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In self-diffusion experiments performed on insulators in which a radioactive tracer is deposited as a
thin source, heterovalent impurities, initially present on the sample surface or in the tracer solution,
may diffuse into the sample along with the tracer. This effect may be important, even for very small
amounts of impurity, since each heterovalent ion entering the lattice automatically introduces one or
more extrinsic vacancies to maintain charge neutrality. If the extrinsic-vacancy concentration is
comparable to the thermal-equilibrium concentration, this effect can cause a marked deviation from the
expected Gaussian behavior. A model is developed for iteratively solving the nonlinear diffusion
equation for the case of an unknown divalent impurity co-diffusing with a monovalent tracer in an
alkali-halide lattice. The solutions show a strong curvature in the tracer profiles, the amount of
curvature depending on the amount and relative diffusivity of the impurity, and on the diffusion time.
The model permits fairly precise determination of the “true” tracer diffusion coefficient and
approximate values for the concentration and diffusivity of the impurity. Experimental results are
presented which show good agreement between the predicted time dependence of the model and

experiment for “carrier-free” Na?? diffusing in NaCl.

I. INTRODUCTION

Although considerable attention has been directed
toward understanding the modification of self-dif-
fusion by randomly distributed impurities in other-
wise pure materials, little effort has been directed
toward consideration of the effect of nonhomoge-
neous impurity distributions introduced by the en-
vironment or by a tracer solution.

Such effects are particularly important in under-
standing the results of tracer-diffusion experiments
in ionic crystals, since heterovalent impurities
which may co-diffuse with the tracer strongly in-
fluence the vacancy concentration. For definite-
ness, we consider the simultaneous diffusion of
solvent tracer atoms and divalent impurities for
the alkali halides. Although the number of impurity
atoms which enter the crystal may be quite small,
local concentrations may be comparable to the
thermal vacancy concentration. In this case, a
large effect is expected since each divalent impu-
rity automatically brings in an extrinsic vacancy to
maintain charge neutrality. Curved penetration
plots attributed to such effects have been observed
in alkali-halide self-diffusion experiments, ! and
the plots appear to become more curved at high
pressure.? Similar effects have also been reported
for the diffusion of divalent cations in monovalent
ionic lattices, ** and, more recently, numerical
calculations® based on the Lidiard model® have re-
produced the curved penetration plots seen experi-
mentally. These numerical calculations show that
the curvature grows worse as the amount of di-
valent ion deposited is increased, or as the dif-
fusion anneal time is decreased.

The present paper is devoted to a theoretical
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treatment of self-diffusion in an ionic crystal as-
suming that a divalent impurity diffuses into the
sample along with the tracer. We derive an analy-
tic approximate expression for the penetration pro-
file which can be compared to experiment, the rele-
vant parameters being the amount of impurity and
the tracer and impurity diffusivities. We assume
that the local tracer diffusivity depends linearly on
the local impurity concentration, a reasonable ap-
proximation for divalent impurities in the alkali
halides.

The main part of the paper, Sec. II, is concerned
with finding an asymptotic (in time) solution to the
appropriate diffusion equation (valid to all orders
in the penetration distance). First, an exact solu-
tion to first order in the impurity concentration is
found for the tracer penetration profile when the
impurity distribution is Gaussian. The tracer pro-
file is curved, the curvature increasing with the
amount of impurity or decreasing diffusion time.

In particular, it is found that one may measure a
penetration profile that is nearly Gaussian over
several orders of magnitude, but whose limiting
slope gives an appreciable error for the tracer
diffusivity. Next, the effect of the extra vacancies
on the impurity’s distribution is considered, and
an iterative procedure is used to find a converging
solution for the impurity distribution. This non-
Gaussian impurity distribution makes slight modi-
fications in the solution of the diffusion equation
for the tracer concentration. Finally, an approxi-
mate solution to second order is derived.

Section III uses the results of Sec. II to interpret
three penetration plots, all taken at the same tem-
perature, but for different anneal times. The im-
plication of these results for the interpretation of
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tracer diffusion experiments is discussed in Sec.
Iv.

II. SOLUTION OF THE DIFFUSION EQUATION

In what follows, we shall assume that the local
tracer diffusivity is proportional to the local vacan-
cy concentration, and, therefore, is a linear func-
tion of the local impurity concentration. We shall
use the following scheme to avoid the complexities
of having to consider coupled flux equations: In
the first step, the impurity is assumed to have a
Gaussian distribution. The resulting equation for
the asymptotic Fourier transform of the tracer
profile can be solved exactly to first order.

In the second step, the impurity distribution is
no longer assumed to be Gaussian, since it is simi-
larly affected by the extra vacancies. For this
case the excess vacancy concentration is propor-
tional to the local concentration of the divalent ion,
so0 the first-order solution is iterated until it con-
verges. This non-Gaussian distribution of the ex-
tra vacancies is used to find the tracer-penetration
profile which is still exact to first order and ap-
proximate to second order in the impurity concen-
tration, Then second-order terms are included in
the final iterated solution for the impurity, and an
improved tracer-penetration profile is found.

For very long anneals, only the first-order Gaus-
sian impurity solution should be necessary; for
shorter anneals, the full expression is needed,
while for a very large effect the present perturba-
tive treatment breaks down.

A. Formal Development for Any Impurity Distribution

We wish to find the solution for the tracer concen-
tration c,(x, t) on the infinite strip —« <x <« for
the diffusion equation

oc, o 2&)
9t - Ax (Pt 9x ’ (1)
with the usual 6-function initial condition. We take

the true tracer-diffusion coefficient to be
D;=Dyo+ Alx, t), (2)

where D, is the constant diffusivity determined by
the homogeneous, intrinsic vacancies and A(x,?)

is the position and time-dependent part of the dif-
fusivity which is proportional to the impurity’s dis-
tribution. The desired solution may be expanded
in terms of the eigenfunctions of the corresponding
separable D,=D,, problem. This results in a set
of linear equations for the expansion coefficients

in terms of matrix elements of the perturbation in
the usual way. To this end, we define the differen-
tial operators

d=dy+56, (3a)
with
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d0=Dt05;'2' (3b)

and
aAa\ @ 82

5(?) o e (3¢)
so that Eq. (1) may be written

ac

=t _

ot —dct' (4)

Since the eigenfunctions of the D,, problem are of
the type’

¢u=explikx/D40)"/* - k%], (5)
we look for a solution of the type

¢ir,t)= J._ dk Ay(t) explikx/ (D)2 K], (6)

The equation for the A,’s is found by substituting
Eq. (6) into Eq. (4), multiplying the resulting ex-
pression by exp[- igx (Do) %], and integrating
over x. This yields

At)e™ ™= ["drA)e™ (q |5 | k), (7a)

where A denotes the time derivative of A, and
1 dx ( igx )
6 |k)=o- =172 exXp|\-—"17z
(alofe) ZWJ:N (Do) P\"0.0)

ikx
x 6 ex ( ) i)
P\ 0,072 (7b)
Note that this is a general expression for any
A(x,t). To go further, we have to assume a func-
tional form for A(x,?) (i.e., an impurity distribu-
tion). We assume that

A(x;t)='yclmp’ (8)
where ¥ is a proportionality constant which relates
the impurity distribution to A(x, ¢).

B. Gaussian Impurity Distribution
If the impurity diffusivity D, is first considered
to be unaffected by the extra vacancies, then the
impurity’s concentration ¢, would have the Gaus-

sian dependence expected for diffusion from a thin
source into a homogeneous material:

c M ekp(—xa/t}Dmt)
Y™ A(maD,ot)t 2 ’

where M is the total number of impurity atoms and
A is the area. In this case,

6exp< ikx )_< -x ik __ki)
(D4)'72 2D;ot (D:0)""? " Dy

¥ M exp(=x°/4D;ot) explikx/ D) *] (44
% A(m4D gt) (102)

(9)

and

(q| 6 |k)==RqCr1/2g~t0i?rt (10b)
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Here

C=yM/AD,o(14D;o) " (11a)
and

7=D;¢/Dyo (11b)

are constants. Equation (7a) now becomes

At)=-qCtV/? [~ dr R Ay(t)
xexpl(q®-k2)t- (k-q)rt]. (12)

We cannot use the usual method of time-depen-
dent perturbation theory to treat Eq. (12) since the
initial distribution is not one of the eigenfunctions
(plane waves), but, rather, a linear combination
of all of them. Noting that A, must be an éven func-
tion of # [Eq. (6)] with the initial condition A,(0)=1,"
we set

Ay0=exp (- 22 a4, (13)
n=
and solve for the a,.

Since C multiplies the integral in Eq. (12), the

first-order equation for a, is simply

27 a,q%"=q '”zf dk k exp[ (g% - k%)t - (k - q)rt]
n=1

=20 (r+ 1y S/2 1M 2e /D (14)

so that, after expanding the right-hand side of Eq.
(14) in powers of g%, we have

a,=Crr+1)™24m3/2/(y _ 1)1

and

(15a)

a,=Crltlr+1)] “/2( (15b)

r+1) (n- 1)'( -5

We can find a simple expression for the tracer
concentration ¢, (x, t) through the use of the formal
result

o a2t _ (2 = /i; ”tﬁ)"') )

8""!
(Z( 1w a,,! W) et (16a)

w1, 9"\ k?y
=exp|(-1)"*a, na )€ R (16b)

where the exponential operator of Eq. (16b) is de-
fined as the operator of Eq. (16a). Then, from
Egs. (6) and (13), we see that ¢, can be written

c4lx, L‘)=f°° dk exp (_ R% - k*a,+ (Dij >

9n ,”' 1/2 x2
= — - d —— —_— —_—
'e"p( Zey ""W)(t) ex"( 40,0)’

(17)
with the first-order form
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cilx,t)= (1—? (-1)a, al;,) (%)1/2 exp(— 4;jot) .

(18)
The necessary derivatives are easily evaluated.
If we call

6= (n/t)!/2e™ (19a)
and

22=x%/4D,,t, (19b)
then

3
¢! 3t" ={=2t)"2n-1)!! (1— 2nz% +in(n-1)z4

n(n-1)"++ (n-k+1) (2220
S+ RTRE-D I

n (22))"
4ees(=1) (M"_l)”>. (20)

From Eq. (15b) we see that

2
n-1)12n-1)"
(21)

("zgt")"— =Cr[ter+1)]"V2[2(r+ 1)] ™

so Eq. (18) becomes

cylx, t)= [1— 2Cv[ tr+ 1)V

o (_ 2 Za)k
X(So(B)w kZi Sx(B) m)] olx,1);  (22)

in the above,

= (26~ 117, (23a)
ﬁ"(Zn -1)1!!
e .?1 @n-1)(n-1)1 ° (23b)
and
S.(B)= E % n(n-1)++ (n-k+1),
E>0. (23¢c)

The sums S,(B) may be evaluated by noting that

S = B _ » 1/2 _1-
°‘(1—z;3)”2‘<r+1> 27

and

(24a)

=(1- ZB)”Z(lﬁzﬁ)k
x(2k=1)11 (z‘kk_—1 * 1'-3_23)

r W2/ 1V ( k 1)
= — “Dr (== .=
<r+1) <27) (2k-1) 11 2k-1"27/"

(24b)
The general form for S, may be verified by
mathematical induction;

sk(B) Bk aBk
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s (228 \ (7 Vs 1 (czy/r)f
(S°(B)+,§S*(B)kx(zk-ol)n)'(ru) (E{ (k-1)1@k-1) "27 5 &I )

_l(L)”z _(m=t
T 2\r+1 v

Finally, using the above in Eq. (22), we see that
the asymptotic form of Inc, is given by

= 2
Inc (x, t)=Incft) - 23 +w
7+1

)" )] 2]

This solution for the tracer concentration c,,
exact to first order in the impurity concentration,
can be written

x2  a2r¥%

c.(x,t)=colt)exp (-— 4_D—,o—t— ey

s 1/2
x fo Eo)dt - S Be)) , (27a)

where
22=x%/4D,ot=2%/r, (27b)
Eo(z)=e"2/f_: e Pdz =R g s (27c)
and
a(t)=yM/ADy(4Dyot )' 2= (n/t)/2C. (27d)

The integral [~ e~ dz enters from the normaliza-
tion condition that

Eie, 0= exp( - %+ %fo Eot)d5 - 5372 Ele) /.[. exp(- 2+ 55

The explicit ¢ dependence in E,(z, t) comes from
a(t). A still better approximation for the impurity’s
diffusivity would be

D;=D; {1+ (a/r*?)E,t)]. (31)

The solution for the impurity concentration to

first order is then
Cimp=[M/A(4D o) ?|E sz, t), (32a)

where
£
Ez(z,t)=exp(—zz+;?7z—g f E,(&,t)dE
0

-2—:977 E\(z, t))/
f exp‘("’-z*” ;“svzrf'El(s,t)de

0

8
(-23/7) 15
1/2 22\1/2 -ef /r
) erf[(—;;“) ]+ £ } . (25)
f{
./;: c,,,,dx:M/A, (28a)
where
Cimp=Me™*/A(14D;t)P= M E(2)/A(4D,t)*/? .
(28b)

C. Iterative Solution for Non-Gaussian Impurity Distribution

If the diffusion time is short or the concentration
is large, then considering the concentration of the
impurity, ¢,,,, as a Gaussian distribution is a poor
approximation since the impurity’s diffusivity
should be similarly affected by the extrinsic va-

cancies. Thus, we take, as a better approxima-
tion,

Dy =D,o(1+ 9 my/Dyo), (29a)
or in terms of «,

Dy=DJ1+(a/r*'?)Ez)]. (29p)

The solution to the diffusion equation for the im-
purity is then given by Eq. (27a) where D, is re-
placed by D,, and 7=1." Since ax(D,()*/?, a is re-
placed by a/»%%, The total amount of impurity

remains fixed so one must renormalize; then
Cimp=[M/A(4D;0t)'"*] Eqz, 1), (30a)

where

Ed)dt - 357 Bole)) dz .
(30b)

az

- 537 El(z,t)) dz. (32b)

This iteration procedure can be repeated indefinite-

ly; after » iterations
Cimp=[M/A(4Dyot)?E (2, ), (33a)

where

E”(z,t)=exp(—zz+;cg!7zg '/0. E"-1(§,t)d£

"'2-;!57!' En-l(z’t))/

f exp(—zz-r’%%j; Epq(E, t)dE

a
-3 E,.(z, t)> dz. (33b)
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The solutions converge after a few iterations;
the number of iterations necessary depends upon
the magnitude of the factor a/7%/%, For a/r¥/2<1,
the solutions converge in three iterations. We can
then use this iterated solution for ¢, as an im-
proved approximation for the distribution of the
extra vacancies; then, for the tracer,

D,=Dy[1+(a/r*'?)E(z,1)] s (34a)
which gives
2 2 8/2
c,(x,t):co(t)exp<- 4;,ot + °—‘r—:~1——
x fo B a5 - TG D) )

This expression for ¢, is still exact to first order
in a, Note that a is the parameter which shows
that the effect increases in direct proportion with
the impurity concentration, inversely with the
square root of time, and inversely with D, to the
$ power.
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D. Approximate Second-Order Solution

The first-order expression for c¢;, Eq. (34b),
is adequate for a/r'/2<0.5. However, for large
@ the rapidly varying term — ar'/%(r + 1)1 E (2, t)
dominates in the near-surface region and gives a
downward spike. Thus, the first-order solution
gives a maximum of the tracer concentration dis-
placed from the origin, for large a, rather than
at the surface. The dotted lines in Fig. 3 which
show the first-order expression for c, for the best-
fit values of a, 7, and D, illustrate how this down-
ward spike increases with increasing a. It thus
becomes apparent that higher-order terms are
needed for a/r'/221,

To find an approximate solution to second order,
including terms in o, we assume that terms of
order o are additive in Inc,. Then,

2
Cp=Cppe® Wt (35)

where G(x,t) is some unknown function and ¢,
is the first-order solution given by Eq. (34b).

The diffusion equation [Eq. (1)], where D, is
given by Eq. (34a), then gives

«2c¢ 9c 3G _ o2 9% o, (G} , 8% c 8¢, 3G
e —‘-‘Lat +a’c, at+Gc, 8t —D, e a—x§1+ac, % +ac,-5;g-+2a ——ﬂa ry
Dya 9E, .2 O 9G
Zn(epa“c =t1 2, —J
+ —-i%-z-r o (e .t a’c, ax) . (36)

After taking derivatives, all terms of zero or first order in « cancel exactly. By collecting terms of
order a? and cancelling the common factor a®c,, we obtain the following approximate differential equation

for G(x, ?):

G 8G 3%¢ x 8G 72

z 2
“tt 5 D052 7 o *ra )k (/ E,,(E,t)dg)

LB, ) @7+1) zE,(2,1) [§ B8, t)dE

2E,(2,1)
(r+1)t

n(ﬁ £)dk — 2’g? Z°E,(z,t)(r+2) t)(r+2)

SEEEDE )@, ) 0 +2) By, )E,t)r=8)  (gq)

27(r+ 1)t 27r%r + 1)t

E,.s(z,t) is proportional to the extrinsic-vacancy

distribution which affects the impurity diffusivity.
Since E,(z,t) is a better approximation to the ex-

trinsic-vacancy distribution, we can change
E, (2,t) to E,(z,t) and then combine terms.
trial solution let

G, t)=Al [, En(£,)dE)*+ BzE (2, ) [} Eal8, 1)dE

As a

+CEZ%z,t)+ Fz?E%(z,t). (38)

If we keep only zero-order terms in the deriva-
tives of G(x,t) and convert E,., into E,, Eq. (37)
then gives

o[ a0 (7

(39a)

re(r+ 1)t 47%r + 1)t )

3 [ i
2 E"(Z, t) f% En(&, t)d& (B 7; l)l (39b)

L 2Edz, t)o E (k, t)dE [_A(r+ 1) B (r- 3)

t r 2\ 7r

1 1 .
Tre1t 272(1’+ 1)} (39c)

E¥z2,t) (A B C(r-1) F 2r+1

it/ Aol Bl A ek, WA —_— —

T (21'+27+ r +2'r+21'('r+1)
. r—-3 )
e, (38d)

aEf,(zz t). (

r (r+3)+—-(1’ 2)———
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r+2 r+2
-t r(r+1)) (39)
zEzu(z!t)

¢ ( (r+ 2)) (39f)

[Note that since a solution requires that Eqs. (39a)-
(39f) be identically zero and since there are only
four parameters for the six equations, the problem
is under specified, and, thus, there is no exact
solution. The following derivation is only for an
approximate solution, ]

As z -, the term [[o E,(£,)dt]?~ 1 and is the
only function which does not go to zero. There-
fore, we may set

A=—7¥(r+ 1),

For the remaining five equations, we have only
three unknowns left. Equation (39) is simplified
most radically by setting

B=F=0,

(40)

(41)

This eliminates the effect of the large terms pro-
portional to z° and z%. This choice also removes
accidental divergences which would otherwise occur
at »=0.5 and = 3. 0 and seem physically unrea-
sonable.

8.(z,t)=exp [—zz+—agz7-g f
r (]

_ 2 az f _ a
j_; exp[ z°+ 372 A E,.,d§ E;mE,,.1+ FE

Then, for the tracer, the diffusion coefficient is
given by

D;=Dy[1+(a/r''?) 8,(z,1)] (45)

and the logarithm of the tracer concentration,lnc,,
is given by Eq. (43), where the term E, is every-
where replaced by 8,:

a27%/?

- x +
4D‘ot r+1

Xf 8n(£9t)d£—'a—r'T

()}

azsﬁ(z, t) 1
(l_r(r+ 1))

-2 ([ s nag )"

The above solution was derived for an infinite strip
—o <x <o, The solution for a semi-infinite strip
0= x <» is the same except that all normalizations
are taken over the interval from 0=x < rather
than — © <x <o,

1

8,(z,t)

(46)
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Since there is no solution for C from Eq. (39d)
when =1, we use Eq. (39e) to find

1 1
€226+ D - “2)

Thus, an approximate solution for Inc, to second
order in a is

2 3/2
clnel (f)_ X, @«2r’*
Inc,=Incy(t) Dt g

¢ arl/?
xfo En(§9t)d§"_,’,:—i—En(z,t)
o’Enz, t) (1 1 ) a’y?
2 “rr+1))  @r+1)

«( [ "Bt nar) . @y

Including the second-order terms in the final
iteration of the impurity gives an improved solution
for the impurity concentration. Then,

M
Cimp= W 84(2,1t),

(44a)

where 8,(z,t) now contains both first- and second-
order terms:

o’E? _41:, (f‘E,,.ldg)z]/

Epydf - 2—,,37'2En-1+ ar

(44b)

(" 2
E{( A E"-ld‘;’) sz

E. Model for Fitting Data from Experiment

[

For the data analysis of the experiment described
in Sec. III the following specific steps were taken.

(i) An approximate solution to the diffusion equa-
tion for the impurity concentration,

ac 9 ac
—dimp _ —~imp
"o (D, % ) , (47a)
where
D;=Do+YCymp, (4'70)

was found by iterating three times. The first itera-
tion proceeded from a Gaussian solution:

C1mp=[M/A(4D;ot)Y?|Eg(z), (48a)
where

Eoe)=e™/ [ e 4= 2071/207 (48b)
and

2%=x%/4D,,t . (48¢c)

(Note that the normalization is over the interval
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0=<x <= gince the experimental arrangement cor-
responds to an initial tracer layer on one end of
the specimen., )

Then we took

D;=Dyo[1+(a/r%?)E(z)] (49a)

and found a second solution to Eq. (47a) which was
exact to first order in a:

Cimp= [M/A(4Dwt)1/2]E1(2; t),
where

E,(z, t)=exp(—zz+f.{s§'z£‘Eo(€)d€ - 2_,,(:7”2 EO(Z))/

o 2 az I 4
fo exp(—z +;37'z-/’; Eq(t)dE

(49b)

a
-3,572 EOCZ)) dz . (49c)
An improved approximation for D, ,
D;=Dy,[1+(a/7*?)E\, t)], (50a)
gave a third solution to Eq. (47a):
Cymp=[M/A(4D;ot)V?|E (2, t), (50b)

where

E2(29 t)=exp(—zz+;g7z-2— ./0‘ El(gst)dg

[+ ]
—27' El(z’t))/
[enlor
exp\—-z2 + 373
() v

x‘{ E1(§,t)d§—2—:s7'e E\, t))dz. (50¢)

(ii) For a/»%% 21 the integral of the first-order
solution for ¢, (before normalization) has con-
verged to within 1% in three iterations; we next
found the solution to Eq. (4'7a) for the impurity dis-
tributionto second order in «, with the impurity dif-
fusivity given by the iterated first-order solution,

Dy=D;o[1+(a/r*/?)Eyfe, 1)]. (1)
This gave for the final impurity distribution
Cimp= [M/A(4D,ot)"?) 85z, 1),
where

e
az a
Sa(z,t)=exp[—zz+,r—37-g l E,de->371 E,

a2 2 aZ L4 2
i 47‘E2'47’Uo Ead&)]/

© z
_,2 oz _ a
]0- exp[ z +;37'2"£ E,d¢ 2—757'2E2

(52a)

o ., o

£ 2
+Z7-;3- Eg-4—rs'<jo. Ezdg) ]dz. (52b)

(iii) Using this result as the best estimate for
the impurity distribution, the tracer-diffusion co-
efficient can then be expressed as

Dy=Dyo[1+ (a/r1/?) 84(z,t)],
and the tracer-penetration profile is given by

2 (127"3,2
4Dt T 741

(53a)

Inc,;=const -

2
85z, t)

art/
7

x[ 8k, 1)dE -~

a? 1
+ —2 83(2, t)(l-r———(r+ 1))

This was the model used to find the best fit for the
preliminary experiment described in Sec. III.

The above model was used to generate the curves
shown in Figs. 1 and 2. The deviation from a
Gaussian form is most noticeable at small penetra-
tion distances where the integral of the exponential
and the exponential terms in Eq. (53b) vary most
rapidly. Figure 1 illustrates how the curvature
becomes more pronounced as the diffusion time
decreases or as the impurity concentration in-
creases, as measured by the parameter a o Mt
Since ais inversely proportional to (D,o)” 2, theeffect
will increase with decreasing temperature.

The deviation from a Gaussian penetration plot
is reduced as 7 increases as seen in Fig. 2, re-
flecting the fact that a rapidly diffusing impurity
is somewhat homogenized before the tracer can
diffuse very far. In this case, although the pene-
tration plot is nearly linear, the limiting slope will
not give the true (impurity-free) diffusion coeffi-
cient.

For a < 0.3 and 7 20. 5 the solution to first order
in a with a Gaussian impurity, Eq. (27a), and the
solution to second order in a with a non-Gaussian
impurity, Eq. (53b), are indistinguishable. Thus,

(53b)

-1/2

InCy (arbitrary units)

X2/ 4Dy t

FIG. 1. Penetration plots for a given diffusivity ratio
r. The plots become more curved as a increases.
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InC; (arbitrary units)

L 1

| 1 Il
x2/4D,  t

FIG. 2. Penetration plots for a given &. The apparent
limiting slope diffusivity increasingly deviates from Dy,
as 7 is increased although the apparent curvature near the
origin decreases.

the first-order solution with a Gaussian impurity,
Eq. (27a), is adequate when a is small.

III. EXPERIMENTAL CHECK
A. Experimental Methods and Results

For a preliminary experiment to test this model
three different samples of NaCl with thin evaporated
layers of Na?? “carrier-free” tracer were simul-
taneously annealed for different times in a single
furnace. Since the samples were diffused simul-
taneously, any systematic temperature errors
would not affect the results, which were concerned
with verifying the existence of time-dependent non-
Gaussian penetration profiles resulting from the
co-diffusion of unknown divalent impurities pre-
sumed to be present in the tracer.

The diffusion specimens were prepared from
Harshaw high-purity NaCl crystals by cleaving
parallelopipeds of dimensions 8 X8 x 3 mm, polishing
the cleaved surfaces with a microtome, and then
annealing the specimens for 2 h at 750 °C in a dried-
argon atmosphere. Na®® tracer, purchased in
“carrier-free” form as NaCl in H,O from Inter-
national Chemical and Nuclear Corporation (ICN),
was simultaneously deposited by vacuum evapora-
tion onto one of the 8 X8 mm surfaces of each speci-
men.

The diffusion anneal was done in a linearly wound
furnace with a nichrome-block core which could be
controlled at a temperature of (616+ 0, 5) °C. The
samples were sealed inside quartz capsules filled
with an argon atmosphere. The furnace was pre-
heated to 616 °C and allowed to reach equilibrium
for several days. The three capsules were placed
in symmetric holes in the nichrome-block furnace
core. Care was taken to remove a sample quickly
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in order to minimize cooling and hence warm-up-
time corrections for the remaining sample(s).

Following the diffusion anneal, the specimens
were microtome sectioned and counted in the man-
ner described in the companion paper by Martin,
Lazarus, and Mitchell. 2 The over-all accuracy of
the measurements, aside from temperature and
timing errors (corrections were made for warm-
up time), was about + 5%.

The above model predicts that to first order in
the concentration of impurity the deviation from a
Gaussian should vary as ¢ "'/2, Therefore, the
samples were annealed for times that had a ratio
of 1: 4:16 so that the parameter a(t) would vary
as 1: 2: 4. Experimental uncertainties, especially
in the ratios of M/A, were estimated as less than
50% in the most extreme case although it is prob-
able that M/A is the same within 10% for the three
specimens.

It was expected that when Inc, was plotted versus
%%/t for the three cases the longest time would be
nearly a straight line (curve a in Fig. 3); the short-
est time would be strongly curved (curve c); and
the intermediate case would be between the other
two. The data shown in Fig. 3 substantiate these
expectations.

The model was used to find fits to the data. The
values of D;y, @, and 7 for the best fits are listed

T i\ T T T T T l= 6||6°C|
---limiting slope
S first order
. = best fit .

. C

Specific Activity (arbitrary units)

- |
7 8 9
(10°%cm%/ sec)

FIG. 3. Penetration profiles of data taken at the same
temperature for different times with computer fits (curve
a, longest time; curve b, intermediate time; curve c,
shortest time). Points labeled + were excluded from the
fitting program. The dotted lines show the curves for
the given values of &, 7, and D,, in which second-order
terms a? were excluded. Inc(t) for this first-order so-
lution was determined by the normalization condition,
The broken line is the limiting slope Gaussian fit.

L 1 )
| 2 3 4 5 6



8 EFFECT OF SURFACE IMPURITIES ON TRACER...

TABLE 1. Na® diffusion in NaCl: best-fit parameters.

Diffusion coefficient

Curve in  Time best fit
Fig. 3 (10 sec) (107% cm?/sec) o r
a 30.0 1.6 0.67 3.1
b 7.6 1.4 1.36 2.1
c 1.9 1.3 2. 52 1.9
in Table I. As seen in Fig. 3 the best fits give ran-

dom errors. The values for a found for the best
fits are 0.6%7, 1. 36, and 2. 52 and have a ratio of

1: 2: 3.8, which is in remarkable agreement with
that predicted from the theory (1: 2: 4). Some of
the agreement may be fortuitous since it is not
known that M /A is identical for the three samples
and the “true” self-diffusion coefficient D,q, which
should have the same value for all three runs, is
found to be 20% higher for the longest-time run
than the average D,, for the intermediate and short-
est times, although the longest-time run had the
least correction, and, therefore, would be expected
to be most reliable.

The average diffusivity found for the Na? tracer
is 35% lower than the value calculated from
Béniére’s results for 616 °C.® Part of this dis-
agreement may be due to temperature errors since
no special precautions were taken to calibrate the
absolute temperature in the present measurements.
Part may be due to the fact that Beniére did not
properly correct for the effects of heterovalent
impurities present in his tracer.

The penetration profile for the shortest-time
run, curve c in Fig. 3, shows an inflection upward
in the near-surface region. The theoretical fit
also shows such an inflection, but it is not clear
whether this is genuine or if the present model is
adequate to explain that extreme case. The inflec-
tion could be due to experimental difficulties such
as surface hold up.

The identity of the impurity in the present experi-
ment is unknown. Mass spectrographic examina-
tion of the Na?? tracer disclosed no detectable
amount of Mg?* or other heterovalent impurity.
Other recent work using ICN’s “carrier-free”

Na?? tracer for measurements of the isotope ef-
fect in NaCl showed some deviation from a Gaus-
sian in the near-surface region, t Analysis of that
tracer showed that it contained about 300-pg/ml
Ca'™, although it is not known whether the Ca**
came from the supplier. In one case the non-
Gaussian behavior was attributed to the presence
of Pb**. Since Na?? is made in a cyclotron from

a Mg?%(d, a) reaction, some residue of Mg could
easily be in the tracer. After bombardment the
Na?? is present only as parts per million in the Mg.
Since excited Mg® has a half-life of only 15 sec,
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it will not show up when the tracer is tested for
its radio-chemical purity. The specific activity
of pure Na?? is 6 Ci/mg. The specific activity of
the tracer, however, is only about 10 mCi/mg.
From this difference, it seems evident that there
must be about 600 neutral atoms per tracer atom.
The manufacturer estimated that there are at
least 30-150 parts Na®® and 100 parts Mg to
1 part Na® in the “carrier-free” Na%.°®

The diffusivity of Mg in NaCl is unknown. Béniére
measured the diffusion of Ca** in NaCl.® Interpolat-
ing between his points would give Dgg+= 3. 1x1071°
cm?/sec at 616 °C. The average diffusion coeffi-
cient for the unknown impurity from the fits of the
present data is 3. 5(x 1.4)x10°° cm?/sec. Thus
calcium, possibly introduced via the desiccant
(Drierite) used in storing specimens, magnesium
present in the tracer, or both, could be heterova-
lent impurities.

B. Fitting Procedure

In the present case the diffusivity and initial con-
centration of the impurity are completely unknown;
so the values of 7, @, and D,, can only be obtained
by finding the best-fit solutions to the measured
tracer-penetration profiles. Figures 4—6 show the
variances near the absolute minima to illustrate
the uncertainty in determining »=D;q/D,o and
F=D,y/D.y. For the final fit, the computer was
programmed to do a much finer search around each
absolute minimum. The numbers given in Figs.
4-6 are the variances multiplied by 1000. In deter-
mining the variances the first two sections were
always ignored. The thickness of the first section
was determined by collecting the dust and then
weighing it, so probable errors are larger for this
point. The second section was also ignored be-

D’lo
Daverage

F =

Dio
r= ——
Do

FIG. 4. Field plots of the variances multiplied by
1000 for the longest-time run from the best fits for various
v and F,



1724

89 103

R S
' e

.70 2597 187 115 79 73 88 109 130 149

.65 2912 212 129 95 96 116 142 168 192
T T T T T T T T T
3.0 3.5 4.0 4.5

FIG. 5. Field plots of the variances multiplied by 1000
for the intermediate-time run,

cause uncollected dust from the first section might
be included in it. The background was generally
80+ 10 counts per min. Even though at least 10 000
counts were always taken and the background was
checked periodically, a variation in the background
could introduce significant errors in sections of
very low activity, so sections with counting rates
less than three times the background were also ex-
cluded from the fit. Figure 3 shows these points
with a different symbol.

For a given 7 and F, successive solutions were
tried by the computer to give the minimum variance
with a as the variable parameter. The value of «
was determined to + 0. 001. Since Inc, is linear in
the normalization constant, Inc(t), values of
Inc(t) were easily calculated to minimize the
variances. As the lines of equal variance in Figs.
4-6 show, there is a range in 7 and F which give
equivalent fits. Since there were only 15-25 points
per profile, there is no statistical guarantee that
the “small” fluctuations are random or that the ab-
solute minimum represents the “true fit.”

In order to see how a, 7, and F were related,
plots similar to Figs. 4-6 were generated using
simulated data for which @, 7, and D,y were known.
Simulated data for the Gaussian case (a=0) gave
a shallow horizontal valley (i.e., the minimum for
any 7 occurred at the same F) with the variance
small and approximately the same in the valley for
all ». This is not surprising since a would be
small for good fits and the fits would be essentially
independent of ». For large a~ 3 the minimum
variance followed a constant » as F changed. The
variance went up quickly as F moved away from
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its true value. However, there was still a range
of + 5% in D,q for which the variance was less than
our experimental errors. For intermediate a’s
the minimum variances formed a diagonal trough
and then eventually followed a constant . In some
cases a range of + 50% in 7 would produce accept-
able variances (less than 0. 03 which is our back-
ground). This range in 7 makes precise deter-
mination of a or F difficult. Thus, as long as
none of the parameters @, 7, and F are known

a priori, it is difficult to determine all three with-
in small limits. Fortunately, the value of F, the
correct factor for the tracer diffusivity, can be
determined within satisfactorily small limits of
uncertainty: e.g., for Ar=x 50% and Aa =+ 30%,
AF does not exceed + 15%. The actual data tended
to show a smaller range in «, 7, and F for accept-
able fits,

IV. DISCUSSION

Figures 1 and 2 point out the necessity of great
caution in the interpretation of penetration plots
that show any downward curvature near the origin.
In particular, it is found that one may measure a
penetration plot that is nearly linear over several
orders of magnitude, but whose slope gives a dif-
fusivity seriously in error. For example, the
curve corresponding to a@=0. 5 in Fig. 1 leads to
an error of some 10% in determining the diffusivity
from the limiting slope.

Since the ratio of diffusivities in Fig. 1 is unity,
the curves can represent the diffusion of divalent
tracer ions into monovalent ionic crystals such as
Ca™ in NaCl. The impurity effect is inherently
present in such cases, and so the standard tech-
nique of determining the diffusion coefficient from
the slope of the penetration profile can be applied

1.40 99 96 97 101 108 115 122 130 137
1.35 98 91 90 94 100 107 115 123 131
1.30 98 87 84 86 92 100, 108 117 125

100
92\101 111 120

105 115

1.25 100 84 78 79 84
1.20 105 83
[
o 1.15 112 83 99 111
o

g 110 | 122 85 95\ 109

o
O 1.05 134 88 93 109

n 1.00 147 93 94, 112
W95 161 98 101 121
.90 175 105 112 137
.85 190 113 133 158

.80 215 121 162 190

.75 260 130 200 232

.70 325 146 106 103 131 171 211 248 284
T T T T T T T T T

1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

r=—

Dto

FIG. 6. Field plots of the variances multiplied by 1000
for the shortest-time run.
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to interpret diffusion results for divalent ions only
in the limit of vanishingly small concentrations or
very long anneal times. Curved penetration plots
have been seen experimentally for Ca** in NaCl. °
Numerical calculations based on the Lidiard model
have shown that the curvature grows worse as the
amount of divalent ion deposited is increased or
the diffusion anneal time is decreased which agree
with the predictions of our model. Our model was
used to fit their simulated curves, showed very
precise fits, and, most significantly, showed that
the Lidiard model underestimated the needed cor-
rection by about a factor of 2.

Particular care should be taken in all tracer-
diffusion measurements in insulators to verify that
measured diffusion coefficients are actually time
independent. Due to experimental difficulties such
as surface hold-up which can mask the curvature
in the near-surface region, a finding of apparently
Gaussian profiles is not always a reliable criterion
for assuming that the measured slope is propor-
tional to the actual diffusivity. Often the amount
of tracer deposited, and hence the impurity present
is the same for a set of samples in a given labora-
tory, and the anneal times are chosen to keep the
penetration length (4D,ot)*/? about constant. Then

’
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a wouldvary as (D,o)™. This effect can lead to mea-
sured diffusion coefficients which fit an Arrhenius
plot, but which give an activation energy that is too
low. Since the divalent ion is likely to have a lower
activation energy for diffusion than the monovalent
tracer, 7 is likely to increase as the temperature
is decreased. As seen in Fig. 2 the curves for
large 7 show less apparent curvature for a given
a, although the limiting slope is in greater error.
Thus, the variation with » could tend to reduce the
curvature in the near-surface region while in-
creasing the concentration of tracer in the bulk,
and thus prevent the effect from showing up as
strongly as expected from the increase in a at
lower temperatures.

Since the knowledge of the self-diffusion coef-
ficients of the lattice atoms is basic to the under-
standing of all mass transport phenomena, it is
important that the true self-diffusion coefficients
are extracted from the curved non-Gaussian
profiles rather than assuming that the limiting
slope will give the bulk diffusion coefficient. Clear-
ly, this problem applies to tracer diffusion studies
in all insulating solids, since tracers can never be
made absolutely free from impurities. A detailed
study of this effect is being undertaken.
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