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Appropriately chosen modified moments of the frequency distribution provide valuable in-
formation about harmonic solids. They contain the same information as exact power moments
but much more efficiently. They stably determine quadrature formulas which have been shown
to give thermal and dynamic properties of harmonic solids with great accuracy. They can be
calculated either directly or from exact power moments when these are available. In this
paper we give the motivation for a particularly suitable choice of modified moments for har-
monic solids and show how the modified moments can be obtained from exact power moments
for solids with finite-ranged forces. The modified moments can be stably transformed to
power moments and to other choices of modified moments by methods which are described.
We show how these transformations can be used to obtain the recursion coefficients of the
orthogonal polynomials defined by the frequency distribution. We use the recursion coeffi-
cients to obtain the various Gaussian-quadrature formulas of use in the harmonic-solid prob-
lem. The transformation from modified moments to quadrature formulas is extremely stable,
in striking contrast to the behavior encountered with power moments for which the transfor-
mation is exponentially ill conditioned. A particularly useful feature of the modified-moments
method for harmonic solids is that additional information about the form of the spectral den-
sity function can be incorporated in order to improve the accuracy of averages of siagular func-
tions without loss of stability. We illustrate this feature of the method by presenting new re-
sults for singular averages such as inverse-power moments.

I. INTRODUCTION

Gaussian-quadrature techniques have been shown
to be a powerful and practical tool for obtaining
very accurate approximations to weighted aver-
ages

(F(&, x)) = f F(r, x)G(x) dx

of a known function F(v, x) over an unknown non-
negative weight function G(x), provided that a
limited number of power moments p, = (x') of the
weight function are known. ' Such averages and
unknown weight functions arise frequently in the-
oretical chemistry and physics, 'and these and re-
lated techniques have been applied successfully to
a variety of problems. '4 In particular, thermal
and dynamic properties of crystalline solids in the
harmonic approximation can be expressed as
weighted averages over an unknown frequency dis-
tribution. Substantial numbers of power moments
of the frequency distributions for a variety of
model solids are available. " Wheeler and
Gordon' "have shown that Gaussian quadratures
are capable of producing extremely precise upper
and lower bounds for thermodynamic properties
of simple three-dimensional harmonic solids from
these moments.

The approximations are obtained by replacing
the integral in (1.1) with a weighted sum and an
error term,

n

(F(r, x))=P w, F(v, x,)+a,
j=i

where the abscissas x, and weights se, are deter-
mined by the requirement that they give a spec-
ified number N(n) of moments correctly. That is,

2 (x(=tL~, k=0, 1, . . ., N(n) .
f=i

The form of the error, 6, made in such quadra-
tures is known and, for a certain class of functions
F(v, x), is of known sign for all v & 0. '0 By an ap-
propriate choice of quadrature formulas, two ap-
proximations with errors of opposite sign may be
obtained. This provides upper and lower bounds
to the average.

A serious limitation to these quadrature tech-
niques is that the determination of the abscissas
and weights of the quadrature formulas from the
power moments is generally exponentially ill con-
ditioned. Double-precision or, if a large number
of moments is known, multiple-precision arith-
metic must be used in the computations, and the
moments themselves must be known exactly or with
extremely high precision.

Recently, Sack and Donovan and Gautschi have
observed that if, instead of the power moments
g„one knows modified moments v, = (P,), where
the p~(x) are polynomials of degree k orthogonal
with respect to some weight function H(x), distinct
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from but defined on the same interval as G(x), then
the problem of determining the quadrature for-
mulas may be very well conditioned. In this case,
however, the transformation from the p~ to the
v~ is generally ill. conditioned.

In this paper we reexamine the harmonic-solid
problem in the light of this new development. We
show that for simple harmonic solids a particular-
ly suitable choice of modified moments can be
found, such that the transformation to the abscis-
sas and weights is extremely well conditioned,
while, simultaneously, the ill-conditioned trans-
formation from the power moments to the modified
moments is easily accomplished with no loss of
information. In addition, these modified moments
can be computed directly for simple harmonic
solids without recourse to the power moments.
We have shown this elsewhere. ' Here we give
procedures for transforming from the exact power
moments, when they are known, to exact modified
moments and show how modified moments can be
used to determine accurate thermodynamic prop-
erties for harmonic solids.

In Sec. II we motivate our choice of modified
moments and show how they can be obtained ex-
actly from power moments in the case of simple
harmonic solids with nearest-neighbor force con-
stants. We compare the power moments and mod-
ified moments for nearest-neighbor cubic-close-
packed and hexagonal-close-packed solids, and
give a procedure for transforming modified mo-
ments back to power moments and to other choices
of modified moments.

In Sec. III we outline the transformation from the
modified moments to the recursion coefficients
n~, P~ of the polynomials v~ (x) orthogonal with
respect to G(x), and then to the abscissa, s and
weights of quadrature formulas. When, as is the
case for harmonic solids, G(x) is nonzero on only
a finite interval, it is useful to employ four dis-
tinct quadrature formulas in which zero, one, or
two abscissas are fixed at the ends of the inter-
val. ' " By the methods outlined in Sec. III and
detailed in the Appendix, we show how all four of
these quadratures can be obtained directly from
the recursion coefficients e„@. This represents
a significant improvement over the methods em-
ployed by Wheeler and Gordon in which "shifted
moments" were used to obtain two of the quadra-
tures. We also examine in Sec. GI the stability of
the transformations from modified moments to re-
cursion coefficients and then to abscissas and
weights. We find that they are remarkably stable,
there being virtually no buildup of error either in
the recursion coefficients or in the abscissas and
weights, even when limited-precision arithmetic
is used.

For harmonic solids with nearest-neighbor cen-

tral forces the moments can be expressed exactly
as integers by a suitable change of scale. For
longer- but finite-ranged forces and noncentral
forces the moments can be expressed as polyno-
mials (or multinomials) in the force-constant ratios
with integer coefficients. A substantial. number of
such moments are becoming available. ' ' In
Sec. IV we show how such polynomial power mo-
ments can be transformed exactly to polynomial
modified moments. The stability of the transfor-
mations from these modified moments to the re-
cursion coefficients and the abscissas and weights
is examined. We find, again, that once the mod-
ified moments are known to a given accuracy, the
abscissas and weights are determined to essentially
the same accuracy regardless of the choice of
force-constant ratios.

The quadrature methods developed by Wheeler
and Gordon for harmonic solids were greatly
strengthened by the incorporation of additional
information about the weight function G(x) in the
form of series expansion coefficients for G(x) at
x=0. In Sec. V we show how additional informa-
tion about the density function, such as bounds to
series expansion coefficients for G(x) or even sim-
ply knowledge of the functional form of G(x) at
some point, can be used with modified moments to
obtain improved estimates for averages. We also
present some new results on inverse-power mo-
ments for harmonic solids to illustrate the power
of this technique.

In Sec. VI we summarize the advantages of the
modified-moments technique and indicate some
of the possibilities for its further development.

II. MODIFIED MOMENTS

It is easy to see qualitatively why the transfor-
mation from the power moments to the abscissas
and weights of the quadrature formulas is so ill
conditioned. The function x" [which, averaged
over G(x), is the moment p„]weights large values
of x more and more heavily as n increases. If
G(x) is nonzero only on a finite interval, say, (0, 1],
then for large n the most significant figures in p„
describe the behavior of G(x) very near x= 1, while
information about G(x) on the rest of the interval
is hidden in the less significant figures. The
abscissas and weights, on the other hand, are sen-
sitively related to the behavior of G(x) on the en-
tire interval and thus depend upon the information
which lies in these less significant figures of p.„.

It might be expected that averages of polyno-
mials, appropriately chosen to sample the entire
interval. , would determine quadrature formulas
more stably. In this section we introduce such
polynomials and show how their averages can be
determined from the power moments of harmonic
solids with nearest-neighbor central forces.
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A. Choice of Modified Moments

Any non-negative weight function G(x) uniquely
defines a set of (manic) orthogonal polynomials
v»(x), k=O, 1, 2,

&v»v~) -=5 n»(x)si (x)G(x) dx= 6 (x v ), (2. 1)

which satisfies a three-term recursion relation of
the form

v„= (p„(x))= fG(x)p„(x) dx, n = 0, 1, 2, ~ ~ ~

(2. 2)

to be much more sensitive to the behavior of G(x)
than the corresponding power moments and to
determine the quadrature formulas stably. This
is the motivation for the introduction of modified
moments. These expectations have been justified
theoretically~2 and found to be borne out in prac-
tice with classical weight functions. ~'~ For
physical applications, where G(x) is unknown,
there remains one problem: the polynomials p~
must be chosen so that the (ill-conditioned) trans-
formation from power moments to modified mo-
ments can be accomplished accurately.

The distribution function for a harmonic solid
in three dimensions is known to vary proportion-
ally tox'~' near x=0 and to (1—x)'~ near x= 1.»4

The weight function

H(x) = (6/v)[x(I —x)]' " (2 4)

v», g(x) = (x —o»)w»(x) —P»v», (x) (vo-=l, w g =0) .
(2. 2)

These orthogonal polynomials sample the entire
interval, and the quadratures can be determined
stably when they are known (Sec. III). Unfortu-
nately, the orthogonal polynomials cannot be deter-
mined stably directly from the power moments.
They do suggest a form for other polynomials which
sample the entire interval.

If we could find a knoum weight function H(x) with

the properties that it is nonzero on the same inter-
va»s G(x), that it is, in some sense, similar to
G(x), and that its own orthogonal polynomials
p„(x) are known, then we would expect the "modi-
fied moments"

The moments of this distribution function are, in

fact, similar to those for harmonic solids. In
Table I we compare several power moments of
H(x) with those for the cubic-close-packed (ccp)
and hexagonal-close-packed (hcp) harmonic solids
with nearest-neighbor radial force constants only.

It is a feature of harmonic crystals with only one
force constant that the moments can be expressed
exactly as integers by a suitable change of scale.
For example, the moments p.„of the ccp solid in
Table I become integers when multiplied by 16".
This corresponds to a change of scale in the vari-
able x by a factor of 16, so that G(x) becomes non-
zero on the interval [0, 16]. The corresponding
scale change applied to the weight function (2. 4)
has the result that the recursion coefficients also
become integers: g„=8 and b„=16. For the hcp
solid the appropriate scale factor is 48, with cor-
responding recursion coefficients a„=24 and b„
=144. In general, for our choice of H(x), if the
interval is scaled to [O, L), then

a„=2L, b„=(4L) (2. 6a)

B. Transformation from Power Moments to Modified Moments

Yo, , ——(x') = p, , I = 0, 1,2,

Y„,,=(p, (x))=v, , k=0, 1,2, ".. (2.s}

Given the first row of Y, the remaining rows can
be determined by using the recursion relation (2. 6)
for the polynomials p„ to obtain the equation

Y &, ,
——Y»,„,—a»Y»t —b»Y» ,q, , (Yo r=0&, .Y&,, ——0) .

(2. O)

TABLE I. Power moments (rounded) for R(x) in Eq.
(2.4) and for the nearest-neighbor ccp and hcp solids.

The modified moments can be determined from
the power moments as follows. Consider the ma-
trix Y with elements

Y», = (g(x)x'), k, l = 0, 1, 2, ~ ~ ~

The first row of Y consists of the power moments;
the first column consists of the modified moments:

(2n+ 1)!!
V„=S

(2 4)!!, n=0, 1, 2, ~ ~ ~ (2. 6)

has these properties and, in addition, the impor-
tant advantage that the recursion coefficients a„
and b„ for its orthogonal polynomials p„(x) are
constants, independent of n:

p..i(x) = (x- a)p. (x) —b. p. i(x)

(a„=-', b„=,) . (2. 6)

The polynomials P„are shifted Chebyshev poly-
nomials of the second kind, and the power mo-
ments of H(x) are given by

1.0
0.5
0.3125
0.21875
0.1640625
0.12890625
0.10473633
0.08728027
0.07418823

'See Ref. 15.

CCP

1.0
0.5
0.3125
0.22265625
0.17163086
0.13882446
0.11578751
0.098589778
0.085196208

'See Ref. 17.

hcpb

1.0
0.5
0.3125
0.22265625
0.17156304
0.13867611
0.11558643
0.09837381
0.08499683
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TABLE II. Modified moments and power moments for
nearest-neighbor solid.

0
1
2
3

5
6
7
8
9

10
15
20
25
30
35
39

x 16ttiL
n

1.0
0.0
0.0
1,6x10

-1.6 x 10'
-2, 24x 10
-1.92x 10

2.24x 10
1.84x 10
1.92x 10
4. 04x 10
5, 20 x 10

-5.63x 109
-2.13x 10"
-8.14x 10

1.59x 10"
3.30 x 102'

p„x 16~b

1.0
8.0
8.0 x 10'
9.12 x 10
1,12 x 10
1.46 x 10
1.94x 10s
2.65 x 10
3.66 x 1ps

5.12 x 10'
7.22 x 1p"
4, 43x 10
3.04x 10
2.24 x 1p
1.75 x 1034

1.43 x 1040

7.9O x 1O4'

'Rounded. See Ref. 23 for exact values.
'Rounded. Exact power moments can be computed

from the exact modified moments. Isenberg (Ref. 17) and
Salsburg and Huckaby (Ref. 18) have previously obtained
the first 20 power moments exactly by other procedures.
Forty exact power moments are available from the au-
thors on request.

Given & power moments, a triangular portion of
Y is generated containing all elements Y~, with
k+ l ~N. The first N modified moments appear in
the first column of Y. This method for obtainiag
the modified moments from the power moments has
the useful property that the integers encountered
in the transformation from p,, to v~ never grow
signiXxcantly larger than ji~ itself. Thus, the
transformation can be carried out exactly when-
ever the arithmetic used is of sufficient precision
to represent the power moments exactly.

Using this procedure, we have transformed the
exact power moments available for the nearest-
neighbor ccp and hcp solids into modified moments.
In each case, the modified moments are much
smaller than the corresponding power moments.
They containthe same information about G(x) as do
the power moments, but much more efficiently.
The magnitudes of the modified and power moments
for the ccp and hcp solids are compared in Tables
II and GI, respectively. In Table II we have in-
cluded results obtained from the direct comPuta-
tinP' of 40 modif ied moments for the ccp solid.
The exact modified moments have appeared else-
where. 33 Exact power moments have been com-
puted from them and are available on request. The
modified moments for the hcp solid have not ap-
peared previously and are given exactly in Table
III.

As noted earlier, the transformation from the

TABLE III. Modified moments and power moments for
nearest-neighbor hcp solid.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
0
0

432
—1656

-49032
—7236

—8 55360
—81 07992
611631000

3389323608
—4 23837 40320
—7 8751847052

—99 66590 96328
—6476 60374 55244
33287 75251 30080

9 90648 62014 55400
—38 85459 39834 86232

x 48feb

1.0
2.4x 10
7.2 x 10
2.46 x 10
9.11x 10~

3 ' 53 x 10
1.41 x 10'
5.78 x 10
2.4Q x ].0~2

1.00x 10
4.25 x10 5

1.82x 10"
7.79 x loads

3 ' 37x 10
1.46 x 10
6.37x 10
2.79 x 10»
1.23 x 1p"

Exact.
"Bounded. See Ref. 20 for exact values.

power moments to the modified moments is itself
ill conditioned. If p for the ccp solid were known

to only 12 significant figures, v~0 would be com-
pletely undetermined. It is only because we can
perform the transformation exactly that no infor-
mation is lost. In fact, as we shall see in Sec.
III, all of the ill-conditioned nature of the trans-
formation from the power moments to the quadra-
ture formulas is contained in this step. Once the
modified moments are known to a given accuracy,
the abscissas and weights can be determined with
the same accuracy.

C. Transformations of Modified Moments

The modified moments can be easily transformed
back to the power moments by using the recur-
rence relation (2. 9) to compute the matrix Y from
its first column. More generally, it is easy to
transform from any one set of modified moments
v~, defined by the polynomials p, with recursion
coefficients a~ and b~, to any other set v~, defined
by the polynomials ph, with recursion coefficients
af, adnb„' The matr. ix Ywith elements Y~, , = (P~P,)
[of which (2. 7) is a special case] can be generated
recursively from its first row. Applying Eq. (2. 5)
twice, the elements Y~, &

are seen to satisfy the
recursion relation

I I
Yk+1,l Ykt1 (aa ,ag ) Ya, l '4 Yk-l, l + 1 5k, lY-1

(Yo,t = ~t, Y1 i =0) . (2. 10)

Given N elements of the first row, Yo,g
= vJ a

triangular portion of Y is obtained, the first
column of which contains the first N modified mo-
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ments vk. Using this procedure it is possible to
transform from one set of modified moments to
another without going through the (much larger)
power moments.

Another indication of the efficiency with which
modified moments store the information about
G(x) is that the transformation from modified mo-
ments to other modified moments or to power mo-
ments via Eq. (2. 10}is extremely stable, in total
contrast to the transformation from power moments
to modified moments. Approximate modified mo-
ments can be transformed to approximate power
moments via Eq. (2. 10) with essentially no loss in
accuracy.

III. TRANSFORMATION FROM MODIFIED MOMENTS TO
QUADRATURE FORMULAS

A. Transformation to Orthogonal Polynomial Recursion
Coefficients

As remarked in Sec. Il, the quadrature formulas
can be determined stably when the orthogonal
polynomials belonging to G(x) are known. The
transformation from power moments to quadrature
formulas proceeds through the modified moments
to the recursion coefficients ak and P, of these
orthogonal polynomials and then to the abscissas
and weights. We have seen how to obtain the mod-
ified moments exactly from the power moments.
The recursion coefficients ak and Pk can be ob-
tained from the modified moments by applyiag the
transformation (2. 10) from one set of moments v,
to another set vk in the special case where the
polynomials p»(x) are the orthogonal polynomials
x»(x), so that a»= a», b, = P». The matrix Z with
elements Z, , =(x»p) contains the modified mo-
ments as its first row, that is, Z», = v, (I= 0, 1,
2, "}. By orthogonality, it must have zero entries
below the diagonal, that is, Z», , = 0 (k &I). The el-
ements of Z satisfy the recursion relation

Z» g,1
= Zl»+1 (n» sl)Z» l

—p»Z» 1 l+biZ», , q

(Z ),»
=-Z», g

= 0, k = 0, 1,2, ~ ~ ~ ) . (3.1)

When the kth and (k —1)th rows of Z are known, the
requirements that Z„i,, 1=Z„, „=0determine a,
and pk to be

+k .kP»= ' (Pg=pp)
Zk-i, k-i

(3.2)
Zk.@+1 Zk-1 .kak= ak+

Zk»k Zk 1»k

Once ak and pk are known, the remaining elements
Z„, , (I & k) of the (k+1)th row can be determined.
When an even number (2n} of modified moments,
vo vf vp 1 are known, one obtains n a' s and
n P'8, ao, Po, . . . , a„~, P„ 1, where Po= p.~ and

no= p, . If an odd number (2n+ 1) of moments are

known, one obtains n+ 1 P's but only n a' s.
The procedure given above is essentially the

same as one proposed by Sack and Donovan, ' al.-
though the derivation given here is somewhat more
straightforward. Our expression for Pk is simpler
in form because of the simple form of our poly-
nomial recursion formulas. Gautschi employed
a different method in which the Gram matrix with
elements (p» p, ) is first formed using the recursion
(2. 10), and then factored by the Cholesky method
into the product of two triangular matrices. [If,
instead of the Cholesky factorization into matrices
which are the transpose of one another, one fac-
tors the Gram matrix into a left triangular matrix
L with unit diagonal and a right triangular matrix
R, then R is identical with Z in Eq. (3.1). The
a's and P's can then be determined using Eq.

The transformation from the modified moments
to the recursion coefficients ek and pk is extremely
well conditioned and can be carried out using
limited precision arithmetic with virtually no build-
up of error. For example, when 40 modified mo-
ments for the ccp solid~s were used to determine
the first 20 a's and P's, using first double-preci-
sion and then single-precision arithmetic, we
found that the single-precision results were reli-
able to full single-precision accuracy (11 signifi-
cant figures) for all 20 recursion coefficients.

In sharp contrast to this stability is the behavior
encountered when the power moments are trans;-
formed directly to the a's and P's. This can be
done by applying the method following (3.1) with

a, =b, =0 and v, = p, Between one and two sig-
nificant figures are lost for each pair ak, pk,
which are determined. Thus 40 modified moments,
even when known only to limited accuracy, deter-
mine the a's and p's to the same accuracy, where-
as 40 power moments cannot be used, even when
known to double-precision accuracy, because all
25 significant figures are lost before the 40th mo-
ment is reached. Similar behavior is encountered
in the hcp case.

In Table IV we give the first few recursion coef-
ficients for the ccp case, normalized to the inter-
val [0, L] with L = 16. As n increases, o.„and P,
approach a„=6= »L and b„=16=(—,'L)», respective-
ly. The first few a's and P's are themselves in-
tegers, or close to integers, which are not 8 and
16. It might be supposed that, by choosing the
first few coefficients a„and b„ to be integers other
than 8 and 16, we might further reduce the size of
the modified moments. The first few modified mo-
ments can, indeed, be made smaller by this device,
but no systematic reduction in the size of the high-
er-order modified-moments results, nor any
change in the stability of the transformation to a' s
and p's. Similarly, transformation of the mod-
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TABLE DI'. Recursion coefficients for nearest-neigh-
bor ccp solid orthogonal polynomials on the interval
[0,16].

0
1
2
3
4
5
6
7
8
9

10

8.0
9.0
7.2142857
8.1205190
8.2062831
7, 9327746
7.8354061
8.2144437
7.8501701
8.0570572
8.0310605

p
Q.

1~ 0
16.0
14.0
15.025510
17.375851
15.660066
15.730480
16.141563
16.057087
15.718632
16.448207

'The recursion coefficients have been rounded to eight
significant figures. They were obtained to machine ac-
curacy (about 25 significant figures on the CDC 3600).

ified moments for the ccp solid, via Eq. (2. 10}, to
shifted Chebyshev modified moments of the first
kind, 5 with recursion coefficients a, = 2L (k=0,
1, ~ ~ ~ ), b, =2(-,'L), and b, =(-,'L} (k=2, 3, ~ ~ )

[see Eq. (2. 5)], resulted in no significant changes
either in the size of the moments or in the stability
of the transformations.

Once the recursion coefficients 0.» and P» are
known, the abscissas and weights of each of the
four quadrature formulas used by Wheeler and
Gordon' can be determined by diagonalizing a real
symmetric tridiagonal matrix. For the case in
which all of the abscissas are undetermined and
for that in which one abscissa is fixed at the ori-
gin, the matrices are exactly those given by Gor-
don. ' Wheeler and Gordon' "used a set of
"shifted" moments to obtain the remaining quadra-
tures, but this method required recomputing the
recursion coefficients. In fact, all four of the
quadratures are easily obtained directly from the
recursion coefficients a» and P». We summarize
the procedure below; details and proofs are given
in the Appendix.

B. Determination of Quadrature Formulas

When 2n moments are given so that no, Po, ~ ~ ~,
&„&, P„, are known, the abscissas for the n-point
quadrature formula with no fixed abscissas are the
eigenvalues of the matrix M "'.

M&" & =

+0 ~1
~Pi ai —~Pg

(3.3)

The weights are the squares of the first elements
of the corresponding normalized eigenvectors,
multiplied by po. To obtain the quadratures with
one or two fixed abscissas, we make use of the
functions y„(z)=-z, (z)/v~, (z), which are deter-
mined recursively by

yo(z) = 1/(z —ao)

y, (z) =1/[z —a, —P, y~, (z)], k=1, 2,

If only 2n —1 moments are given so that a„, is un-
determined (though P„~ is known), the n-point
quadrature formula with one abscissa fixed at ~ is
obtained from M'"' in the same manner as above
except that 0.„,is replaced by

a~, (xo) = xo —p„,y„z(xo) . (3.5)

Useful quadratures are obtained when xo is chosen
as either the left or right endpoint of the interval.
Finally, if 2n moments are given, the (n+1}-point
quadrature formula with two fixed abscissas x, and

xz is determined from the (n+1) x(n+ 1) matrix
M "+ ' in which P„and a„are replaced by

p (x1 xz)/ [y. ~ (xi) —y. g (xz)]

a„=~ —p„y„,(x~) . (3.6)

In Sec. II we showed how the power moments of
the frequency distributions of harmonic solids with
only nearest-neighbor force constants could be

A useful quadrature is obtained when x& and ~ are
chosen to be the ends of the interval [0, L] on
which G(x) is nonzero. Golubz7 has given an equiv-
alent procedure which expresses a~, a~, and Q
in terms of solutions of systems of linear equa-
tions.

We have tested the stability of this procedure by
comparing results using single- and double-preci-
sion arithmetic to obtain abscissas and weights for
all four quadrature formulas. In no case was there
any detectable buildup of error for n ~20. Thus,
the 40 modified moments of the ccp lattice, even
if known to only single-precision accuracy, deter-
mine the abscissas and weights of the quadrature
formulas to that same accuracy. Similar stability
was observed in the hcp case.

IV. TRANSFORMATION TO MODIFIED MOMENTS WHEN
THE POWER MOMENTS ARE FUNCTIONS OF FORCE-

CONSTANT RATIOS
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transformed exactly to modified moments. In that
case the power moments could be expressed ex-
actly as integers. %hen longer- but finite-ranged
forces or noncentral fox'ces are present, the power
moments become functions of ratios of force con-
stants and cannot, in general, be expressed as
integers. However, the power moments can be ex-
pressed as polynomials (or multinomials) in the
force-constant ratios with integer eoeff ieients.
The 4th-power moment is written as a polynomial
of degree A. It is possible to transform these kth-
degree polynomial power moments exactly to kth-
degree polynomial modified moments.

Vfhen the power moments art polynomials in a
force-constant ratio r, the length I. of the appro-
priately scaled interval of definition of G(x}becomes
a first-degree polynomial in r. From Eq. (2. ja),
the recursion coefficients g„and g„become yoly-
nomials in x of degree one and two, respectively.
For example, for the ecy solid with nearest- and
next-nearest-neighbor interactions, the appropriate
scaling is L, =16+4r, and the recursion coefficients
are g„,=8+2@and 5„=16+Sr+x~.

The transformation from polynomial power mo-
ments to polynomial modified moments proceeds in
the same way as for simple integer moments. The
recursion formula (2. 9) now involves products of
yol.ynomials. The element T, z of Y is a poly-
nomial of degree at most i+j. Isenberg' has re-
ported exact polynomial power moments for a
number of model solids. These power moments
were transformed into polynomial modified mo-
ments. As in the simple integer case, we found
that the coefficients in the polynomial elements of
the matrix Y along an upward sloping diagonal
joining the 4th modified moment to the 4th-power
moment never grow significantly larger than those
in the power moment, and that the modified mo-
ments are much smaller than the corresponding
power moments.

If the polynomial modified moments are evaluated
for a particular choice of the force-constant ratio,
the methods of Sec. III can be applied to obtain
abscissas and weights for the appropriate quadra-
ture formulas. %e have investigated the stability
of this procedure for a variety of 1.attices and
force-constant ratios and have found that, as in
the simple integer case, the transformation is
strikingly stable. No detectable loss of aecura, ey
occurs in single-precision arithmetic in the trans-
formation of the modified moments to the abscis-
sas and weights for any of the lattices or force-
constant ratios which we have tried.

V. USE OF ADDITIONAL INFORMATION ABOUT THE
SPECTRAL DENSITY

If the function E(r, x) in Eq. (l. I) is singular at
one end of the interval —as is the case for some of

the functions of interest in the harmonic-solid
problem —then the bounds obtained from moments
alone may convexge slowly or there may be no
bound on (F(r, x)} in one direction. Wheeler and
Gordon found that additional information about the
spectral density, in the form of series expansion
coefficients for G(x} near x= 0, could be used to
greatly improve upon the bounds obtained from
moments alone. The same procedure can be
adapted to improve the bounds obtained from mod-
ified moments without causing serious loss in the
stability of the tx ansformation from modified mo-
ments to quadratures.

A. ImPI'OVOd SONfldS ffOIII SefleS COef6dentS '

The spectral density for a, three-dimensional
harmonic solid typically has the form near x= 0,

G(x) = —,
'

v x C(x} [x= (&o/~ )'], (5. l)
where C(x) is a smoothly varying function which
has a Tayl.or-series expansion

(5.2)

with nonzero radius of convergence R. If lower
bounds c„ to the coefficients c„are known, as well
as a lower bound BL, to the radius of convergence,
then the lower bound to G(x) defined by

C (x)=-'. Wx(E xxx) -=-', WxC'(x) (O-x )),)

=0 N~~x~ I),
(5. 2)

ean be subtracted from G leaving a non-negative
weight function

G(x) = G(x) -G (x) .
[One need not, of course, actually know an infinite
sequence of coefficients c„. Any lower bound C (x)
to C(x) can be used. In practice, examination of
the behavior of the first few coefficients usually
allows one to replace the infinite series in Eq. (5. 2)
with an appropriate polynomial. j The power mo-
ments of ~ axe simply the diffexences of the powex
moments of G and G~, and the average of E(v, x) is
the sum of the averages over 0 and G separately;

(E(v, x))= f E'(r, x)G(x)dx+ f'E(v, x)G'(x)dx.
(s. 5)

The quadrature formulas may be used to evaluate
the average over G, while the average over G can
be computed directly. If the bound C (x) is close
to C(x) near x= 0, the bounds to (E(v', x)) will gen-
eral. 1y be imyroved. This impxovement can be
quite striking if E(v, x) varies rapidly near x= 0 or
diverges there.

It is clear that this procedure can be used with
modified moments. The contribution to the nth
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modified moment from G (x) is additive:

v„= v„+ v„

where

(5. 6)

H= f G'(x)P„(x) dx.

The v„are modified moments of a non-negative
weight function and determine the quadrature for-
mula appropriate to G(x) by the procedure described
in Sec. III.

These modified moments cannot, however, be
obtained stably by transforming the p,„ to v„via
Eq. (2. 9}. Because of the exponentially ill-condi-
tioned character of that transformation, the non-
integer p.„cannot be reliably transformed to v„ in
finite-precision arithmetic. Instead, the contri-
bution to v„ from G (x) must be computed directly
and subtracted from the exact modified moment to
give v„. This is easily accomplished by using a
Gaussian-quadrature formula appropriate to the
weight function h(x) = —,

'
v x on the interval [0,R~] to

integrate the function P c„x")p~(x). Because C~(x)
is generally a smoothly varying function on [0, Rz, l,
it is sufficient to use a quadrature of high enough

degree to integrate p, (x) exactly. We have found in
practice that the recursion relation (2. 5) may be
used to evaluate the polynomial p&{x) at the abscis-
sas, and that the quadrature for v& is independent

of the number of points used and of the degree of
C (x), provided only that the number of points is
at least &k.

Once the modified moments v~ have been deter-
mined precisely, the transformation to the corre-
sponding recursion coefficients a» P, and abscis-
sas and weights proceeds by the methods of Sec.
III. However, the stability of this transformation
is now somewhat dependent upon the choice of
Gz(x). The extreme stability of the transformation
from the modified moments to the recursion coef-
ficients observed in Secs. III and IV resulted from
the fact that G(x) and H(x) are nonzero on the same
interval and have similar behavior, at least near
the ends of that interval. If G~(x) is very close to
G(x) on a substantial portion of the interval of de-
finition of G, then G(x) and the H(x) function do not
have this similar behavior. It may be expected that
the transformation from the v, to the a's and P 's
will be less stable. While use of series coeffi-
cients does result in some loss of stability, it is
relatively minor for useful choices of G (x), and
the modified-moments procedure remains vastly
more stable than the direct transformation from
the power moments.

To illustrate both the power and the limitations
of this technique, let us return to the ccp solid
with nearest-neighbor force constants for which
Isenberg has computed a large number of series
coefficients. The coefficients for this model are

all positive, so that the series for C(x) in Eq. (5. 2)
can simply be truncated and the coefficients
rounded down to provide the lower bound C (x).
The radius of convergence of the series for C(x)
is known to be R= —,

' when G(x) is defined on [0, 11.
The averages of various inverse and half-integral

powers of x,

g )=&I/x), V ggp=&x '"), Vggg=&x "),
are required in the calculation of thermal prop-
erties and correlation functions of harmonic crys-
tals. The moment p, , f~ is just twice the zero-point
internal energy of vibration U~ in appropriate units,
while p & and p, «z are required in the calculation
of the classical and quantum limits of the position
autocorrelation function. In addition, the average

Z = &ln(x'"))

contributes to the free energy and entropy of a
harmonic solid at finite temperatures and is of in-
terest when considering the relative thermodynamic
stability of two alternative crystalline forms of a
solid. We have computed rigorous upper and lower
bounds to each of these averages using a technique
described in Sec. VI of Ref. 10 in which the left-
hand side fixed point of the quadratures is fixed at
some nonzero xo, rather than at x=0, and the sign
of the error is checked directly. Using all 30 of
Isenberg's coefficients (rounded down to 20 sig-
nificant figures) and placing xo at 0. 1 (on the in-
terval [0, 1]), we find with 40 modified moments
that

p &
= 3.358826153@0,

p, g ]2 ——1.6359078905547,

—2 = 0. 42886956619662,

Up/3Nh(u~ = 2 pg /g
= 0. 34088722029172M,

with a precision of one part in10', 10, 10', and
10', respectively.

By comparing the results in single- and double-
precision arithmetic of the transformation from
the modified moments v, to the recursion coeffi-
cients a&, P& and abscissas and weights, we
have found that when 30 low-frequency coefficients
are used to give G~(x} up to R = 0. 1, about seven
significant figures are lost in em, and about six
figures are lost in the values of the points and
weights for the quadrature formulas using 40 mod-
ified moments. Thus, with 25-significant-f igure
arithmetic the n's and P's and the abscissas and
weights should be reliable to between 17 and 19
significant figures. This may be compared to the
results if the power moments are used directly,
in which case we cannot even use more than about
35 moments with 25-signif icant-figure arithmetic.

The results reported assume that Isenberg's co-
efficients determine G(x) to an accuracy of at least
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one part in 10 ~ on the interval [0,0.1]. This
seems quite reasonable; even if there were a sys-
tematic buildup of error in the higher-order co-
efficients, this error would not seriously affect the
accuracy of G (x) because of our conservative
choice of RI, =0.1.

If we attempt to use Isenberg's full 30-term
series al.l the way up to the radius of convergence
R, however, we find that all 25 double-precision
significant figures are lost after only 30 moments
are used. If only three coefficients (to 20 signifi-
cant figures) are used to provide a lower bound
G (x) all the way up to R~ = R = —,', only four sig-
nificant figures are lost in the 0.'s and P's by the
time n reaches 40, and only three significant fi-
gures are lost in the abscissas and weights. Low-
er bounds to p „p, &/~, and —2 and both upper and
lower bounds to ILL., /z can then be determined. The
lower bound to p, 1 is

JLt, 1 = 3.3588259V,

which is correct to one part in 10 . %'hen six
series coefficients are used to give G (x) up to
x= RI, = R, about six significant figures are lost in
o,'20 and Pao, and about five in the abscissas and

weights for n = 40. The lower bound to p, 1 then has
a fractional error of only 1~10 ' .

The incorporation of additional information about
G(x) in the form of low-frequency series expansion
coefficients can dramatically strengthen the quad-
rature methods. Knowledge of even a few low-
frequency coefficients is sufficient to provide ex-
tremely accurate estimates of averages of even the
most singular integrands. The application of this
technique is presently limited to some extent by
difficulties in obtaining the low-frequency coeffi-
cients. At present, substantial numbers of very
accurate coefficients are available for only one
model solidi; however, further advances in this
area appear to be likely. ~9

B. Improved Bounds from Knowledge of Functional Form of
G(x)

Even when no information is available about the
numerical va, lues of the series coefficients, the
mere knowledge of the existence and form of the
expansion of G(x) near x=0 can be used to improve
the bounds obtained from moments. We emphasized
in Sec. II that the most significant figures in the
power moments contain information about the end
of the interval. Similarly, the "shifted" moments
p,„=((1 —x)") contain information about the behavior
of G(x) near x= 0. Using the functional form of
G(x) expressed in Eqs. (5.1) and (5.2), we can
write

,,~1 /4 1
2p„'=Q c, '' x"I'(I —x)"dx+ (1 —x)"G(x)dx

&=l} "0 & 1/4

OO 1

=g c,8„4(u+-'., n+ I)+ t (1-x)"G(x)dx,
k-"0 1/4

(5. ~)
where 8, (P, q) is the incomplete beta function,

8 (P q)= f*fn- (1 f)a- d

Dividing by 8,«(-,', n+1) we obtain the result

Ban
(,

"
)

= Q ~K~( )+R„,
1/4 2, n+

(5.5)

(5.9)

K, (s)= '"(~. '' )
(K, =I) .8, g, (p, n+1) (5. 10)

tends to co from below with anasymptotic error of
order n . Using 40 moments for the ccp solid in
this way we obtain the bounds

2. 565&co&2. V98 .
The correct value is 2. 603457 ~, less than 2%
larger than the lower bound.

The bounds to co obtained inthis way can be used
to improve the bounds from moments to averages
of singular functions, For example, if 40 modified
moments are used alone to determine a lower
bound to iL &, the result is low by almost 3%:

P, 1~3.26 .
If we used the lower bound to co determined from
the moments, the bound is low by less than one
part I.n 10

P, 1
~ 3.3567 .

Thus, even knowledge only of the existence and
form of the expansion for G(x) is sufficient to dra-
matically improve upon the bounds obtained from
moments alone.

VI. DISCUSSION

%'e have seen that appropriately defined modified
moments provide pa, rticularly valuable information
about the spectral density functions of harmonic
solids. First, they store the information about
the density function more efficiently than do the
power moments. They are much smal. ler than the
power moments and are mox e sensitive to the be-

K~(n) is of order n ~ as n- ~ and the remainder
term

f',"(1 —x)"G(x) dx
8, g, (g, n+ I)

is at most C4'~ (-,')"] as n -~. Thus, the sequence
p.„* is monotone decreasing toward eo for large n.
Examination of the dependence of K&(n) and R„upon
n shows that the sequence of extrapolations,
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havior of G(x) on its interval of definition. When
the modified moments are known, even only to
limited accuracy, the power moments can be de-
termined to the same accuracy, whereas the con-.
verse is not true. Second, the modified moments
determine with great accuracy and stability the
abscissas and weights of quadrature formulas which
can be used to obtain properties of harmonic solids
with extreme accuracy. This stability is not
limited to a single system but is found for a variety
of crystal structures and force-constant ratios.
Third, the modified moments can be used in con-
junction with additional information about the spec-
tral density function with little loss in the stability
of the procedure.

We have used the great stability of the modified-
moments method to reexamine the bounds on ther-
mal properties of harmonic solids obtained directly
from the power moments by Wheeler and GorChn.
They claimed that their bounds were reliable be-
cause the instabilities in that procedure appeared
to introduce errors in the bounds which mere al-
ways several orders of magnitude less than the
difference between the bounds. We find that this
is essentially correct. However, it should be
noted that that procedure cannot be used with the
number of moments nom available.

The reason mhy the bounds found by Wheeler and
Gordon are not particularly sensitive to errors in
the abscissas and weights is probably that they are
averages of rather smooth monotone functions.
The average of a rapidly oscillating function may
be more sensitive. The momentum and position
autocorrelation functions of harmonic solids are
such averages and show somemhat greater sensi-
tivity to errors in the abscissas and weights. The
autocorrelation functions also il.lustrate the value
of a quadrature method which alloms the stable use
of large numbers of moments, as the time to which
these correlation functions are accurately deter-
mined is proportional to the number of moments
which ean be used. 30

In view of the useful characteristics of modified
moments for harmonic solids detailed above, a
procedure for the computation of modified moments
directly from the dynamical matrix, without re-
course to pomer moments, is desirable. We have
presented such a procedure ' and have shown that
it is a practical method for the computation of
modif ied moments.

It wouId seem that, for most model solids, di-
rect computation of the modified moments is pre-
ferable to the computation of power moments fol-
lowed by transformation to modified moments as
described in Sec. II. For example, we computed 3

40 exact modified moments for the nearest-neigh-
bor ccp solid directly from the dynamical matrix.
This is more than twice the number of exact power

moments which had previously been obtained. Ex-
ceptions occur when the power moments are al-
ready known exactly or when, as in some simple
model. s, it is possible to obtain a closed-form ex-
pression for the power moments enabling them to
be computed much more easily than by standard
methods. For exa,mple, the power moments of a
simple model analyzed by Montrolls can be so ex-
pressed and 200 exact power moments can easily
be computed and transformed to modified mo-
ments. 33 This is roughly four times the number
of modified moments which could practically be
obtained by the methods of Ref. 23.

The direct computational method mill be partic-
ularly valuable for more complex solids in which
the moments are functions of force-constant
ratios. Because modified moments need to be
known only approximately in order to accurately
determine properties of solids, the direct compu-
tation of modified moments can be carried out using
limited-precision arithmetic for a, specific choice
of force-constant ratios. (We have computed such
approximate modified moments for model solids
with both the nearest-neighbor and next-nearest-
neighbor force constants for a variety of force-
constant ratios. Comparison with exact modified
moments determined by the methods of See. IV
indicates that the direct computation is both stable
and accurate, the moments being determined to
essentially machine accuracy in every case with no
detectable buildup of error. ) In contrast, because
power moments must be known essentially exactly,
they must be expressed as multinomials in the
force-constant ratios. The bookkeeping involved
in the computation of the multinomial coefficients,
as mell as in their transformation to multinomial
modified moments, becomes extremely cumber-
some as the number of force-constant ratios grows.
The advantage of having a general expression for
the moments as functions of force-constant ratios
is soon outweighed by this fact.

We believe that the advantages of the modified-
moments method for harmonic solids with short-
ranged forces are established. The methods for
computing modified moments —either from known
power moments or directly from the dynamical
matrix —are straightforward. Once modified mo-
ments are known, the procedures described in
Sees. III-V provide a simple method for obtaining
bounds to many properties of physical interest. It
seems 1ikely that the utility of the modified-mo-
ments method can be extended to harmonic solids
with long-ranged forces such as occur in ionic and
dipolar crystals and in metal, s. The exact compu-
tation of moments in such cases seems unlikely.
Homever, the modified moments need not be known
exactly for most purposes, and it should be pos-
sible to devise approximate methods for moment
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APPENDIX

%e show here how to obtain the abscissas and

weights for quadrature formulas in which zero,
one, or two abscissas are fixed, directly from the
recursion coefficients e& and P& of the orthogonal
polynomials of G(x). We deal first with the case
in which none of the abscissas is fixed. The solu-
tion for this case was given by Gordon, ' but the
derivation given here in terms of orthogonal poly-
nomials lays the foundation for the remaining
cases and, we feel, is somewhat more straightfor-
ward than that given by Gordon in terms of con-
tinued fractions. We then derive the resul. ts when

one or two abscissas are fixed in somewhat less
detail.

The monic orthogonal polynomials w, (x) belong-
ing to G{x) are defined by the equation

(w, w, ) -=j G(x)w, (x)w, (x) dx= Q, (w, w, &, (Al)

where /I(, f is the standard Kronecker 5 symbol
They satisfy the three-term recursion relation

w„f(x)=(x-a„)w,(x)- P, w, , (x) (wg-=l, w f -=0)

{A2)
The normalization constant (w, wg& can be found in
terms of the P's by multiplying (A2) by wg ~ and

averaging over G(x). Making use of orthogonality,
one then obtains

p, (w, ,w, ,) =(w, ,xw, & =(w, w, &,

from which follows

( , w)=wpgpf. pg (pg= ffg,
' k= 10, 2, . ~ ~ ) .

{A4)

Dividing Eq. (A2) by (PgPf. . .Pg)
f g, we find that

the orthonorma/ polynomials, wg*(x), belonging to
G(x) satisfy the three-term recursion relation

pa"i wa. f {x)= {x-frg) wa (x) —pg "wa-f(x) .
The first n of these equations can be written in ma-
trix form as follows:

computation which are sufficiently accurate to pro-
vide valuable bounds to the properties of such sys-
tems. Other systems in which we expect the mod-
ified-moments concept to be useful are disordered
solids and solids with impurities. %'e are present-
ly investigating these possibilities.
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where the matrix M" is given tn Eq. (2. 2).
spection of Eq. (A6) reveals that the roots x„x)f,
... , x„of w+(x) are the sigenf)a/uss«M'"' and that
the eigenffectors of M " »e of th«orm [w(I',

wf {xf), ..., w+, {xf)] (i=1, ..., n). Because the
roots xi, ..., x„of m„* are distinct and M ' is
real. and symmetric, the eigenvectors are mutually
orthogonal. The n xn matrix 8 of normalized
eigenveetors with elements

(@=0,1, ..., n-l; i=1,2, ..., n) (AV)

is therefore unitary.
It is now easy to show that the eigenvalues x„

..., x„of M'"' are the abcissas, and that the
squares of the first elements of the normalized
eigenvectors, multiplied by pQ= pQ,

A~i -1

u)f = /fgSg f
= /fg Z [wf) (xf)1

are the weights of the Gaussian quadrature which

gives the first 2n moments correctly. %e observe
that any power of x up to x" can be expressed as a
linear combination of the orthogonal polynomials
w f, w f, ..., w„*, so that it is sufficient to verify
that the proposed quadrature correctly evaluates
all, of the averages

(wg*wf*) = 6gf ()t = 0, 1, ..., n —1; /= 0, 1,. .., n) .
(AQ)

That is, we require that

u)f wf) (xf ) w f*(xf) = /5f)f

()'g = 0, 1, . .., n —1; /= 0, 1,..., n) . (A10)

When I = n, the sum is zero because the x, are the
roots of w~{x). The remaining sums are simply
products of the rows of the (unitary) matrix 8, which
are orthonormal. . This completes the proof for
the case when none of the abscissas are predeter-
mined. Exactly 2n moments are required for the
construction of the matrix M~"'. Note that while
P„appeared formally in Eq. {A6), its f)a/uewas not
required. Thus the n-abseissa quadrature for-
mula can be constructed from exactly 2n moments.

Quadrature with One Abscissa Fixed

If 2n+1 moments are known, so that P„can be
determined in addition to ~, PQ, ..., e„» P„ i,
then in addition to the orthogonal polynomial. s gQ,

w&, . . ., w„we can construct the (monic) quasi-
ort/fogonff/ polynomial w„„(x) defined by the require-
ment that it be orthogonal [over G(x)] to all poly-
nomials of degree n —1 or less and have a root at
a prescribed point xQ. From the orthogonality of
w~, i to all polynomials of degree n —1 or less, it
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w„'., (xo) =0= (xo —n.') w. (xo) —p. w. i(xo)

impl. ies that

w„,(xo) l(

„( )

(All)

(A12)

It is useful to define the sequence of functions

y (z)=w (z) jw, (z) (k=0, 1, 2, ~ ~ ~ ) . (A13)

They may be determined recursively by applying
Eq. (A2) to w&,~(z) to obtain

yo(Z)=1/[z —ao —Poy„&(z)] (k=0, 1, 2, ' )

[y, (z) =0] . (A14)

Then Eq. (A12) for a„ is just

n.'=xo- p.y.-i(xo) . (A15)

Dividing Eq. (A6) by (Po ~ ~ ~ P„)'~, we can write the
equations for wf, wf, . .. , w„* and w„„ in the ma-
trix form

(:5
=(p.p, ".p. )

'"(Mi —1x)

I,....)
(A16)

where M' is the real symmetric (n+ 1)x(n+ 1) tri-
diagonal matrix hf'"" defined by Eq. (3. 3), except
that the last element is n~ instead of n„. Again,
the eigenvalues of M are the roots of w~„, one of

is easy to show that it must satisfy a three-term
recursion relation in terms of the g's of the form.„'„(x)= (»- n„').„-p„.„,,

where P„ is the known recursion coefficient for the
orthogonal polynomials and o,~ can be determined
from the requirement that w~, ~(xo) =0, as follows.
The equation

Quadrature with Two Abscissas Fixed

When only 2n moments are known, we can still
define, in addition to the orthogonal. polynomial. s
mp, .. ., g„, a generalization of the quasi-ortho-
gonal polynomial which is of degree n+ 1, but which
is orthogonal [over G(x)] only to polynomials of
degree n —2 and less, and which has two prescribed
roots x& and xz. This polynomial is uniquely de-
fined by these requirements if the leading coeffi-
cient is taken as unity. It satisfies a recursion
relation of the form

w&, , (x) = (x- a„)w„(x)—p„w„,(x), (A17)

where ~t a~ p„are determined by the equations

w..i(~i) =0 = (xi —n. ) w. (&i) —p. w. g(&g),
(A18)

w„„(x,) =0=(x, —a„)w„(x,) —P„w„,(x,) .

Solving for e„ in terms of P„and the O.p Pp, ...,
e„&, P„& in the same manner as for the case with
one fixed abscissa, we obtain the two equations

n„= x, —p„y„,(x, )

= xo —p„y„g(xo), (A19)

where y„,(z) is defined by Eq. (A13). The coef-
ficient Pf is then given by the equation

(x1 x2)~[y -1(xl) y -1(x2)] '

Once e„and P„are determined, the abscissas
and weights are again given by the eigenvalues and
eigenvectors of the real symmetric (n+1) x (n+1)
tridiagonal matrix M~, which is identical to M'"' '

except that a„and P„are replaced by n„and Pj.

(A20)

which must lie at ~. The argument that the abscis-
sas and weights of the quadrature which gives p, p,
p, &, ... , pz„correctly are the eigenvalues of M and
the squares of the first elements of the normalized
eigenvectors proceeds exactly as before.
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