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A microscopic nonphenomenological theory for the interaction of electromagnetic radiation with pure

Pippard superconductors is presented to explain the changes in surface impedance due to large static

magnetic fields. The static magnetic field penetrating the metal's surface creates a
momentum-dependent potential. Quasiparticles near the Fermi surface find that such a potential

strongly modifies their wave function and energy-excitation spectrum. An algorithm is developed that

allows surface impedances to be determined despite the difficulties caused by spatial inhomogeneity,

anisotropy, and nonlocal electrodynamics.

I. INTRODUCTION

Over the past twenty years, experimentalists
have been measuring the changes in surface im-
pedance of pure type-I superconductors due to a
large static magnetic field at the surface. '~ The
principle features observed are that the magnetic
field increases the superconducting surface resis-
tance R, for "low temperatures" (T~ 0. 5T,} and
"high temperatures" (T ~ 0. 9T,), but can strongly
decreases R, for the "intermediate T"
(0. 5T, ~ T-0.9T,). At "low T" the superconducting
surface reactance X, is always increased, while
at "intermediate and high T, " the changes can be
either positive or negative, depending on the fre-
quency of the radiation &.

To calculate surface impedances for this situa-
tion, we must cope with two complexities: (i) The
coupled second-order differential equations of
superconductivity are nonlinear. (ii) The relation
between the current density j(r) and the electric
field f(r) [or the associated vector potential A(r) j
is nonlocal; current at one point inside the super-
conductor depends on the field strength in the sur-
rounding region, which means that finding the field
distribution necessitates solving a complicated
integrodifferential equation. And the kernel of this
integrodifferential equation must be found from
(i) above. Techniques employed when there are
no static magnetic fields present ' are no longer
valid, since the static field introduces spatial in-
homogeneity and anisotropy.

Our vehicle for discussing this problem will be
the Bogolubov canonical transformation from in-
teracting electron states to noninteracting quasi-
particle states. Using this transformation, we
derive in Sec. II the general form of the current-
versus-field relation for spatially varying situa-
tions. Further evaluation of the latter results re-
quire the explicit form for the Bogolubov transfor-
mation coefficients; this we do in Sec. III. Sec-

tion IV then develops the algorithm to calculate the
surface impedance. Combining all the previously
developed machinery, we display some results of
the theory and compare to data in Sec. V. Section
VI considers the question of whether a large static
magnetic field can alter the gap function or order
parameter. A discussion of rival theories and

some other comments are found in Sec. VII.

II. j (A) RELATION

Any discussion of electrodynamics inside a
metal requires knowledge of a current-versus-
field relation. In this section we derive a partic-
ular form for the current as a function of a weak
vector potential useful for surface-impedance cal-
culations.

Abrikosov, Gorkov, and Khalatnikov (AGK)
show that to first order in X(x), the physical cur-
rent j(x) is

~ 2
~t

j(x)=, (v; —v;.);..;
~

A(y) ~ (v- —vp)y. ;
wOO

x Q (q~(y')q~(y)q, ( x)q, ( x)

N—q', (x')tl (x)g', (y')tj»(y))r&y — X(x), (2. 1)

where x = (x, t„), n and P are electron-spin indices,
(g) is an electron-field creation (annihilation)

operator, N=g, (gt, (x)g (x))r is the density of
electrons in the system, ( )r denotes thermal av-
eraging over a grand canonical ensemble, and we
set h = c = 1 everywhere. All particle field oper-
ators are in the interaction representation if they
have an explicit time dependence; otherwise they
are Schrodinger operators.

We evaluate (2. 1}using the Bogolubov canonical
transformation from interacting electron states
to noninteracting quasiparticle states. The trans-
formation on particle field operators is written
compactly as
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q (x) =Z [y, u, (x) + 8 .y', .v,*(x)], a '+ a
(2. 2)

where S ~ is 1 for spin up and —1 for spin down,
yt (y) create (annihilate) noninteracting Fermion
excitations or quasiparticles. In order that this
transformation exist, u and v must obey some
conditions known as Bogolubov's equations (see
Sec. III). u and v have a physical interpretation:
ul(x) is the amplitude to find a particlelike quasi-
particle in state j at position x, while vl(x) is the
amplitude to find an antiparticlelike (or holelike)
quasiparticle in state j at position x.

For operators evolving in the interaction rep-
resentation

ing upon taking thermal averages. Since the ther-
mal average is a weighted sum of diagonal matrix
elements, only terms of the form y,ylylyl (or
permutations in ordering) can contribute. A
typical term for & )r in Eq. (2. 1) is

uf(y')u (y)u.*(x')u, (x)&rt«(f„)y «(f„)y'„(f„)y, (i„)

y'..—(f.)y«. (f.h &«(f, )r~ (f„))r

=u u[5 «5,«5 „[fr(»l) fr(»-)]e"'l~~"') 'x']

where fr(», ) =&ylyl)r = I/(e'll +1) is just the Fermi
distribution function for noninteracting Fermions,
and the exponential in time results from

& "yl(f))r=& e'" 'rle '" ')r=e "j'("'rl)r
)j b)=Z [yl (f)ul(x)+~ y', (f)v,*(x)],

where

(f) elll~t y e lll~t

(2. 2) Using a sinusoidal A field which vanishes as
00

7

X(y) =X(y}e""""~, (I-o'

and

+nt ~ ~P naf Yne
n«a

so that

(2. 5)

(2. 6)

H is the Hamiltonian of the quasiparticles, and

e„ is the excitation energy of a quasiparticle in
state In).

Writing I(x) in terms of y's yields sums over
many terms, each of which is a product of four
y's. But only some of these terms are nonvanish-

(2. Ba)

where

allows us to perform, then, the time integration
in Eq. (2. 1). As one expects intuitively, all
terms for the current vary sinusoidally with fre-
quency &o, too. We»ve j(x)- j(x)e'"'". Hence-
forth, we consider only the & Fourier component.

Proceeding in the above manner for all terms
in Eq. (2. 1), calculating the trivial sums over 5
functions then puts the current density j(x) into
the following form:

j(x) = j,(x) —(Ne'/m)X(x)

2 le

jg(x)=2 «(&;-&;)",
~

(fyX(y) (&; —vp)y. ; Z'[fr(»g)-fr(» )]
'l«nt t

x,(x)x (x')x„(v)xl(l')-x (x)x, (x')x (y)x", (F) (x) x(x )xl(y)x(jr'')x- «x(xx'&)xx„(x&x,(x'))
+e —s5 —(», —»„)+(o—i()

( ) f ( )] u (x)v, (x')v*(y)u~l(y')+u, (x)v (x')v*(y)u, (y')
» ( +»~ + (() —i5

v«'(x)u*, (x')u (y)v, (y')+ v*, (x)u~(x')u„(y)v, (y') 'I ( b)—(», +» ) + (o - i(I

We now specialize all further developments to
a particular geometry. The superconducting
metal's surface lies in the y-z plane. It is in-
finite in y and z, and semi-infinite in the +x
direction. Now note that there are two sets of
fields to consider —those from the static magnetic
field and those due to the high-frequency weak
radiation impinging upon the surface. The vector
potential X«„due to the K«„defines the y axis.
The vector potential A~ due to the radiation is
linearly polarized in the y-z plane and makes an

angle 8 with respect to the y axis. Each A field
has associated with it a current j in the metal, and
this "screening" current is parallel to its respec-
tive A field. It is to be noted here that we are
treating X~ and X«, separately The presen. t sec-
tion considers A~ as a small perturbation on the
system and the current-versus-field relations are
j~ as a function of X~. X«, is not small, and its
effects are to be included in the u, v functions.

Getting back to further processing of the j-vs-X
relation, we write
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A~(x) = (e„cose+e, sine)A~(x), (2.9)
where e„,are unit vectors in the y or z direction,
and x refers to the coordinate on the x axis.
[There will no longer be any reference to x= (x, f)
as a four-vector. ] Note that A„(x) varies only with

x, we have an infinite plane wave impinging upon
the surface. Due to translational invariance in y

ands directions, u, v-u(x), v(x)e"x)~»~". After
using this and Eq. (2.9) in Eq. (2.8), performing
the A ~ V differentiations, taking limits, doing the
integrations over the pure exponentials (which
give 5 functions), and making some simple rear-
rangements which depend on l, I being dummy
indices, we can obtain the following result:

~,(x) =) q, (», «'}W (x')dx,
2

q, (x, x')=, (2v)' Z (Ktcose+K.'sine)' [f,(e,)-f,(e.)]5(K„'-Z"„)5(z.'-Z, )m'
l a fff

(2. 1Oa)

j,(x) = (e„cose+e, sine) j,(x)

[u, (x)u"(x)+~,(x)C(x)][a (x')u", (x')+v (x')5,"(x')]} [( f (~ ) f (~ )]g(~l+yf )g ()()( )
6'~ —6& -N+H

„[.,(.)..(.) —..(.).,(.)][.', ( }..*(")—.„*('}'(.s],[ „*(.).,*(.)-.*, ( ).„*( )][..(.).,(")—.,(").„(")]
~

~

f~+ 6&+M —S5 m+Ef -++1
(2. 1Ob)

(2. 1Oc)

The last equation says that the current flows in the
same direction as the A field's linear polariza-
tion.

Equation (2. 10) for j(X) is now in a form amen-
able to physical interpretation. Two distinct
physical processes are represented: The A field
causes thermally excited quasiparticles to make
transitions from one state to another state. The
X field causes the creation or destruction of a
pair of excitations; this pair is made up of a quasi-
particle and an antiquasiparticle. (These pro-
cesses are directly analogous to electron-positron
theory in quantum electrodynamics; the rest-mass
energy mc plays a role very similar to the super-
conducting energy gap n, .)

Consider first the scattering process. Since
the incident photon has momentum only normal to
the surface and none in the plane of the surface,
only the x component of a quasiparticle's momen-
turn can change in a transition. So the y and z
component remain the same. This is expressed
through the 5 functions 5(K,' —K, ) and 5(K,' —K, ).
If the transition is from a state of lower energy
to one of higher energy, there must be some non-
zero probability for the lower state to contain a
quasiparticle, and some nonzero probability for
the upper state to have an empty slot available.
The net current, though, is proportional to the
number of upward transitions minus the number of
downward transitions. This fact is expressed
through the Fermi factor difference fr(e, ) —fr(c„}.
[Recall that if fr(a) is the probability for e to be
occupied, then 1 fr(e) is the p-robability for e
to be empty. ] Now suppose the incident photon
annihilates at x'. There is an amplitude for it to
scatter a quasiparticle from state l to state m.

But since a state has amplitude u to be particle-
like and amplitude v to be antiparticlelike, we
must consider the quantum-mechanical interfer-
ence and add the amplitudes of the processes:
particle-to-particle u„(x')u, (x') plus antiparticle-
to-antiparticle v (x')vf(x') transitions. Similar-
ly, a current found at x generated by the transi-
tion from state l to state m could either be due
to a particle-particle transition or to an anti-
particle-antiparticle transition; hence the factor
u, (x)u*(x) + v, (x)v +(x). The factor
1/(e —e, —(d+ i5) splits into a real part
6'[1/(e„—e, —(d)] and an imaginary part
—iv5(e„—a, —(d) via a familiar identity. It will be
seen later that the imaginary part i.s related to
power absorbed by the metal in which case energy
must be conserved in the scattering process.
This is expressed via the 5-function part. The
real part, which does not conserve energy, thus
considers only virtual processes, and these are
related to the diamagnetic or screening properties
of a material. We discuss this later after
developing more formalism.

Next, consider the pair processes. Once again
transverse momentuxn must be conserved. If
initially there is no pair, transverse momentum
is zero; after a pair is created, there is total
y momentum K,'+ K„ for the excitations put in
states E, m. . Thus there are the factors 5(K„'+K„)
and 5(K,'+ K,"). In order to send a pair of excita-
tions into states I, I, these states must be empty,
or if a pair is to be annihilated from l, m, there
must be a pair located in /, m; hence the factor
1 -fr(e, ) -fr((.' ). This includes up-minus-down
transitions, as before. The energy denominators
express conservation of energy for absorption
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processes and yield virtual processes for non-
energy-conserving processes. Note that since &,
e» and & are always positive, the term involv-
lllg 5(6~+ eg+(0) never contributes to the absorp-
tion. In fact, this term more nearly corresponds
to the destruction of a pair creating a photon and,
hence, depleting current in the material. A photon
annihilating at x can put a particle in m and an
antiparticle in /, or a particle in / and an antipar-
ticle in m. The amplitude for this is u„(x')v&(x')
—u, (x')v (x'), and the explanation of the other
matrix elements is obvious.

The factor (Ãtcos8+H,'sin8) is the coupling be-
tween the photon's polarization and an absorbing
quasiparticle's transverse motion. A quasipar-
ticle has the strongest interaction when it is mov-
ing exactly parallel or antiparallel to the direction
of linear polarization.

III. SOLUTIONS OF BOGOLUBOV'S EQUATIONS IN A
LARGE STATIC MAGNETIC FIELD

Further evaluation of Eg. (2. 10) requires ex-
plicit forms for u, v when there are large static
magnetic fields at the metal's surface.
Bogolubov's equations for this case are

e~„(r)=((I/2m) [-fv eX~(r—) ']-E~ ]u(r)

+ a(r)v„(r), (3. Ia)

e„v„(r)= —{(I/2m)[fV —eX«(r)] -E~}v„(r)

+ a+(r)u„(r), (3. lb)

(3.2)

b,(r) is the order parameter, Vecs is the elec-
tron-electron interaction potential, and Ez is the
Fermi energy of the electron ensemble. In addi-
tion, there is a normalization condition to be
satisfied:

(3.3)

%e shall find some approximate solutions of these
equations following closely a method proposed
by Pincus.

Consider once again the semi-infinite geom-
etry of Sec. II. Inside the metal H~,(r):-e,He "~",
where X is the static-magnetic-field penetration
depth. Working in the V X=0 gauge, then,

X~,(r) =e~e "~", (s. 4)

since H=VxX. Using Eq. (3.4) and u(r), v(r)
=u(x), v(x)e""~~xc" simplifies Eqs. (3.1) and
(3.2) to

(
1 da„-(,~ „~ —v(x))u„(x)-a(x) „(x)=o

(s. 5a}

1 da.+E, —2, —v(x)) s.(x) —ab:)u.(x)=o,

(s. 5 )

V(x) = (ear/m)SC„e "~", (3.5c)

(s. s)

g, = Z'„/2m+ x', /2m -Z'„/2m, (3.5d)

~(x) = V„,Z v„*(x)u„(x)[1—2f,(e„)] .
K~ is the Fermi momentum and E~ =K~~/2m is the
Fermi energy; our model assumes a spherical
Fermi surface. In what follows, it will be con-
venient to use also a set of momentum variables
defined by K~=K', cos8, K, =K~sin8; K, is called
the transverse momentum and, hence, E, will be
a transverse energy relative to the Fermi energy.
The quantity designated V(x) is so labeled because
it acts somewhat like a potential barrier or wall,
depending on the polarity of K,. Since X is purely
real for static fields, V(x) is always purely real.
We have ignored the A~, term in Egs. (3. Ia) and
(3.1b), since eA„,«SC„ for all IC„~ 10 4K+, and the
K„of interest in all subsequent work is K„=K+.

It would now be very helpful if we somehow knew
in advance the spatial dependence of the gap func-
tion b,(x). For an infinite superconductor consid-
ered by BCS, b,(x) was a constant, making solu-
tion of Bogolubov's equations trivial. But in the
presence of a large static magnetic field, we can
no longer be so sure that h(x) is still constant.

Bogolubov's equations are sufficiently com-
plicated that we cannot solve for u and v while
simultaneously satisfying the self-consistency
relation on 6, in the presence of large static mag-
netic fields. Therefore we shall make a guess at
what the final self-consistent' might be, solve
Bogolubov's equations for the u, v functions, and
check via the self-consistency relation just how
reasonable was our guess. (This matter is con-
sidered further in Sec. VI. ) We shall try h inde-
pendent of II~ and spatia1. ly constant.

Even with the assumption of a constant gap,
Bogolubov's equations are still unmanageable. The
trouble lies with V(x). Any step-function approxi-
mation to the exponential in V(x) will lead to a set
of coupled second-order differential equations
with constant coefficients and that can be handled
reasonably. Vfe shall content ourselves, first,
with a single step and thus make the replacement

V(x)- V, (x) = (3.7)0, x&x,

V„ the strength of the effective potential, and
x„ the spatial extent of the effective potential, are
the only parameters in this theory. %e shall
pick X, =2K, 0~6, V, -HK» this is not unique,
but seems reasonable to us. If the results are
suspects, a many-step approximation to the expo-
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nential can be tried; it will not be so sensitive to
parameter choices.

In order to solve ordinary constant-coefficient
differential equations, we must form solutions in
each region and match values and appropriate
derivatives across the boundaries; at the x =0
surface, and at the x=I.„»&X surface. Take first
the problem at the x = 0 surface.

At the surface of the metal, the current normal
to the surface must vanish. However, j„-uBu/Bx
+ vsv/Bx, so either u and v both vanish at x=0,
or Bu/Bx and Bv/Bx vanish there, or both do. To
pick the proper set, consider the electron density
at the surface ¹

N- lul~+ lv I2, Since the elec-
trons are principally confined to within an
angstrom or so of the surface, we imagine our
system confined by a large potential barrier at
x=0, whence N-O~u, v-0 at x=0. We thus
consider the boundary conditions u, v =0, while
Bu/Bx, Bv/Bx+0.

Denote the solutions of Eqs. (3.5a) and (3.5b)
in the surface region x~X, where the effective
potential is nonzero generally by the subscript 1,
and the solutions in the metal's interior x & X, by
the subscript 2. Solutions in each region are of
the form e"". Then straightforward substitution
in Eqs. (3.5a) and (3.5b) yields the following gen-
eral solutions:

u (x) =A. (e'" *-e '" ")+C,(e'"-"-e '"-")

v, (x) =A, (e —(„—V,)(e'"+"—e '"+")

+ C,( +eg„- V,)(e'"-"-e-'""}, (S.8b)

um(x) =Axe"'"+ B,e '~ "+Cee"-"+D,e "'-", (3.8c)

vg(x) =A2(& —)p)e + + Bg(f —(p)e +

+ C, (e+ (,) "e*+D, (e-+ ]p)e "", (S.8d-)

where

P, /If =[(-&,+&,)/E, ]"',
~ =[(e- V)'-~']'~'

(s. 10)

(3.11)

+ C2(e+ $i,)e' -"6+D2(e+ g~)e
' -"~, (3.14c)

A, (e —$„—V,)r, (e«+"+e «+'~)+ C,(e+ („—V,)r

~(e« &+e "~-}=A.(. &,)P.e"—" ff.( e(—,)P.e ""

+C,(e+ g,}pm" "~ D, (&+ $,)p-e ""~ . (3.-14d)

Using the states given by (3.8) in the normaliza-
tion equation (3.13) yields the following:

1',
'

[lu, (x)l'+lv, ( )l']d
+ J" [lu, (x)l'+ lv, (x)l']dx=l

(eR d2)1/3 (s. 13)

and A.~, C~, A» B» C2, and Da are constants to
be fixed later by imposing boundary conditions on

Q~ vy and normalization

J' " [lu(x) I
+ Iv(x)l ]dx=1

We have picked the solutions so that the boundary
condition at x = 0 is automatically satisfied.
Matching the u, v solutions and their derivatives
at x =X, yields four constraints on the coefficients
&i~ Ciy &ay &» C» Da:

(e«~Le e-i ghee) ~ C (e«xq e-«xq)

=A2e'~+~+ B2e '~+"~+ Cae'~&&+D,e '& ~~, (3.14a)

Air, (e« "~+e «'~)+ C,r (e«-~+e-'"-~)

«P+A, + ~ -«P+x ~ ~ e«P x~ D ~~-«P&~

(3. 14b)

Ai(& —4„—V~)(e ' ' —e "'+)+Ci(e+ g —V', )

. X(e e e-« ~,) =A~(e gi)e &, e+~, (e ( )e-i~+

r, /SC, = [(-g, ~ („)/Z,]"', (s.9) implies

e (r m+)&@ e-«(r ~ 3X~ e«(r +r+)Xq e «(r„+r„*)&~,
+ lc, l'[d.'+( g„- v, )(e+g„*-v.)]l '

e «(re, m+) &~ e-«(r~m+) &~ e«(r++r+) Q e «(r~+r+) x~

+A,cf [6 + (e —g„—V,)(e+ g~ —V,)]r ~ r 8
~

~ ~

~
~~

»

~
~

~
~
~~

~I ~ I ~ e ~

~
~I~

~ ~
~
~~

~
I

e«(r+ ~ )ke e-«(r+ ~ )Xe e«(r+*+r ) Ae e «(r+~+r )38
+A) Ci[4 + (e —g —V,)(e+ $„—V,)] x +x+r~ e r 8

e ~
~
~ I

~

~

~
~

eI

I t~
~I ~

~ ~ e «
~

I~
e

~I
e~

~
~~ I 8

e «(p~w~+) L„e«(p*w» ) &~ e«(p, +p*)i.„e«(p,+p 3)t,
+ lAal'[~'+ (e - g.)(» —Cg)1', +Aaam [~'+ (e —g,)(e - Cg) l

'
+ + P++0+
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f(p -9+)L„ f(p ~ )X

+A, C2*[n'+ (e —g,)(e+ ]g)]
e f(P»+Pf )L„ef(p»»p+)X~

+A,Dg [n.'+ (e —&~)(e+ $~ )] P»+P~

«(9»»9~+)Lq e f(p»»p+)g e f(p+*~») Lx ef(p+*~»))Le»g[~"(. &-,)(. g—)], ~ IB I'l~" (e-&,)(e-&;)]

f(p»»pf)L~ e f(P»+Pf)ge e f(p*~») Lx e f(pe~») Le

+B,Cg[&'+(e —g, )(e+&g)], +BPI'[r'+ (e —h&)(e+ hg)]

ef(p 9+)L ef(p ~+)Xe ef(p»p+4) Lg ef(p-+9+ ))e
+ C/f [~'+(6+(p)(K-(p")], + C2Bf [n + (e+4)(e-4)] p,p,

f(p -p*)L„«(p ~*)A,, «(p»p*)L„«(p»p~)ke
+

~
Cg

~
[6 + (6+ $p)(K+ (p )] + CpDg [6'+ (e+ (p)(K+ gj*, )]

P- —P*- 2 P P p +py

e-f(P +9,*)L„e-f(9 +9,*)&, e f(9» W )L„ef(P+W )&

+D+f [jP+ (t+ $p)(e —(g)] ~ +DIBS[6 + (e+ (p)(e —$p+)]

e-f(p»p+) L„e-f(p +p*)~, e f(9+% )Lg ef(9*% )&e
+ D,cf [&'+ (e+ &p)(e+ &,)] + }D,

~

[n'+ (e+ &,)( e+(g)]

(3. iS)

In general, not all of the constants A2, B2, C2,
and D2 can be simultaneously nonzero. This
arises upon considering the u, v solutions (3.8)
for x- ~. If p, and/or p has a nonzero imaginary
part, the coefficient of the appropriate term
must be set to zero for the u, v solutions to be
bounded as x- .

Regarding e (the excitation energy), E, (a mea-
sure of transverse momentum), and V, (the ef-
fective potential strength) as the independent
state-naming variables, we consider the conse-
quences of the following possibilities for

-( +(~'-PI"')"'
Ap E~

L 0+ C & b,, any $, and e, '&6, —$ + (e —6 )" & 0

For this case, both P, and P have imaginary
parts so that, necessarily, B2=D2=0; but then
Eqs. (3.14) are inconsistent unless the determi-
nant of the coefficient vanishes. If $, and V, are
fixed, there exist solutions only for certain dis-
crete values of & given by the vanishing of the de-
terminant here.

Since P, are complex, these states are localized
near the surface as determined by e'P~ in u, v.
Generally the distances here are - 5000 A into the
sample. BCS"used infinite metals so, of course,
they could not obtain any solutions where p» or P
had any imaginary part. Furthermore, these sur-
face states exist for excitation energies less than
the gap width 6, a fact which will have important
consequences for absorption at low temperatures
(kT« 6).

Equations (3.14) are sufficiently complicated that

results can only be obtained numerically. We have
examined, therefore, many cases numerically
using a computer and find a few general features
to be described below.

First, surface states exist only for V, & 0 and

only for & & 6 —
t V, I; i.e. , V, must appear to be

a potential well and the possible states must lie
above the bottom of the well. The preceding is
true irrespective of how V, and Xe are chosen.

Second, surface states exist only for —206
4, which depends on X,. The small values of

(, indicate a particular direction of quasiparticle
travel to be discussed later. The spectrum used
in further calculations is shown in Fig. 1.

It might be thought that these surface states
depend critically on the surface at x =0 being per-
fectly flat and smooth. However, as long as the
surface irregularities are small compared to a
penetration depth of the II~, this is not so. For
then one could make wave packets of sinusoids
which would match the boundary conditions, out of
sinusoids whose momenta were all peaked sharply
about the correct value for a flat surface. In such
a case, all the surface-state energies would still
be nearly the same as before. Thus small scale
(& 10 A) irregularities are no problem.

2. -$ +(6' -6 )

In this realm both P, and P are purely real, and
all the constants A2, B2, C2, and D2 can be non-
zero, which leaves a dilemma. There are more
unknown constants than constraining equations.
Two approaches are possible to resolve the prob-
lem. We can put the system in a large box of
length L„and require u, v to vanish at x =L„just
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FIG. 1. Typical surface-state spectrum; &,= 2~=1OOO
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as me imposed for u, v at x = 0 surface. This
yields a situation like the prior case —solutions
exist only if the determinant of the coefficients
vanishes. However, since L„ is very large these
states are very closely spaced in energy and for
L„- form a continuum. All this is mell defined,
but extremely difficult to handle numerically.
Clearly the results should be essentially indepen-
dent of the size of the box for L„»&X, and yet in
solving for the u, v functions and the locations of
the states in energy, slight changes in I.„radically
affect the numbers involved through vast oscillat-
ing terms -e ~

Fortunately another approach is possible that is
more easily implemented. %e imagine a scatter-
ing process. If e'~" represents a quasiparticle in-
cident upon the x =0 surface from deep inside the
metal in the state with x-component momentum p,
then e '~" is the reflected quasiparticle; the trans-
verse momentum is conserved, and the momentum
normal to the surface reverses sign upon collision.
Thus it i.s natural to consider tmo cases. A quasi-
particle can be incident upon the surface in either
state p, or p . By a change of variables to
spherical momentum coordinates, it can be shown
that p, states lie above the Fermi momentum,
while p states lie below the Fermi momentum.
For each case, there is some amplitude for the
quasiparticle to be reflected in its original state
with only the direction altered, and there is some
amplitude to find the quasiparticle in the other

+
I
C, I'[d,'+(e+ (,)'] = ~'jL,„, (3.16a)

and for p incident states,

l&31'[&'+«- 4)']+ (I &31'+ l&al')

x [a'+ (e+ (~)'] = LP/I „. (3.16b)

The sum over states is also simple:

Z-~Z I &p, ,
2m ., (3.17)

which mill later be transformed to a more useful
independent variable.

(~2 g2)l l2 ~ 0 p + (~2 g)1/2 ~ 0

In this realm P, is purely real, so e"~+" are
perfectly acceptable solutions, while p is complex
and hence e '~~ must be discarded, so De=0. BCS
also could not have considered this case, since it
depends on a surface being present and a nonzero
V,.

This case is very similar to the P, scattering
state considered except that fox p, incident, the p
reflected solution is very strongly localized near
the surface, so all can be applied except that the
normalization condition simplifies even more than
before to

momentum state also mith altered direction. This
is a nem feature of a superconductor when H~, 4 0.
In BCS theory mhere H~= 0, a quasiparticle is
always reflected in the same state as it mas inci-
dent; no mixing of P, and P„states occurs. Re-
garding $„&, and V, as the independent variables
of a state, there are two degenerate solutions
which me will refer to as "p,-incident" and "P-
incident" continuum states. In the former, B3=0,
and in the lattex', B3=0.

The above picture does not depend upon the type
of particle being scattered. They can be either
electronlike or holelike excitations; indeed, our
argument applies equally well to both u(x) and

t (x) solutions. Holes or antiparticle quasiparticles
exist both above and below the Fermi momentum,
and electrons or particle quasiparticles do so,
too. This latter fact holds in superconductors
whether H~, is zero or not. Fox normal metals,
though, we have u-e"~-", which says that electron
excitations exist only above the Fermi momentum,
while hole excitations exist only below the Fermi
momentum.

For these plane-wave-like scattering states,
the normalization condition (3.15) is particularly
simple; in the limit 6f L„-, only diagonal terms
in region 2 contribute substantially. Thus for P,
incident states,

(I&.l" I&.l')[ "( -4)'l
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Since the preceding derivation is rather mathe-
matical, a more intuitive picture is desirable.
According to BCS theory, the superconducting
ground state is made up of overlapping paired elec-
trons. Each pair has an average length, coherence
distance $0, and binding energy 2b, . In this model
me might imagine that static magnetic fields pene-
trating the surface cause the following modifica-
tions: First, consider pairs far from the surface
and the static field. They feel no fields, so their
pairing should be unaltered from the field-free
case. Homever, pairs near the surface are quite
a different matter, since the electron-electron at-
traction via the phonons can be perturbed by the
magnetic field. Now for typical Pippard super-
conductors, penetration depths are much less than
pair lengths. Hence pairs aligned perpendicular
to the surface have only a small fraction of their
lengths in the surface region where the field is
strong. Accordingly, their binding energies are
essentially unaltered. But pairs that are very
nearly parallel to the surface (i ), ! ~ 106,) have a
field acting over their entire length. These pairs,
the most important ones for interaction with radia-
tion, cannot maintain their field-free status. If
they are to remain at the surface, they must
"quantize" their binding energies (surface states)
or be expelled from the surface region to the
model's interior where no fields allow 2h binding
energy (continuum states with small amplitudes
in the surface region).

(4. 1c)

for sinusoidally varying fields, A-8'"'. The dis-
placement current is negligible in a metal for fre-
quencies of interest, since ~ A. «V A, so it can
be ignored.

From the work in Sec. II, we know that j(X) is
of the form j(r) = I Q(r, r')A(r') dr'. Thus for the
planar geometry at hand, Eq. (4. la) becomes

8'A(x)
q(x, x')A(x') dx',

an integrodifferential equation very difficult to
solve. The only cases that have been solved are
(i) the normal metal at room temperature where
Q(x, x'}-5(x—x'), and (ii) the anomalous skin ef-

(4. 2)

IV. FORMULAS FOR SURFACE IMPEDANCE

In order to calculate surface impedances, it is
necessary to solve Maxwell's equations. In the
V ' X= 0 gauge, Maxwell's equations for the vector
potential read

v'X+ u)'X = —4v j (X) (4. la)

feet in normal metals and homogeneous type-I
superconductors, where Q(x, x') - Q(x —x').

The surface impedance Z is defined by

f(0) . A{0)' I I d, -
(8A/8x) I,

(4. 2)

where the second form applies to our geometry.
lo means evaluated at x=0', just inside the sur-
face.

It is too difficult to get Q{x,x'), so we must
develop some other approach for finding Z. First,
multiply both sides of Eq. (4. 2) by A*(x) and
integrate over x. Then do fo A*(8 A/8x ) dx, in-
tegrating by parts. Eliminating fo A*(8 A/8x ) dx
and substituting for Z*, me find

'L47TQ7Z*=
~ (8A/8„)! !a 4x

ll
q(x, x')A*(x)A(x') dx'

0

We shall nom take the following new point of view
in calculating surface impedances. Approximate
the A field distribution by an exponential e "~',
with one parameter 5, just as for the static field
distribution. (5 is a complex number and a func-
tion of R~ and ~!) As we have a simple explicit
form for A(x), we can do the spatial integrations
first in Eq. (4.4) before any other operations, and
hence determine Z without knowing A(x, x'). What
is 5? We obtain 5 by requiring that the Z* calcu-
lated from Eq. (4. 4) be consistent with the Z*
found from Eq. (4.3), which is

Z = z4SQ75 e (4. 5}

If the self-consistent 5 is found, we trivially know
the surface impedance,

The Re(Z) =R is called the surface resistance
and the Im(Z) =X is the surface reactance. R is
a measure of power dissipated by the metal and
X is roughly similar to a field-penetration depth.

For superconductors with T& Q. QT, and ~ & 2d,
we have R «X, so that Im(5) «Re(5). As a con-
sequence, it is really necessary to be concerned
with self-consistency only for the surface reac-
tance. Once the correct self-consistent Re(5} is
known, we can calculate directly the surface re-
sistance from Eq. (4.4) using for 5 the Re(5). Ac-
tually, the case for our problem is even better as
far as surface resistance is concerned. The
changes in surface resistance due to static mag-
netic fields are so large (BH~,w/Rsr~=o & 1) and the
changes in surface reactance sufficiently small
(-10%), that using Re(5) for H~, = 0 is adequate to
obtain answers both within 20% and of the right
sign. This mill become more obvious after further
formal developments. The point here is that
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maintaining self-consistency is less of a problem
than might be expected initially.

We now continue to evaluate Elf. (4.4). In Sec.
II we split Q into a paramagnetic term Q1 and a
diamagnetic term -Ne /m. For the latter, the
integrations are immediately done, and one finds
that

Z4' =i 16 II' Id
~

5
~

' dx dx' e ""*e * "
Q (x, x )

j g f

~ 48 K~
3' ~

1
(4 6)

Hence, the diamagnetic term contributes only to
the surface reactance. (The two last terms are
both important. )

The paramagnetic contribution is proportional
to Ja dxdx'e *I e ~'QI(x, x'). Referring to Elf.

(2. 10b), we see that this integral is composed of
the sum of the square of the magnitude of two
quantum-mechanical matrix elements:

M', = f [u, (x)u„*(x)+v,(x)v*(x)]e '~' dx,
(4. Va)

M',„=f" [u,(x)v. (x) -u„(x)v, (x)]e "" dx

(4. 7b)
Note that M', = —M, M'I is the matrix element
for processes scattering a quasiparticle from one
state l to another state m. M', is the matrix
element for destruction of a quasiparticle and its
antiquasiparticle from states l and m. M,* is
the same as before, except that it now refers to
creation of a pair.

Below we calculate M;2 = ja [u, (x)um'(x)

+vl(x)vf(x)]e "' dx for the most general u, v's:

where

(4. 6)

A»A pa[~'+ (el —g„,—Vp) (ea —g„-V,)]EI(r» r.,) + C„CQ[~'+ (el+ ]„,—V,)(ea+ g, —V,)]El(r» r~)

+A»CQ[6, + (ei —f„,—V ) (@a+ („* —V ) ]E,(r„,r 2) + C»A f'2[2 '+ (e, + $„,—V ) (ea —g„* —V )]I (r „r„)
+ 21 Pal+ + ( 1 hp )(ea 4p ) ]Ea(P+ls P+2) + C21Cga[+ + (e1+ (p )(ea+ (pa) j 2(P is@ 2)

+A21Cfa[ + (el (pl)(ea+ (pa) ]Ea(P+»P 2) + C21AI2[h + (el+ (p )(ea —(pa) ]Ea(P-IIP+2)

+» &2[++( I &p)( 2 &pa)ja( P-» P+2)+» 12[~ +( I+&2)( 2+&pa)]2( P-»

+B2IDI2[h +(eI —)p )(ea+$p )]Ea( P+» P-2) +DalBf2[E2 +(el+ )p )(ea —(pa)]E2(-P I, -P~a)

+» &2[~ +('I &p )('2 &p ) ]2(P+» P+2) +» &2[~ +('1 &p )('2+&pa)]2(P+»

+ B21AI2[n + (el (p )(ea-t'~2)]I2( —p, l, p,a) + B21Ch[h + (eI —(p )(ea —
4p ) ]E2( P+1t P+)

+ C2IBfg[Ea + (el+ )p )(ea 5p )]Ia(P-If P+2) + 21 f2[+ + ( 1+ hp )(&2+ (pa) ]E2(P I~ P-2)
1

+D2IAfa[Ea +(el+(p, )(ea —g pa]I)(2- P„P,2) +D2ICN'2[6 +(el+(p )(ca+(pa)]I2(-P-I~P-2))/n I

(2/5*) —ie "4~4 ( [rl —ra —(i/5*)]e I "I~a&"4 [rl —ra + (i/5*)]e ' "1~2 4]
Il (r1 r2) (1/5 )

2 (r r4 )2

(2/5*) —ie "4 ( [r, + ra —(i/5*)]e""1'"2'"4 —[r, + ra+ (i/5*)]e ""1'"2'"4]
(1/5*)'+ (r, +r,")'

e&o~a2, &&Ie ))&,
Ia(pl pa) =i

P -P2+ '

Next, we calculate MPI„= Ja [u, (x)v (x) —u„(x)v, (x)]e "~' dx for the most general u, v's:

Ml =(AIIAI„[(e„—g„)—(ei —g„)]la(r,i, r, ) + C»CI„[(e + g„„)—(el+ $„)]la(r „r )

+A»C, [(e„+$„)—(e, —g„)]E2(r„,r ) +C»A, [(e —(„)—(eI —$„)]I2(r „r. )

+AalAa [(e —40 ) —(ei —4 )]E4(P.IIP+ )+C»Ca [(e +4) (el+4 )]I4(P-I~P

2l [(a&mtmpl+) —(&I —(p ) ]E4(P.I,P~) + C2IA2m[ (em hp ) (eI hp )l 4(P It P+m)

+BalBam[(em —4) —(el —4,) ]E4(P+I~ -P+m) +DalDaml(&m+ t'p„) —(&I+ hp )]E4(-P-» -P~)

2I 2m[( m+hp ) ( I (pI)l 4( P+II P~) + 21 am[( m tp ) ( I+hp )j 4( P IP P+m)

+AaIB~[(&I —4I)-«m-4 )]E4(P.» -P. ) +AaID~[«I-4)-«+4„)]E4(P,» P-)-
(4. 9a)

(4. 9b)
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+B„A2 [(e, —4 ) —(e~ —(p )] 4(-pi, ip4~} +B2gC2~[(eg —4, ) —(e~+4 }]l(-pigip~)

+C2gB2 [(&g+4g) —(&~ —4 )]f4(p gi -p+I) +C2lD2 [(&g+4 } (&m+(p )]f4(p-gi p~)
+ D2gA s [( eg+ )p ) —(t~ —)p )]14( P g, P4~) +D2gC2~[(el+ )p ) —(e~+(p )]l4(-P g, P~))/4

e'~»+~2+& «~*»"e
l4( P 1i P2} 4

p p /64p

(4. 1o)

(4. 11a)

2/6* —ie "~ '[(r, + r, —i/6*)e ""1'"2'"4 —(r, +r, + i/64')e ""1'"» ]l,(r„r,}=
(1/6*)'+ (r, + r, )'

2/6* —ie "~ '[(r, —r, —i /64)e"" 1 2'"4 —(r, —r2+i/6*)e ""1'"2'"~]

(1/6')'+ (rl —r, )'

In terms of these matrix elements Z* is just
2 IM' I'

Z*=i32gg 2 141 ~6
~

Z (Kpcos8+K,'sine) [fr(eg) -fr(e )]
fm —f

&
—v+15

1 ~ 2 1 I g I4 4~2@', 1

(4. 11b)

(4. 12)

The u, v amplitudes are invariant under the
change K,—-K,. Thus f"„dK,' contained in gg
causes the field-particle coupling cross term
K,'K, cose sine contribution to vanish in Eq. (4. 12).
This just expresses an obvious symmetry —the
surface impedance is the same for field linear
polarization of + 8 about the direction of A~, . Be-
cause of this,

(K,' ceo+sK,'sl e)n(K„) cos 8+(K) sill 8

and we can derive the complete angular dependence
of the surface impedance by calculating Z for just
two angles, 0 and & p, i.e. ,

(„V„and the particular branch number —while
a continuum state requires four numbers —$„V„
&, and p, incident. In any case, it is always pos-
sible to pull out from the sum

)*
" dK,' dK.'

l lK Kyt g
~CO

and express these integrals in terms of g, and

y(V, = V2 cosy), which are useful in subsequent
work. This is trivially done using the definitions
of $, and y in Sec. GI, and the result is

Z(e) = Z(e = O) cos'e+ Z(e = —,
'

m) sin 8 (4. 13) 27r' -Ep 0 lpm

It should be noted that this relation is independent
of the long series of approximations made above.
We could have derived this long ago.

The sum over states, gg, in Eq. (4. 12) is ac-
tually more than a double sum; this is so, since
a surface state requires three numbers to fix it—

where gg, on the right-hand side refers to the
remaining variables necessary to specify the state
considered. If only surface states are considered,
then fzdy- f,'~2dy, since there are no surface
states for V, &0. Putting all this together, we
find Z*:

,) . t4. 14)

d(g
I

dy Z 1+~ (cos 8 cos y+sin 8 sin y) [fr(eg) fr(e~)]~II'g~~-
. 16e2~ I6 I Kr

m 2 '. o l, &r

1

In I' 4e'~',—i4g~
~

For processes involving surface states, it is
most useful to switch from the integration variable
p to the variable V, . The substitution made is

1 2 V
V2 dV4 cos 8 (V2 V2)gy2

-v 0 e
0
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+sin S(Vs —Vs)~is) (4. (5)

Finally, for continuum states, the sum over
states is just

assuming unit volume. g, means the sum over
P, and p incident states. However, the more use-
ful variable is &. Thus

(4. 16)

can be used in Eq. (4. 14) whenever considering
continuum states.

Assembling all these bits and pieces, we can
now write the surface-impedance contributions for We have

1. Transitions between Surface States

the various processes in a form that can be direct-
ly evaluated numerically on a computer. Let Zs
be the surface impedance of the superconductor,
and Z„denote surface impedances of normal
metals. Write the total Zs as Zs, +Zs + ~ ~ ~ . Zs
will be in Q if E& is in eV, 5 is in A, and we use
the following:

82
= 5. 62 x 10 0/(A eV)Ic c'

The familiar identity 1/(x+f5) 6'-(1/x) —iw5(x) is
used in the reduction, where 6' denotes principal
part of the integration.

We merely state the formulas below and discuss
the consequences later.

&$,-«z, Ice d E
—E~I51 d ~ &i

d z~l cose (v/~)'[(v/~)' —(v/~)']'&'
-v /~

+sln2e ~ -~ T~- — Mg 2p -zr5~

where br stands for branches.
We shall need later

cd2/ &

Rs d —=Rs

(4.17a)

so that

R, = Sg—,—E'„g2 d~
1g fft

()'s/&)'[(('s/&)' —()'/is)' ]"' '

4 17

which is further discussed in Sec. V.
We calculate the matrix element M', for in-

tegrals (4. 17) as follows: Solve the set of simul-
taneous equations (S.14) with Bz =D~ = 0 twice,
once for A&„C~r ~2& C2s, and again for A~, C,~,
A2, C2, where l and m refer to two surface
states with the same f, and V, but with different

energies, a, and a . These coefficients A» C»
etc. must satisfy the normalization condition
(9.15). hP, is then trivially found from formula
(4. 8) with Bz, =D2, =0.

2. Transition. between Surface States and Continuum States

We have

zq =~-' —' ', —" —'E~l5l'~ d ~ d ~ Z Z I
& ffc ac' ~ E~ "

l
«n b. ..- ), S(e.../~)

-Vo/ h ~OO
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(4. 18)

'("s") "(') '(") "(") '
'"'* '( ~ s -'i — i ) '"(" '

)
x cos 8 ~ ', ,i~+sin 8

Since the energy of continuum states is always
higher than the energy of surface states, the 5-
function term contributing to the resistive part
contains only the gb, , Q, I terms. The
reactance, though, picks up contributions from
both continuum and surface states as final states
in the interaction and keeps all sums.

We determined M;„ for integrals (4. 18) as fol-
lows: If I is a surface state, then solve Eqs. (3. 14)
with B2=D2=0 for&, » C», C» normalized ac-
cording to Eq. (3. 15). The continuum states m

are found by solving Eqs. (3.14) first with D2-—0
(for p, incident scattering states) and then with
Bz=O (for p incident scattering states) normalized
now according to Eqs. (3. 16). This determines
either the nonzero set A&„, C&, A2, B&, Cz,
or Army Cams A~& C2my D2my respectively, and
hence M'i is again fixed by expression (4.8).

3. Transitions between Continuum States

We have

8 1
r p f OO

Ep/g ~ p ~I "1

1 + —~ i(cos 8 cos y+ sin 8 sin y) fr ~ -fr —
i
M',

'fym

1
e /n, —e,/4 —&o/6) A L A1

(4. 19)

M', in Eq. (4. 19) is calculated from continuum
scattering states solutions to Eqs. (3. 14), nor-
malized according to Eqs. (3. 16) as described
earlier. However, not all the nonzero terms are
kept in the 3P, expression (4.8); we ignore all
terms which vary as g & m e, g' "&'"m "e, and keep
all terms that vary as e '~i~m'"&, e""i "m'"~.

V. SURFACE-IMPEDANCE THEORY FOR
SUPERCONDUCTORS WITH Hg, 4 0 AND
COMPARISON TO EXPERIMENTAL DATA

We now have developed enough formalism to
discuss the implications of this surface-impedance
theory for II~,W 0. Since everything must be cal-
culated numerically on a computer ranging from
single to quadruple integrals, our results are only
for a few cases. These are done in realms where
the individual processes are separated as clearly
as possible from one another. The experimental
data is also rather spotty, so a complete compari-
son of theory and experiment is impossible at
this time.

Wherever numerical results of calculation are
quoted, the following data have been assumed for
the model which corresponds roughly to tin and
tantalum: Kr-I A ', EI, =5 eV, A/E~=IO '~A
:-150 GHz, 5(T=O) =5000 A, X, =1000 A.

Some important experiments have been per-
formed by Pippard in tin at 9.4 GHz, Spiewak in
tin at 1 GHz, Richards' in tin at 3 GHz, Lewis in
tin at 24 GHz, Glosser' in tantalum at 9 GHz, and
Sharvin and Gantmakher in tin at 2 MHz.

The number measured by the experimentalist is
usually the surface impedance for some H~„
Zz(Hd, ) =Rz(H~)+X&(H~), divided by the normal-
state surface resistance R„. For temperatures
and magnetic fields of interest here (T(10 K,
H~& 1000 G), R„ is given by

R„=6.75x10 ((g/Kr)~ ~ (5. 1)

where R„ is in 0 if ~ is in rad/sec and Kz is in
A '. This value is obtained in the theory of the
anomalous skin effect for specular reflection. 7

We shall begin by considering the superconduct-
ing surface resistance at low temperatures,
0 ( T 0. 5T„and for electromagnetic radiation
frequencies, ap-O. IA. If Hd, =O, R~ (and Rz/R„)
is vanishingly small. This is well understood,
since for such temperatures there are negligibly
few quasiparticles in the continuum to absorb
power. If H~, (H, -500 G (H, is the critical mag-
netic field where the superconductor reverts to a
normal metal), however, there is a sizeable power
absorption, 0. 1% (Rz/R„ IO%%uq, which depends on
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every conceivable factor involved here. Thus H~,
has changed the surface resistance by several
orders of magnitude. What could be the reason'P
W'ithin our model, there is only one possible can-
didate for an explanation —the surface states. As
described in Sec. III, the H~, field sets up a poten-
tial well, within which there are discrete energy
levels that range from & = 0 to &

~ h. They exist
only for I (, I 206,, which indicates quasiparticle
trajectories even more parallel to the surface than
the effective electrons in the anomalous skin ef-
fect. I ), I -104 corresponds to an angle -2'.

Since there exist states whose excitation ener-
gies are much less than the gap, even low tem-
peratures yield sufficient thermal populations so
that a photon can kick a quasiparticle from a lower
branch into another higher-energy branch, con-
serving transverse momentum (initial and final
states both have the same $, and V,).

Using the surface-state spectrum described in
Sec. IG, we have calculated the surface resistance
at low temperatures for various T, &, H~, and
8. (Recall that 8 is the orientation of the radiation
field polarization with the y axis. ) By confining
ourselves to T 0.5T, and &-0.26, we can be sure
that the surface resistance is totally dominated
by transitions between surface states.

We must do this calculation numerically, which
according to Eq. (4. 17a) amounts to just a single
integral over either V, or $„as one chooses.
However, doing the integral over the 5(e„—e& —&u)

intoduces either 1/I 8(z —e, )/SV, I or 1/I 8(z —e,)/
eg, I according to which variable is used for in-
tegration. Both of these factors are singular for
a typical energy spectrum. Although the integrals
are well behaved, it is too difficult to handle such
a situation numerically on a computer. A more
reasonable approach is to integrate Eq. (4. 17a)
over a narrow frequency range from +, to»,
where ~~ —co&«(6, and to obtain the surface resis-
tance per unit frequency range from a double in-
tegral over V, and $,. We assume that the surface
resistance varies continuously and smoothly with
frequency so that for ~~-co& —0.016, we are really
calculating the surface resistance at each point in
frequency, except for +,, 2 less than the minimum
energy separation of the nearest pair of surface
states that are = 0.016. (Obviously, there is no
absorption when ~ is less than the minimum energy
separation of two surface states, so for some w

there is a discontinuous change in the surface
resistance to zero )The fo.rmula then used for
calculating the surface resistance is given by Eq.
(4. 17b). Although there is much extra work. in
doing a double integral, one is rewarded by ob-
taining the surface resistance over a wide fre-
quency range, and not just at one frequency. Some
results of this calculation are summarized graph-
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FIG. 2. Surface resistance due to surface states
at low T.

ically in Figs. 2(a)-2(c).
It should be mentioned first that the requirement

of self-consistency on 5, the penetration depth, is
least stringent for this case since we have Im5
«(Re8. Re8 changes by about 10% as H~, varies
over its range, while R~/R„runs from zero to
about 1%. So we can use, to very high accuracy,
5 = Re5 only, and using 5 for H~, = 0 merely makes
an over-all consistent error in R~/R„of about
20%. The results in Figs. 2(a)-2(c) use 8 at
H~, = 0 and T = 0. (It is well known that penetration
depths are essentially independent of T up to
T-0.5T,. ) Such approximations are adequate for
the qualitative behavior desired.

Figure 2(a) displays results which can be most
closely related to experimental data available.
Glosser has measured R~/R„at 8 = 0' and 90' as
a function of H~, for T=0.2T„&=-0.07',. His
results are consistent with ours in that Rs/R„ in-
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creases monotonically with H~ R~/R» is larger
for 8 = 0' than for 90', and R»/R»is about a max-
imum of 1. 5%%uo.

Glosser's work has the only data taken on the
angular (8) dependence, and then only for
H« = 0. QH„near the critical field. In Fig. 2(b)
we have obtained some very interesting results
regarding the 8 dependence on R»/R» for sp =-0. 16,
T = 0.4T, as a function of H~ for which there is
no experimental check as yet. For H«=H„R~/R»
is larger for 8=0' than for 8=90'. But for
H~, =-0. 5H„ the surface resistance is larger for
8=90' than for 8 =0'! Since the surface-state
spectrum is critical here, a more realistic effec-
tive potential is generally needed to see if this re-
sult is true.

Next, consider the superconducting surface
resistance at intermediate T, 0.5T, & T& 0.8T~
and frequencies & & 0. 14. All the investigators
have observed that H~, -H, causes the surface re-
sistance to decrease. This suppression effect
ranges in size —20%%uo& [R»(H«-H, ) —R (H«=0)]/
R» & —1%.

At intermediate T and ~ 0. 14, there seem to
be three mechanisms at work to consider, but
two are unimportant. First, there are transitions
between surface states which increase the surface
resistance, but R»~/R» is only about 1'%%uo. Then
there are transitions from surface states to con-
tinuum states, but once again for small fre-
quencies, &o«&, Rs, /R»-+1'%%uo. This contribution
is progressively smaller as ~ is lesser. Finally,
there are transitions of thermally excited quasi-
particles between states in the continuum. (It is
necessary to consider these three different mech-
anisms, since the Fermi factor is sufficiently
large for T ~ 0.6T, to guarantee occupancy of all
types of states. ) This latter case would exist if

H~, =O, whereas the previous two cases depend
upon H„,W 0. It is the onset of continuum occu-
pancy by thermally excited quasiparticles at
T=0.6T, which starts the process whereby a
superconductor gradually turns into a normal
metal at T = T,. Our calculations indicate that

H~, 4 0 has such a marked effect as to account for
the suppressed surface resistance solely through
modifications of the continuum transitions mech-
anism. We have R» /R»»R& /R» so that we mayNt

ignore the other two processes involving surface
states. Let us consider the expression for
Rs /R»; we do the integral over e2 to drop the 8
function in Eq. (4. 19) and are left with a nontrivial
triple integral that must be evaluated numerically.
There are a number of features to be considered
here. Once again, there is the question of which
5 to use for the self-consistency relation. We
have Re5 ~ 10 Im5, and Res changes by about 1No
owing to H«. However, R» changes by about loo%%uo,

TABLE I. Surface-resistance data at intermediate
temperatures. Comparison of theory of Glasser's data.

T/Tc AO) Rg&d =0)/RH ('m fRg+d, =Ho~ —RS(H

theoret. expt. theoret. expt.

0.6
0.7
0.8

2.9
6.9
9.8

3
7

10

1.2-0.45 =0.75
0.8-0.75 =0.05
0.3 —3.8=-3.5

1
0

—4

so that we are once again justified in using Re5
for H~ = 0 to deduce the proper qualitative be-
havior. [The reader is reminded that Eq. (4. 19)
describes the anomalous skin effect7' in super-
conductors (H« = 0, d 4 0) and normal metals
(H,.=o, d, =o). ]

Examination of the integrand in Eq. (4. 19) in-
dicates that only transverse momenta in the range
—10 & & $, & 2~ are important, which in physical
terms means that only quasiparticles traveling
nearly parallel to the metal's surface are effective
in absorption.

For continuum states, there are many terms in
the matrix element M', ; each term has an expo-
nential factor which either varies as e" "~~'"e or
e "~&~~'"~. The former class oscillates rapidly as
$, runs over its range, while the latter class has
slowly varying phases. Therefore, we keep only
these terms, and drop the others, which make
little contribution. (This cannot be done if the
matrix element involves at least one surface state,
since the $, range is two orders of magnitude less
and all exponentials have roughly the same fre-
quency. )

The triple integral is so expensive to do that
only a few important cases were done; viz. ,
(g =0.14, T=0.6T„0.7T~ 0.8T„H~=H;. The
result is in excellent agreement with the data of
Glossed in that the surface resistance falls mono-
tonically with T over this range and is within 30/p

of the measured values. Furthermore, for
H«-0, our results are within lo%%uo of the Glosser
data. This serves as a check on the method.

The results are displayed in Table I for com-
parison with Glosser s data. In the fourth column
of Table I we have written our result as the sum
of two numbers to emphasize that the two effects
of surface-state transitions and continuum-state
transitions compete. The first number is sur-
face-state data.

The experimental data originally provided the
clue to understanding the negative shifts in surface
resistance. R»(H«=0) does not start to rise sub-
stantially from zero until T=-0. 6T,. This is, how-

ever, also the same point where R»(H«o 0)
—R»(H« = 0), which is fairly flat with T up to this
point, begins to develop a negative slope. Hence,
it is likely that Hd, is modifying that mechanism
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responsible for absorption when T &0.6T„' viz. ,
continuum transitions.

But what is the reason for this negative shift in
surface resistance? %hen H~, =G, there is uniform
probability to find a quasiparticle anywhere in the
metal. If H~, 4 0, though, the situation is vastly
different. The probability to find quasiparticles,
then, varies with space, and even the spatial be-
havior varies with e, )„and y in a complicated
way. H~ sets up the effective potential V, = Vo cosset
described in Sec. III (Vo-H~). The principal ef-
fect of V, is to repel quasiparticles from the sur-
face region -X, for certain important values of
the parameters. If lE, I ~204, V, &0, and z~ d

+ V„ then r, are complex so that the probability of
finding quasiparticles falls exponentially in the
surface region. But it is the quasiparticles in the
surface region for I), (

~ 20k which are the most
important absorbers of energy; a significant frac-
tion of quasiparticles no longer plays a role in in-
teracting with the electromagnetic field. For
) $, )

~ 204, r, -P, which are usually purely real.
But this does not mean that the u, e amplitudes are
spatially invariant. Even here there is a smaller
probability to find guasiparticles in the surface
region, but only fractionally less —not by orders
of magnitude as when r, are complex. This
phenomenon is related to the induced static cur-
rents created by H~~ and could probably be ob-
tained if the u, v functions were calculated for an
infinite medium carrying a uniform current along
the y axis. That is, it is due to transforming the
infinite medium-excitation spectrum from the co-
ordinate system at rest with respect to the screen-
ing current to the lab frame in which the super-
conductor is mounted. "

In any case, the net effect of H~, is to make
most of the matrix elements 3P, smaller as H~
increases. There are no resonance effects,
whereby M', increases substantially. That this
occurs is very important, for it will allow us to
explain several important features of the reac-
tance behavior without resorting to further calcu-
lations.

Finally, there is the superconducting surface
resistance at high T, T ~ G. 8T„and low fre-
quencies ~ ~ 0.16. Here, the experimental data
show that surface resistance starts to increase
again with H~„so that at T-0.95T„H~ once
more causes R~(H~eO) &Rz(H~=O). Finally, for
T~0.95T~ we have R~(H~40)-Rz(H~=O)-R„.
This last realm is the easiest to understand, since
4- 0 rapidly and the superconductor is turning
into a normal metal. But why does the shift in Rs
change sign and become positive for sufficiently
high T? First, there is the obvious fact that H~
or Vo have decreasing maximum values at T in-
creases [H,(T) =H, (T = 0)(I —T /T, )].-Thus the

potential V, weakens for higher T and is less ef-
fective in keeping quasiparticles away from the
surface region. Also, quasiparticles of larger
energy are more important at higher T, and these
feel the effect of V, much less than those of small

Hence, the suppression effect does not work
as well at high T. Thus the suppression effect
can no longer overwhelm the positive effect of
transitions from surface states to continuum
states. In fact, the latter mechanism dominates
once again. %e have only estimated the size of
this effect, but it is sufficient (Rgs/R„2%%uo) to
give a net positive shift in Bs for large H~-H, .
Only one property of this mechanism is important
to discuss in relation to the experimental data.
The data of the experimenta1ists clearly show that
the maximum positive shift in Rs at high T shifts
to lower T as ~ increases. I ewis summarizes
all the cases and finds a nice monotonic behavior.
For any &, only surface states within of the
lower edge of the continuum can contribute. As
~ grows, then more surface states absorb, giving
a larger surface resistance. But further, higher
~'s use surface states from deeper in the gap,
and these have higher population differences at
any given T, which also makes Rs grow. Thus
the higher ~'s begin to make a certain size Rs
at lower T than the smaller ~'s. %hen added
to Rs, the net result is as observed.

Our next order of business is the surface-reac-
tance behavior of superconductors when H~, 4 0.
While surface-resistance processes are suscep-
tible to a simple physical interpretation, surface-
xeactance phenomena are more elusive. Sux face
resistance is just another name for power absorp-
tion; a photon annihilates, kicking a quasiparticle
from one state to another, conserving energy in
the process. Surface reactance was shown to be
a measure of field penetration and depends pri-
marily on processes that always violate energy
conservation, although staying within the bounds
of the Heisenbex'g uncertainty principle. Never-
theless, we have devised a picture which simpli-
fies our understanding of surface reactance and is
consistent with the predictions of the formalism
heretofore developed.

Consider only virtual processes. Suppose that
the initial configuration of quasiparticles changes
to another arrangement in the presence of some
A field at a particular frequency ~. If the total
energy of the final state is greater than the energy
of the initial state plus the energy ~, then the
effect of such processes is to reduce the penetra-
tion depth of the A field. Conversely, if the final
state has less energy than the initial state plus
Ko, then the penetxation depth increases. Crudely
speaking, we can imagine that if there is insuf-
ficient energy to make the transition from one
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state to another, the extra energy is extracted
from the A field so that the penetration depth is
decreased; whereas, if there is more than enough
energy, the surplus energy is returned to the A
field, increasing the penetration depth.

Let us view this in terms of the two particular
processes —scattering and pair creation. For
scattering, the relevant terms in the j(A) relation
are [fr(e,) —fr(e, )]/(e, —e, —(o). If e, & e„ the
thermal factors favor a net transition of quasi-
particles upward from g& to &z. When &z&&~+~,
the generated current causes a field which is in
such a direction as to oppose the original A field.
For ez & e&+ &a (e2 & e&), the opposite holds and the
original A field is enhanced. If e2 & e, (ea always
less than e~+~, of course), the current opposes
the field. Although this transition is energetically
favorable, it is statistically undesirable, since
the final state has higher population probability
than the initial state. Thus, for &3& e~, one might
say that it is an antiparticle-type guasiparticle
which is making the transition and such a particle
causes a current that is opposite to particle-type
quasiparticle currents.

Note that in the limit of ~ 0, all the currents
always oppose the field so that the penetration
depth is decreased for any transition.

For pair processes, we are concerned with the
terms —[I-fr(eg) -fr(e )][I/(e, +e +(o)+I/(e,
+e —&g)] in the j(X) relation. Here, e, and e
refer to the energies of a particle- and antipar-
ticle-type guasiparticle either before or after in-
teraction with the A field. When e, +z», the
only case of interest at present, virtual creation
of particle- and antiparticle-type quasiparticles
into states of energy &, and e always tends to
make currents which further reduce the A field.
Virtual annihilation of the two quasiparticles from
states &, and & would yield current tending to in-
crease the A field if it were possible to have
greater population probability in e, and e„ than in
the "vacuum state" —but this cannot be. Thus
creation and annihilation always tend to screen the
field from the interior when & & e, + a„.

In discussing surface resistance, we carefully
checked the necessity of maintop, ining self-consis-
tency on 5 and concluded that this was not too im-
portant. That, however, is not true when consid-
ering surface-reactance changes; we must be very
careful here. Suppose using Eq. (4. 19) we found
that Xz - 5~(l+ H«); it would not imply that Xz
shifts positive with H«because ~~-5 from Eq.
(4. 5) and 5-1/(I+H«), which means Xz-I/
(1+H«). X~ shifts negative with H«! This type
of situation generally prevails for superconduc-
tors.

The discussion of surface resistance for m & 4
above required consideration only of the terms in-

volving scattering of a single quasiparticle from
one state to another; the pair terms could make
no effects. However, for surface-reactance or
penetration-depth problems, it is the pair terms
which are the most important.

Consider the low temperatures T~ 0. 5T,. All
the Fermi factors fr(e) are much less than one
for continuum states z- 4. Hence, only the pair
terms contribute substantially. If & & 2h, only
the reactive part of this remains. That is suf-
ficient to explain the Meissner effect —the expul-
sion of the A field from the superconductor's in-
terior. The penetration depth of a field due to the
pair mechanism has a weak frequency dependence.
In fact AGE have shown that at T=0, 5 varies by
about 7% for 0&&o &26. For +&0.16, we have
e, + a» &, so that ~ = 0 results are perfectly
adequate in this low-temperature realm. All this,
so far, applies irrespective of H~. A static mag-
netic field affects only the matrix elements M', :
The effect, though, is identical to what happened
to continuum states at intermediate T when sur-
face resistance was discussed —H~, reduces the
size of most matrix elements. Thus the current
of virtual pair processes tending to expel the A
field is reduced and so the surface reactance or
penetration depth increase as H~ rises. Another
way to say this is that H~ creates an effective
potential V, which shoves quasiparticles into the
metal's interior. Hence, the X field must pen-
etrate further to interact with them. This is what
every experimentalist has seen. The data at 700
kHz, 2 MHz, 1, 3, 8.8, and 24. 5 GHz in various
metals show a positive shift of surface reactance
for low T with no evident frequency behavior.

When T&0. 5T„ the surface-reactance shifts
with H~ are much more complicated. At 700 kHz
and 2 MHz, the shift is positive. At 1 and 3 GHz,
the shift is negative. At 8.8 and 24. 5 GHz, the
shift is again positive. This pattern, too, has an
explanation based strictly upon the reduction of
matrix elements through H~.

The pair term works as at low T, causing fre-
quency-independent positive-reactance shifts, so
this can be regarded as a constant background.
In addition, T-0.5T, makes the Fermi factors
large enough so that reactance effects caused by
scattering quasiparticles from one level to another
are important. This was discussed qualitatively
above. It was noted that for ~ = 0, the virtual
transitions lead only to further flux expulsion; so
if the matrix element is squashed by H«, then A
penetrates further. The mechanism is modified
for w0. Transitions from e& to zz, where z&& ez
& e&+~ lead to "screening" currents that suck the
A field further into the metal, as shown earlier.
That contribution becomes more important as ~
increases. If H~, suppresses the matrix element,
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then the penetration depth or surface reactance
shifts negative, which is what the experiments at
1 and 3 6Hz show. When (d is further increased,
though, the processes tend to cancel; there axe as
many transitions above resonance as below, which
in turn means that the pair processes again domin-
ate, and the surface reactance shifts positive. This
corroborates the data at 8.S and 24. 5 6Hz.

Throughout the reactance analysis, we have con-
sistently ignored the effects of surface states.
Their total contributions are much too small to
make any difference.

All the reactance changes can be explained by
reference only to the modification of continuum-
state wave functions.

VI. GAP SKI.F-CONSISTENCY

A critical requirement for this theory is that the
gap function b,{x) be independent of H~, and spatial-
ly constant. This can be checked by seeing if the
u, e wave functions for a step potential and con-
stant gap are self-consistent. Of course, within
a few angstroms of the surface, the gap rapidly
falls to zero since u, e do, but this is not impor-
tant. We are concerned with the changes over
1000-A distances.

The self-consistency relation was last encount-
ered in Sec. III, and we found that

~(x) = V„, Q u„(x)~„*(x)[1-2f,(e„)] . (6. 1)

V~cs, the electron-electron interaction, is inde-
pendent of IId, and T and so can be ignored here.

Whereas the expressions for surface impedance
involved only excitations traveling nearly parallel
to the surface, the gap relation Eq. (6. 1) is
strongly sensitive to excitations traveling in every
direction. Hence, surface states make very little
effect here; only continuum states are important
and we make little error in considering continuum
states in the approximation —10'6 & $, & 10lL, where
r, =r =p, =P,-all purely real. The g, range is
wide, since we are no longer trying to couple to a
radiation field; the electron-electron interaction
is mediated by an isotropic phonon-exchange
mechanism.

With these simplifications in mind, it is useful
to consider the product v*(x)u(x) for various re
gions and various types of scattering states.

L x &X„p+ Incident Scattering States

We have

v*(x)u(x) =A@g(e - ~,)+a,ag(e —g,)+ C,cg(e+ ~,) +a~g(e ~,) -*e" "+C~I (e g,)e"'—

+A,Bg(e —(,)e'" "+C,Bg(e —g, )e
"~ '" +A,C-f(e+ (~)e""~-'"+B,cg(e+ g~)e "~ '" . (6.-2)

Integration over the fast-oscillating terms will
give a negligible contribution, so Eq. {6.2) is
simplified to

v*(x)u{x)=AeAf (» —g~) + &g&f {&—$p)

3'. x& X„p,Incident

Using continuun; states for the surface region
and di.sregarding fast-oscillating terms, which re-
quires staying several angstroms away from the
surface, gives

+ CpCs+(e+ $~) + Cp4 j(e gp)8

+A, Cp', {e+]~)e""~-'* . (6. S)

e"(x)u(x) =2A,Af(e —$„-V,)+2C,Cf(e+(„—V,)

C Ag(e ~ V )[ef&r m lx+e&(t~m )&]

Around x-X„ the last two terms are very slowly
varying. But deep inside the metal x»& X„even
the last two terms are fastly varying; thus they can
be neglected, implying that the equilibrium gap is
spatially constant as expected and determined in
part by the terms

v*(x)u(x) = {A~g+a,ag)(e —g,)+ C,cg(e+ ~,) .
(6.4)

2. x & X~, p Incident Scattering States

Using the same approximations as before for
x»&X„we have

v~(x)u(x) =A~m(e —g,)+(C,cm+D,Dg)(e+ (,) .
(6.6)

+A Cf(e+$ —V)[e""+ -'"+e""- '"]
(6.6)

In the surface region for the range of integration
concerned, the exponentials can sometimes be
expanded and only the lowest-order terms re.-
tained; hence,

n*(x)u(x): 2$[AgA'f + C(A)](e —g„- V,)

+ [CgCP+AgCf](e+ $„—V,)), (6. '7)

which is spatially constant. I et us consider this
last transformation carefully.

For g, & —106,

~ =p. -p =ac, (n./z, )"'(r/-g, ) .
Whereas most superconductors have penetration
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depths, X-500-1000 A, the parameter A/Er has
a range of a couple orders of magnitude. Typical-
ly, d/Er-10 for tin and d/Er-10 for alu-
minum. Consider the exponentials in Eq. (6.6).
The phase varies most rapidly at x-X and least
rapidly as x-0. At x-X, the phase varies in tin
from about 1 to 0. 1 rad as $, runs its full range;
and A,Cf, C~Af' are largest when the phase is
largest (near smail (,). So the neglect of spatial
variation in Eq. (6. I) is somewhat questionable.
That was for tin; but in aluminum the phase varies
from about —,

' to 0.03 rad, and it is a good approxi-
mation to neglect spatial behavior. The smaller
d/E& and the smaller X, the less is the maximum

range of the phase; but furthermore, for smaller
d/Er and X, the smaller is the range of (, over
which A,Cf, C,Af are nonzero, so the spatial
variation terms can be forgotten irrespective of the
behavior. Conversely, superconductors with large
&/Er and X have large phase variations and large
ranges of g„where A~Cf', C&Af are nonzero.
Thus it it likely that the gap is really constant, in-
dependent of H~ for superconductors with d/Er
5 10~, X - 10S g, and that the gap has strong spatial
variations due to H~, if d/Er ~10 ~, X

~ 10 A.
From the above discussion, one might suspect

that r/Eris of some fundamental significance in

the theory of superconductors. In BCS theory,
the coherence length, 4-kr/md, , so that d/Er- I/kr(0; typically ]0-3x10' A in tin and $0-2
x10 A in aluminum. When the trend in gap varia-
tion for various d/Er values quoted above is
translated into the coherence-length language, the
behavior is immediately comprehensible. 4 varies
little if Fo» X, and d, varies strongly if )0«X.
In the former case, the X(z) field is strong only
in a region much smaller than the size of a pair,
so the pairing is almost totally unaffected and 6
remains unchanged from its unperturbed value. In
the latter case, X(~) is uniform across a pair so
pairing is modified in proportion to the strength of
X(x), and hence d, has strong spatial variations
where X(x) has strong spatial variations. This
resuEt is not new. Caroli's has shown, using the
Landau-Ginzburg (LG) equations, that 4 does in-
deed have this behavior with H~~ $0, and X. How-
ever, the I 6 equations only apply to situations
where $0«X, which is the same as requiring local
electrodynamics to be true. Our surface-impe-

dance theory is primarily concerned with the op-
posite limit, $0»X, nonlocal electrodynamics.
Hence, Caroli's results are only useful for $0«X.
The self-consistent method used here does not
suffer from any restrictions on the relative sizes
of $0 and X, and so provides an independent test
of how various perturbations affect the gap h.

That the LG equations yield the correct qualita-
tive behavior here is still quite a mystery. Nu-
merical calculations are in progress to check the
gap self -consistency.

VII. FINAL DISCUSSION

Maki" and Garfunkel have made surface-im-
pedance theories incorporating static fields. De-
spite radically different formalisms, both theories
try to account for the phenomena of interest by
shifting the energy of the quasiparticles from

c~ -p ~ v„where v, =eA is the screening cur-
rent velocity. That is, they introduce spatial
anisotropy, but maintain spatial homogeneity. We
obtain their results by letting our X,-~. Missing,
of course, are the states confined to or expelled
from the surface region.

Koch ' 6 has measured the derivative of the sur-
face resistance with respect to magnetic field
strength, dB/dH~„versus H~ and concluded that
his data support the existence of surface states.
But this is questionable. In the first place, the
published data give no scale for dR/dH~, so com-
parison with theory is not possible. But even if
their data had appropriate units, transitions from
surface states to continuum states would not pro-
duce the results they"' claim to see. Koch as-
sumes that for some II~ there are surface states
only at a single energy e(Hd, ), and so if the radia-
tion energy ~ is less than b, —a(H~, ), no absorption
occurs. However, a realistic spectrum, as we
have used and he purports to use, shows that for
some H~, there are a continuum of surface-state
energies. Examining Eq. (4. 16) in the light of
this remark does not reveal the singularities and
properties described by Koch. His data must be
considered still open to interpretation.
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The transverse dynamic spin susceptibility for conduction electrons in dirty gapless superconductors, in

particular, in the vortex state of type-II superconductors, is calculated. It is shown that in the gapless region

the dynamic susceptibility consists of two terms, the regular term and the anomalous term. In the

low-frequency region of experimental interest, the regular term reduces to the static spin susceptibility,
which is determined, for example, by the Knight-shift measurement in superconductors, while the anomalous

term has a pole, which is associated with a resonance of the spin of conduction electrons. The resonance

linewidth T, ' is determined from the imaginary part of the resonance frequency. It is shown that T, '

behaves quite differently in the superconducting state depending on whether T, ' in the normal state is

primarily due to the spin-orbit scattering or due to the exchange scattering from the magnetic impurities.

I. INTRODUCTION

Dynamical spin susceptibility for conduction
electrons has been studied extensively both theo-
retically and experimentally, since it provides use-
ful means to study the interaction between the spin
of conduction electrons and the impurities.

Gn the contrary, there appears no relevant cal-
culation for superconductors, partially because in
bulk type-I superconductors magnetic fields are
expulsed from inside of the bulk except in the thin-
skin layer at the surface, which makes the use of
the resonance technique extremely difficult. ' How-
ever, in the case of type-0 superconductors in the
high-field region or thin films, where magnetic
fields are considered almost uniform in the speci-
men, me expect that the electron-spin-resonance
technique can be used to study the spin-scattering
mechanism of conduction electrons from magnetic
and/or nonmagnetic impurities.

In this work we would like to report the calcula-
tion of the dynamical spin susceytibility for con-
duction electrons in dirty superconduetors in high
magnetic fields. %e consider that the supercon-
ductor is either a bulk and in the vortex state or a
very thin film so that the magnetic field in the
specimen is almost uniform. Furthermore, we
assume that the spin-relaxation rate due to the im-
purities is srnaQ.

In most of the calculations, however, we con-
sider a supereondueting thin film in the presence
of parallel magnetic fields, since in the gapless
region the result obtained can be easily general-
ized to describe the spin susceptibility of the type-

II superconductors in the vortex state, if we rein-
terpret appropriately the pair-breaking parameter
in the theory. ~

It is shown that in the gapless region the dynam-
ical susceptibility has a similar expression as the
one in the normal state. Besides the static part,
which is related to the g shift of the impurity spin,
the dynamical susceptibility has a contribution from
the anomalous region which contains a complex
pole. The real and the imaginary part of the en-
ergy corresponding to the pole is interpreted in
terms of the resonance frequency and the linewidth
Tz' for the transverse spin. 3 The linewidth Tl' be-
haves quite differently in the superconducting state
depending on whether Tq is primarily due to the
spin-orbit scattering or due to the exchange scat-
tering from magnetic impurities. In the former
case, T2' decreases rapidly in the superconducting
state, while in the latter case Ta' increases.
Therefore the measurement of T,' in the suyercon-
ducting state provides certainly useful means to
distinguish the two contributions to Tz .

II. FORMULATION

%'e will recapitulate here some of the properties
of a suyercondueting thin film in a parallel magne-
tic field, wliieh are necessary for the calculation
of the dynamical susceptibility. In the presence of
a magnetic field the properties of conductions elec-
trons are described by the Hamiltonian


