors the dynami-
cal spin susceptibility has a resonance pole similar
to the one in the normal metals, although the resi-
due of the pole decreases rapidly in the supercon-
ducting state. The linewidth T2 of the resonance
in the superconducting state behaves quite different-
ly depending on whether the width is primarily due
to the spin-orbit scattering or due to the exchange
scattering from magnetic impurities. In the former
case T &' decreases rapidly in the superconducting
state, while in the latter case T," increases rapidly
as the temperature decreases below the transition
temperature. Therefore the electron-spin-reso-
nance measurement in the superconduc ting state pro-
vides certainly useful information- about the origins
of the spin-scattering mechanism of conduction
electrons.
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APPENDIX A: DETERMINATION OF THE RENORMALIZED SPIN VORTEX

Making use of the standard technique used in the impurity-scattering problem, the renormalized spin
vortex is expressed in terms of the sum of the ladder-type impurity corrections. This summation can be
formally carried out by solving the Bethe-Saltpeter equation for the renormalized vertex n,h,

1 (uz —zp, o,) a+A+(uR —zp, oR) 1 (u, —zp, oR) a+A+(uR —zp, o,) &(

+ + + 2~f1 PS + + (1 + uR)1/2 (1 ~ 2)1/2 Ps 6 g 8 + + (1 ~ 2)1/2 (1 2)1/2 )I 8

(SR
A

(u1 —ipzoR)a+A+(uR —ipzoR) 1
A (u1 —ipzo8)a, A,'(uR —i pzoR)

6f|] 3PR + + (l + 2)1/2(1 + u2)1/2 3P3 +
3 fit 2P3 + + (1 3)1/2 (1 + a)1/3 2PR

where

as f o f o

+
fl & o2 a+A+ ( 1 Pzo2) a+ +( 2 Plo2) o (Al )

(1 + u R)1/2 (1 + (2)1/2

(A2)

and u1, u1, u2, and u2 refer to v„„„, +„,„,and Q„,„„respectively. Here we neglected the pair-
breaking term arising from the magnetic field for simplicity.

The above equation for a,A, is easily solved, making use of the Ansatz

A+ A(1) + A(2) ~102

Substituting (A3) into (Al) and comparing the coefficient of 1 and pzoR, we find

(A3)

2g( ~ 3~ 3 (1 + 2)1/2(1 2)1/2 fl(
~ 3~ 3 (1 + (2)1/2(1+ &2)1/2

~

(1)

1 1 1 ~a ui+u2 1 1 ~a u1+u2 — A
2g 3 3 (1 + 2)1/2(1 + 2)1/2 fl( 3&

+
3 (1 + (2)1/2(1 (2)1/2 (2) y ( )

~ 1 1 1 ~a u1+u2 1 1 ap u1+u2
2Q z. 3q „3 (1+uz)' (1+uR)' 0' 3v„3 (1+u,")' (1+u'8 )'

1 t'1 1 a~ u1u2 —1
2Q ~ 3~ 3

+
1 +u2 1/2 1 +u2 1/2 P 3& 3 I 1+ 2 1/2 1+ 2 1/2

(A5)

Finally, the solution of (A4) and (A5) is given by Ezl. (12) in the text.

APPENDIX B: CALCULATION OF ANOMALOUS TERM

Expanding Eq. (26) in powers of (S, , we have

—28TN(0) ~ A 1 1 1
(d„+28I+ T~ ~p 2 2X1 2XR X1XR (d„+2i I+ TR„

~ -1

(g„+iI+a ——,'a2 cO„+iI+a ——3a2 ~a' 1 1 1 ~a 1

2X 2X 3 3v 2X' 2X' 3 X1X2
~

N(0) (2(( (a,) —)( (up„)] — . , (RR (w„) —(,——', a )K (w„)]), (B2)
v+ ~ + 2n ~„+2iI+T2„
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where
u-1 v-1

Kq(a„)=2aTZ a, Ka(ta„)=2TTZ K, Km(ta„)=2aTZ "
a

—',
a '") (82)

n*0 1 ~0 1 2 e*0 1 1

4
T2 + 2 (gg+CE)i

3~80
(B4}

Now let us first consider K~(&oz) which is calculated as

1 l I+ib I 1 I+ib 1
1 4 J. ) cg„+iI +a I cg„—iI +a

It' I ib't 1ll+ T 1+~1
(

~ 2 )3

~ ~ ~

I i b 1 2iIb 1
l l ( „-i('~ a)' I" (ta. ~ il'+a)(a„—il'+a)I

1 GVv2vT} ~ 2
+ " +p, —~(—'+p, )+~ —+ "+ p —~(—'+p ), (B5)

where

p, = (g +i I')/22fT (B5)

Taking into account the fact that I'/2vTOD, b/2vT, O, 1/Sv~wT, and ag2vT„are smaller than 1, we reduce
(B5) to

where

Kg((2))a} =
( ) $ (2 +p)- &o 2+ 2 T+P

p=a/2wT

(Bv)

(BS)

Ka((d„) and K, ((d„) are computed similarly, and we have

I't( 1 - I it ib 1Kg(~„)=-» Z 1+—
2 ill+ —rl, + 1- ~ ll r--I') ( I j (()„+i2i +a) ( „(2)„i+1'+a) I )( I ((d„—ii'+a) ((2)„„—iI +a)

iIb 1 1 1 1
+iI +a —iI +a co —iI +a + +iI, +a (B9)

1+~ 1+~ . 2 $ 2+ 2 T +pa —4(2+Pa)m+2 iI +a 2 2n'T

I ib 1 1 co„
I I co +2 —iI +a 2 2mTu

)i)
—+ "

~ p, —)})(-'+p, )+ (}) —+ " +P —4(2+P }(B10)-I (2)„+2a 2 2mT 2 2mT

(g) (, )
2(1+ib/I) 2iIb 1

2 T ' „~2(il'+a) l' „+2 ) (B11)
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SC3(ro„) =
4

R ((o„+iI+a ,'-a-,) 1+ I+a t

n 0 ) (d„+iI'+a
+ ibliI' ) „-iI'+&

t'~a 1 ) I-ib 1 I- ib
+ 1+3r„) I (o„+iI +a I ('d„- iI +0

"2
(812)

lJ I+ib iI b 1 (o„
=-4~ 1+, + I" 0 2+2 "++a —48+a.)

I+i 5 iI 5 j. (o„'+ 1 —
g

—
gg + +p — g+p2mr

+ ] + — gQ3 1+—
p + + 1— $ + + Pp — p+ P~

+ 1 — 3Q 1- + ~ + f — (~) —+ +t +P —P(~~ j+P

(i& p )
aa aa+ 1~ „(z) (~ +-=2(2.r) ~ '" ' 6.T

Substituting (A10), (A12), end (A6), we get Eg. (28) in the text.

(813)
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