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A theory of multiphonon absorption due to anharmonicity in crystals is presented, employing a
Green's-function technique. In contrast to previous theories, we do not expand the lattice-interaction
potential in powers of displacements. We are therefore able to obtain a single expression for the absorption
coeAicient a, which includes various classes of contributions to infinite order in phonons, and which is valid
for all frequencies in the multiphonon regime. The results involve just the displacement-correlation tensor
of the lattice, and the Fourier components of the interatomic potential v. Simplified expressions are obtained
for isotropic models, and specific choices of v. Within the Einstein model, one finds an exponential
behavior, a(co) e "„predicted values of cr within the model are found to be in good agreement with
recent experimental data on alkali halides. A general technique for evaluating a, the method of
convolutions, is elaborated. Predictions regarding the frequency and temperature dependence of n are
discussed and compared with other work.

I. INTRODUCTION

Multiphonon absorption in crystals has its origin
in two types of physical interactions: anharmo-
nicity and higher-order electric moments. While
the electric-moment interaction allows for direct
excitation of ph~nons by light, the anharmonic in-
teraction must act in conjunction with the electric-
moment interaction to produce absorption. A
number of papers have calculated the absorption due
to anharmonicity and higher order electric -mo-
ments separately, as well as in combination with
each other. From the results of these calcul. ations
it i.s not evident under just what conditions anhar-
monic effects, as opposed to those due to higher-
order electric moments, dominate. In recent work
on the latter question, it was found' that, for low-

order multiphonon processes, either mechanism
may dominate within a range of actual representa-
tive materials.

There has been much interest recently in con-
nection with highly transparent ultrapure infrared
materials, which, for example, are necessary to
provide relatively distortion-free optical elements
for high-power laser applications. 6 In practice,
the useful frequency range of such materials is the
many-phonon regime above the fundamental phonon
frequency, but well below the electronic gap. Past
calculations' of multiphonon effects have been
concerned chiefly with photon frequencies near
resonance, and have employed perturbative expan-
sions of the lattice potential in powers of lattice
displacements in order to calculate the quantities
of interest. Such methods become extremely
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laborious and unwieldy for higher-order phonon
processes, where an increasing multiplicity of
contributions to a perturbation formalism result.
For this reason, it is desirable to introduce an ap-
proach to the calculation of multiphonon absorption
in the transparent regime of crystals in which the
anharmonic potential is not expanded in phonon
displacements. The latter constitutes the prin-
cipal objective of the present mork.

%e here restrict consideration to the l.inear re-
sponse to the photon field, for crystals with a
nonvanishing dipole moment. The effects of an-
harmonicity are then considered for transitions
mediated by just the dipole portion of the electric
moment characterizing intrinsic bulk processes.
The treatment is restricted here in this fashion
because these conditions constitute a well-known
historical problem, and because they provide a
relatively simple and transparent framemork for
the appl, ication of the present techniques. How-

ever, the techniques to be developed here may, in
fact, be easily extended to treating higher-order
moments and anharmonicity simultaneously, and
to nonlinear effects, aspects of which we intend to
pursue in future work. The extension to suxface
and impurity absorption may be carried out in a
similar fashion as mell.

The present treatment hinges on the abil. ity to
express the full lattice-interaction potential in the
forn1 of a sum of interactions between pairs of
atoms in the crystal in the forIn

V=- Z v...(%„-%„,),
2 riess'

where v„.(Tt„—R~, ) is the interaction between the
sth atom in cell l and the s th atom in cell j, and
the sum is restricted to Es4 js . A description of
the lattice on the basis of V alone, while physically
intuitive, does involve certain assumptions, such
as the complete separation of the electronic motion
from the ionic motion (i. e. , adiabaticity), and
the validity of the point-ion model. %'e do not con-
sider here the question of justification of this form
for V; rather, we will assume that such a Vdoes,
in fact, allow for an adequate description of lattice
interactions in the infrared.

In Sec. II me express the complex dielectric sus-
ceptibility y in terms of a lattice Green's function
G, An exact expression for G is then derived, in
which the principal contribution to the absorption
is given by a Green's function P(k, &o) involving the
anharmonic potential V„. The evaluation of P is
carried out in the harmonic ensemble, in terms of
the displacement-displacement correlation tensor
of the lattice and the momentum Fourier coeffi-
cients of the potential e. In See. III, P is further
evaluated for a diatomic lattice, for a simplified
choice of potentials, and for an Einstein model of

the lattice. Also, the application of a general
technique for numerically evaluating P, the method
of convolutions, is described, Finally, the pres-
ent method and results are discussed and compared
with previous ones and with experiment in Sec. IV.

II. GREEN'S FUNCTION FOR MULTIPHONON
ABSORPTION

The interaction between atoms in a crystal. l.at-
tice may be expressed as'

V= — P v„.(5(, —R,.s. )
2 ~r'ss'

~s'&(u'N(-fl( ~ )&(u'(u( -u, ~ &

at~'ss'
(2a)

Bu = bp —b(»
(4)

The complex dielectric susceptibility y describ-
ing the linear response to an external photon field
is given by'

X(k~) = -G.(bf;(f);~;(o)),
where k and ~ are the photon wave vector and fre-
quency and Mp is the corresponding electric-mo-

where, with v, the position vector of the sth atom
within a unit cell,

~s' 4 &
(u(» -» '~ )(yp'+ vs'') (2b)

where v; is the Fourier transform of v(%),

VP'=Z e""(v„.(&,) . (2c)
R]

0, is the e(luilibrium position of lattice atom /, and

u, its displacement from equilibrium; the terms
with Es= l s are to be excluded in the sum. The
normal modes of the lattice (noninteracting pho-
nons) are determined by the terms in V(luadratic
in the u, 's; the terms linear in the u, 's may be
shown to vanish for periodic lattices. One then
defines an anharmonic potential V„as the portion
of V containing terms cubic and higher in the u, 's.
For the present purposes we mill be concerned
primarily with calcul. ating multiphonon transitions
involving at least three phonons, in which ease the
potential V„will, in fact, be replaceable with V.

The phonon HamiltoMan including anharmoMclty
takes the form (ff=l)

H=eo+ V

&0=& (dfubrubuu ~

P7e

where bs are creation-annihilation operators for
phonons of wave vector k and branch e, and erg

are the corresponding frequencies. It will be con-
venient in what follows to work also with operators
A, B defined as

&~e =&~e+&-re y
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ment operator. The notation O(t) indicates an op-
erator in the Heisenberg representation,

0(t) e& Ht 0e-& H&

G is the retarded Green's function (GF)

(6)

G„= (2w)
' f dte'"'G(t) . (6)

For simplicity, we have written y for the isotropic
case, where y is a scalar; extension to the tensor
is straightforward, but would clutter the develop-
ment with needless notational difficulties, and will
not be considered here. Also, we restrict our-
selves to a dipole moment characterizing just a
single infrared-active (TO) mode of frequency &0((,

namely,

MP= mph'. j, ,

where we suppress the TO branch index in writing
Ap and cop; mg is a coupling coefficient which has
been displayed in a variety of places and whose
explicit form is not of special concern here. One
observes that the evaluation of y, and hence the
infrared optical properties of the crystal, in the
above case involves essentially just the evaluation
of the single Green's function G(k&d) = G„(A(,;A (,).

Application of the equation-of-motion method to
the calculation of G yields the result

G(k(o) = [(w/(df)(&d' —(u~&)+ IJ(k, (o)] ', (10)

where II, known as the proper self-energy func-
tion, takes the form

G(A(t);B(0)) -=—t8(t) ([A(t), B(0)]), (7)

where 8 is the Heaviside function and () indicates
a thermal average over the eigenstates of H; the
notation G„ indicates a Fourier transform with re-
spect to ~,

expressing our original GF in terms of other more
complicated ones. ' It will therefore be necessary
to introduce approximations into the calculation of
G in order to proceed further. For our purposes
we are primarily interested in the imaginary part
of 7, which is the principal function determining
the shape of the absorption in the transparent re-
gime. The approximation we will employ in what
follows is to evaluate the thermal average in P
over the unperturbed Hamiltonian H0, rather than
the full H (= HQ+ V). As will be pointed out later,
it is possible, in principle, to do better than this
by employing a cumulant expansion for the averag-
ing, which leads in a first approximation to a set
of coupled transcendental equations for GF's of
the form G(A„„(t);A f„(0)). Unfortunately, however,
the solution of such a set of equations will not, in
general, be a practical possibility.

The principal function determining the infrared
absorption is the imaginary part of y. This may
be seen" by expressing the absorption coefficient
a, defined as the probability of absorption per
unit length of crystal, as

Q((0) = 4w(Qp/c)K& (&u) ImX(&&() (16)

where (&,(&0) is the real part of the refractive in-
dex defined from (&,(&0) =Re {I+4w[ya+y(&u) ]j'
where g is the background dielectric suscepti-
bility. Kg varies slowly as a function of ~ in the
transparent regime of interest here, so that the
shape of the absorption spectrum is determined,
essentially, by just ImX alone. One has, measur-
ing X in units of m-„,

ime(&d) = Imii([w(d„(&d —&o„-) + Reii]~+ (Imil)~j ',
(16a)

where

Reli = [w&d„(co~ —cu4) ReT'+ I P II]D,

where

P(k&d ) = —,
' ([Ff,B,'-]) + P(k&d),

P(k&o) = G„(F„;F;),
F((= g [B((, V~1 .

(12)

ImII = [w&d~' (&o~ —&a~i) Im P]D,

D= w&dg (lo —(d((}
[w~„='(~' —&d )+ ReP]'+ (ImP)w

'

In the limit where e —coa» I T1, one obtains
II=P, so that

(16b)

These results are derived in detail in Appendix A.
If one restricts consideration to just the lowest-
order contribution to II, for example, then II-P,
and

G(k(o) -[(w/&df)(&d' —(o~&)+ P(k(u)] ',
where

&d& = (da+ ([Fg, Bi~] &((d„-/w) (14)

are renormalized frequencies and P is a "polariza-
tion function. " Since P and P themselves involve
Green's functions, we have simply succeeded in

where

ImP(k&o)
w'&d='((o' —&~o-)'+ [ImP(k&d)]' ' (17a)

&d;= &o~+ &o(, w
' ReP(k&d) (17b)

and where we have used the fact that ([F„-,Bt]) is
real. The latter also enables us to replace ImP
=ImP in Eqs. (16b), in general. Thus the prin-
cipal function involved in the absorption line shape
is just ImP(ku). To evaluate this function we first
calculate a related quantity, the correlation func-
tion
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&;(f)= &Ff(f)F.;(0)&, {18)

from which the Green's function P(k&o) may be ob-
tained in standard fashion; specifically, 'P

1 1ImP= ——
2 n((u)+1

1 ~" 5( )d
2w [n(»)) +1]{»)-»)) '

where 5' indicates principal parts integral;

n(»))=(e "—1) ', (19b)

and the limit+ i& is employed in evaluating P.
In the development to follow, we will evaluate P

in the harmonic ensemble. In this approximation,
it is clear that only terms cubic or higher can
contribute to ImP for (d & Bar, where ~ is the
maximum phonon frequency. Physically, this just
reflects conservation of energy in real phonon pro-
cesses. (Actually, a more careful examination
of the explicit form of ImP reveals that the Latter
condition can be relaxed to ro &to„.) Thus one may
replace V„by V in the calcul, ation of ImP in this
regime, a condition which is not essential for the
evaluation of ImP, but which does simplify the
algebra considerably. Employing the standard ex-
pression for u, in terms of the A's one then obtains

I

directly

q ' f-keFf = 2i P ef'
{2& })I»

f g-f)»R&-fq»R&s fif» {ii u s ~ ) (20)

——,
' 8 ~ &u,ua& ~ 8+ X ~ &u,u, ) ~ B],

whence y def inlIlg

Rf = R& -Rt' ~ Bs = n& - R&s, n3 = R& -R»-p -p - Wp -o w -p -0

one obtains, using various symmetry relationss
and switching around labels,

(22)

where f is the polarization vector of the TO phonon
and m, the mass of the 8th atom. One notes that
the terms with s=s vanish for k=o. Using (20),

I

() p (q'f »)(q 'fa)
g)g&II ~ 2N((Oj(d )m~ ftt„)
Pso'~'

4 «p I ~ ~p ~ I «px exp[i(q —k) ~ Pc; —fq ~ H, .+ i(q + k) Fc& —iq ~ H&. ]
)li'(lT) IT) ~ )e)f '(Ill~ ITyr ~ )) (21)

The thermal average may be carried out in the Hp

ensemble by application of Glauber's theorem, '~

&e)2'")e'm'&&=exp[ ——,'X &u, u, & X

~(f) =—Z (~~ )-'"(q f- )(q ~- )oft*-" ' Z e"'")-'"'"&'"'"»

.&&exp{- »q ~ C (0, 0) q —2q ~ C„(0,0) ~ q —aq ~ C„„(0,0).q' —» q' ~ C, , (0, 0) q' +q C„,(fly 0) q

+q ~ C„...(R», 0) q +q ~ [C„„.(-HB, f)+ C„e(BH», -HS, f)- C„.(H»-H», f) —C,„.(-H, —B~, f)] ~ q'j, (22}

where C is the displacement-displacement cor-
relation tensor of the lattice, f~

C„(%„f) = &u, (B„f)u,(O, O)), {2

and where we have employed the translational. in-
variance of the crystal in arriving at the result,
Eq. (23). For k=o, terms with r=s and s=t'
vanish identically and may be omitted from the
sum. For crystals with many atoms per unit cell,
one requires knowledge of a multiplicity of cor-
relation tensors involving the different varieties of
atoms, (For a diatomic lattice, for example, one
requires three correlation tensors: Cf f Cgg and

C)». ) Explicitly, C takes the form'

Cpg {%$f)
2iv Q ( )f /»

Rljys Bgs

x[e'"""fr"(n~+1)+ e """"f"n„"„],'(25)

f

where nf„-=(e ")) —1) ). Thus, evaluation of C in
full requires, in general, a knowledge of the pho-
non spectrum and the polarization vectors fg„, over
the entire Brillouin zone.

%'e comment briefly on the form of 5 when the
thermal average is carried out over H rather than

Hp. A cumulant expansion for this case shows'3

&e' 'r) e ' '"»&=exp[ ——,'X ~ &u,u, ) X

——,
' 8 ~ &u u»& 5+ X&u u, & 5+. . . ] (26)

where the omitted terms involve terms cubic or
higher in the u's (actually, a term of the form
&u)&&u,& does arise, but it is unimportant because
it is time independent}. Thus, truncating the series
in lowest order, one obtains results of the same
form as for the harmonic case. However, since the
anharmonic functions of the form &u, ua) are un-
known, it is necessary to express these, in turn,
in terms of GF's for the Ap 's. This procedure
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leads to a rather complicated set of coupled trans-
cendental equations involving all the functions
G(As„;A&), the solution of which very clearly is
either difficult or impossible in the general case.
The restriction to harmonic averaging in F is thus
a practical necessity for actual computations.

III. EVALUATION OF P(ku) FOR MODEL SYSTEMS

The results for P(t) given in Eq. (23) account for
the full complexity of the crystal structure and
phonon spectrum of real crystals. In this section
we concern ourselves with eliciting just the prin-
cipal features of the frequency and temperature
dependence of P(k&o), rather than with those prop-
erties associated with the details of the vibrational
spectra of real crystals. For this purpose it is
useful to specialize to the case of diatomic crys-

tais. Moreover, we simplify the discussion by
considering an isotropic model, where the tensor
C becomes a scalar.

For the above case it follows directly from Eqs.
(20) that for k=0,

q. W 0
y' =2i 5 v ~ e'" 'e" &"r "&-""«"&'s'

(27)

where 1 and 2 label the two atoms in the unit cell,
]2K—= K&

—Ks~ vs= 4(vf +vs), and

W=-f m —f mf mg 2m2

Of course W can be simplified further for the TO
mode at k=0, but this is unimportant for the pres-
ent purposes, except to note that 4' 4 0. Then
for an isotropic modeL one obtains

&y(t)= — P e"' &" sh(q, q )e'"'" ' ' exp(- —', (q + q )[C„(00)+Css(0,0) +q C s(R„O)+ q C s(Rs, O)]
qq

+ q ~ q [C«( —Rs, t)+ Css(Rs —R& —Rsi t) —C&s(Rs —Rsi t) —C&s( —R& —Rs, t)]}, (28a)

where

h(q, q ) =- (2/&os) W v, q q v;vg. , (28b)

where v, is the volume per particle.
The integrations over q and q

' can be carried out analytically for a variety of special cases, such as when
202

v~ is a sum of Gaussian functions. For the case of a single Gaussian, for example, where v~= vpe ~ ', one
obtains upon integrating over q and q '&

—27r3

p R] 4' Qg
—D a'=a

R=5+«,
(29a)

where

a&
——s [Cgf(00)+ Css(00)] —C&s(5&, 0)+ R&&,

as = s [C«(00) + Css(00) ]—C,s(Rs, 0) + Rs,
(29b)

D = C«( —Rs, t) + Css (5s —5& —Rs, t)

—C&s(Rs —Rs, t) —C&s( —R& —%s, t) .
One may derive analogous results for other

choices of v„although the Gaussian form turns
out to be especially simple for explicit calcula-
tions. It should be noted that the present Gaussian
function in R space is of the form e "'

&

which thus includes, in general, nonvanishing con-
tributions to all orders of phonon processes. This
function should not be confused with those of the
form e" &s o', where %s is the intracell equilib-

'

rium distance, for which the principal contribu-
tion to even-order phonon processes vanishes.

Einstein model. This model provides a highly
oversimplified view of crystal vibrations, which is

I

nevertheless often useful for qualitative purposes. "
In the model, all correlations between different
crystalline sites are neglected; the crystal is
characterized by a single vibrational frequency Q)p

for all k. The correlation function becomes (as-
suming three equivalent phonon branches)

aa C» (R&, t) = C~~ti(R&)[e '"o' (ns+ l) + e'"o' ln, s

(30)
82

2 (o,«0(m, m, )'~s '

where ~ is the lattice constant, in which units we
henceforth scale all lengths (e. g. , R R/as,
C C/«s, etc. ). When C is inserted in the diatomic
model for 8'(t) given in Eq. (28), the 6 function in
(30) enables the sums over the R, to be carried out
straightforwardly. Since the latter sums can be
carried out explicitly, it is advisable no longer to
restrict the choice of v; as in Eq. (29). Rather we
obtain results with just sums over q and q

' remain-
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ing, but with the choice of ~ arbitrary. It is con-
venient in the present development to neglect the
Debye-Wailer-like terms' involving C(0, 0}and

C(%, 0), as these are generally negligible, except
at very high temperatures, for v s of range ro/so
»Cz+, which is the case of interest here. (If the
potential vg does not fall off exponentially, however,

I

these need be retained to ensure convergence of
the q integrals. ) Also, it is somewhat simpler to
work with the Fourier transform F(&o) directly, be-
fore carrying out the sums over 5, . Employing
the well-known relations (see Ref. 13}for evaluat-
ing transforms of exponentials of the form in Eq,
(29), one obtains

$((o) =Q 5((u -n(oo)A„,

n/2
A„= Q e"' s " '

ah{ad, q') ~
l

e'»'"~ ', I„(2q[n (n +I)]~~ q ~ q )
np

(31)

Q -=Cog A(R~) + Cqqh{%q —Rq —Rs) —Cgg A(Rg —R~) —C~qA(R~ + 5~),

where In is the modified Bessel function of order n. The sums over R, are straightforward, but somewhat
tedious; the final result is (n 0), omitting the E superscript in CI»~,

A„=P gh{q —q +G)[I„((C„+C )F) —I„(C„F)-I„{CY)]+Nb(q+q +G)[I„(—2C, F) —2I„(-C, F)]
CC

—I„((Cg)+ CII,,) F) —I„(—2Cu, F) —2I„((C~—Cga) F) —2I„((C)q
—Cqq) F)

+I„{{Cfg+Cgg —2Cga) F)+ 2I„(Cg, F)+ 2I„(C~F)+4I„{—C,g Y)) h(q, q')e'" ' '(no+ I/no)", (32)

where

F-=2q q'[sa(so+ I)]'"
and 6 is a reciprocal-lattice vector. "

Although Eq. (32) is rigorous for the model con-
sidered, it is unnecessarily complicated for elicit-
ing a qualitative estimate of the frequency depen-
dence of e. For the latter purpose, it is prefer-
able to consider a simplified model where only in-
teractions between atoms within the same cell are
considered, and restriction is made to the optic
vibrations of these atoms. The former amounts to
choosing 5, = Rz —-0 in Eq. (28); this is physically
reasonable for the optic modes because the short-
range potential turns out to yield the dominant con-
tribution to multiphonon absorption. If we now re-
tain the tensor character of C in deriving 5, then

+ ln/2

~0~g SQ ]

xI„(2[no(so+ 1}l ~ (C„f, ~ g ~ q

+C~f~ qfz q —2C&zfq qfz q')), (33)

where

ho=2~0'g .
We now choose f1 and f2 to lie along the vector z;
then fq=-fz=», if&! =(mz/m~) lfzl, and if~I + l&zl

=1.

A„= ho Z e"~ ~ '"
vf v,*(» ~ q) (» ~ q')

where

XI„(2[n,(n, +1)]'"(» q)(». q') Cs), (34)

2 2 3
C~=fqC„+fq Cap —2f,fmC, I=—

where

= —,
' hof„Cs(no+ 1)"/n!, (35)

2F1f„= „„v(r}-
Thus the strength of the nth peak is determined
among other things by the square of the (n+ 1)th
derivative of the interatomic potential in real space,
evaluated at the equilibrium separation distance

The absorption coefficient involves

a((u) ~n '[I+n(&o)] 'A„. (36)

where p, is the reduced mass, p = m1 +mz . We
have again neglected Debye-Wailer factors as be-
fore, which can be shown to be valid for low tem-
peratures, as long as the anharmonicity parameter
CORDI(where Ro is the falloff parameter in the po-
tential) is small compared to unity. At low tem-
peratures we need keep just the lowest-order term
in the expansion of I„, whence

A

Ipf gg ( )n 1 s(%)+
n 4 e vga ~ q nfa
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For low temperatures and values of ~ of interest
here, we may approximate 1+ss(&o) by unity; then

1na= —1n{ss!n )+n ln[Cz{sss+1)]+ ln(f )+ const.

(37)
An often-used potential for alkali halides is the

Born-Mayer potential, where the short-range
potential, which yields the dominant contribution
to higher-order derivatives in Eq. (35), is of the
form

1 I!fV{D) '

nf eD"
~ DO

p~ = (2v&
' J dt e '"'D(H„ t ),

p.i=3 d~ p.(~ ~')pi(~') .
(41b)

Here p„ is the nth convolution of B. One obta, ins
an alternative expression for g„by expanding in
powers of D @nor to integrating over q and q,
whence

o(s)=e'", (38) g„= (1/n! ) f dqdq' e+'"& '"'"&'"'"s
Is (Isqq')e'"'~~ '

8:(t)= P J'(5~, %s, %s, D(%„%s,%s, t)) .
1%2%3

{40)

Then, expanding J in a Taylor series in' yields
((o &0)

P(&u) =P g~(%&%sHs) p (HiHsHs&o) (41a}
n=1% I

1 2

where

with X=16-20 for most alkali halides, when r is
measured in units of g. Thus,

inn = —ss((1/n) 1n(n!n ) —In[Cd(sss+ 1)Xs] f+ const
(38)

The factor n ' in(n! n }varies from ™l. 8 to -2. 1
for n = 4 to 10; thus e is very nearly exponential as
a function of n=&g/us in this range. Very similar
results are obtained for a power law v as well.
Thus within the Einstein mode), it can be shown
that exponential behavior is satisfied approximately,
although not exactly, over fairly large regions of
&o, and for a variety of interatomic potentials.

Note that if v~ does not exist, then strictly speak-
ing one needs to modify o(r) before applying the
above procedures. For example, one might use
(s' +y ) and r e~" in place of s

~ and s

(m&0), respectively; in the end result, one sets
y~0

Cosseolution exPansion for 0'. In general, neither
the Fourier transform with respect to t, nor the
sums over 5, in F, can be carried out analytically,
On the other hand, the sums over the @ may be
carried out explicitly for certain choices of v, as
already illustrated for the case of a Gaussian v;,
for example. Thus, it is of special interest to
devise suitably general techniques for evaluating
F(&o) which take these observations into account.
We consider here one such method, that of the
convolution expansion, which appears to be espe-
cially promising for actual computations in a variety
of cases. We note that variations of this tech-
nique have, in fact, been appl, ied previously in
some similar problems. '

Let us assume that the sums over q and q in
Eqs. (28) have been carried out, yielding a func-
tional of D which we write in the form

& exp{- s (4 + q' )[Cgg(00)+ Css(00)]

+ 4 Cps(5(, 0}+tf Css(5s, 0}+q' q ) ~ (42)

The choice of whether to first integrate and take
derivatives, or integrate directly as in (42), may
be dictated entirely as a matter of convenience.

The series (4la} has a number of computational
and interpretational advantages in the present case,
among which are the following: (a) The function

~ is generally expressible in closed form, while
D is not. (b) The p„are easily generated from @
by recursive means on a digital computer, or via
analytic approximations. ~s (c) The function ps is
proportional. to the dimensionless phonon param-
eter Cs= )I /mos&os, where m is either the reduced
mass or total ma, ss, depending on the vibration of
interest, and ~0 is a characteristic phonon fre-
quency. Since typically Cs-10 s, the series (41a)
may be expected to converge quite rapidly in most
instances. (d} The function p„ is restricted to a
range an~, where & is the maximum phonon fre-
quency. Thus, for eases when the convolution
series is rapidly convergent, the main contribution
to the n-phonon regime comes from just A, alone.
(e) Physically, p„represents the n-phonon contri-
bution to 5, which is the sum of all processes in-
volving exactly n real or virtual. phonons.

The convolution expansion is thus observed to
provide a method of evaluating multiphonon absorp-
tion which is particularly well suited for physical
interpretation in terms of n-phonon processes, as
well as being mathematically advantageous for
actual computations.

IV. DISCUSSION

We have here pxesented a theory of multiphonon
absorption due to anharmonicity in crystals which
accounts for various classes of phonon processes to
infinite order. The character of the absorption
is determined essentially by just a single correla-
tion function F involving an effective anharmonic
potential Ep describing the decay of the TO phonon
{dp. The function 8' is specified fully once the in-
teratomic potential v and the displacement-cor-
relation tensors C have been specified. For the
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intrinsic bulk case 5 takes the explicit fox m dis-
played in Eq. (23). The latter expression for P
can be simplified further in various instances, as
demonstrated in Sec. GI in connection with a di-
atomic crystal, isotropic C, and special choices
for yg.

In what follows, we discuss some of the implica-
tions of the present results, such as with respect
to the frequency and temperature dependence of
a. Comparison with expeximent and with other
theoretical treatments is carried out as mell. .

I"xequency dePendenee. The convolution expan-
sion of Eqs. (41) provides a useful framework with-
in which to investigate various general features of
the frequency dependence of n{&o). Perhaps the
most obvious, but nevertheless significant, im-
plication of the convolution formal, ism is the lack of
structure in higher-order phonon contributions,
a direct consequence of the meQ-known smoothing
effects resulting from repeatedly convoluting a
given function. This conclusion is consistent with
the general trend of experimental observations'6
on multiyhonon absorption, which often display
substantial. structure for lom-order processes, but
little or none for higher-order ones. Of course,
the presence of very sharp peaks in ~(ru), such as
may be associated with Van Hove singularities,
will. be manifest in an appropriately broadened
structure arising in higher eonvolutions. It is ap-
parent, in any case, that an investigation of just
the functions p„alone fox a given lattice model can
reveal a good deal of information x egarding struc-
ture in o.'(~) vs &o. For the detailed spectrum, of
course, one must carry out the sums over n and
5„weighting the p„with the appropriate g„'s as-
sociated with a particular potential e.

As noted previously, the contribution from each
extends over an interval of x'ange n&, where
is the maximum phonon frequency. Also, at

low and intermediate temperatures p, /p„
-~z(a~i/a); since ~&-10', &r~i/Z. «&s'(as is
expected to generally be the case in practice), then

~,«p„. Thus the contribution to absorption in
then-phonon regime n&o «u&(n+I)ar is given to
an excel.lent appxoximation by just A, alone. This
conclusion does not foll.om at very high tempera-
tures (ng, && 1) and, strictly speaking, applies only
to the average absorption mithin a regime when
substantial structure is present in p&(m). All other
factors being equal, the decay rate of a(&o) vs &o

shoul, d thus vary inversely with C~. As an example
of experimental. evidence in support of this con-
tention, one may compare data fox I iF with that
for NaCl and KCl, It is found that the decrease
yer unit phonon in the logaxithm of 0. is about one
and a half times as great for the lattex than the
former. This is consistent with the observation
that if me attribute multiphonon processes to just

To phonons, then Cz is about three times as great
for LiF than for NaC1 and KC1.

Recent experiments~ indicate that multiphonon
absorption in a variety of crystals, especially
ionic crystals, vary very nearly exponentially as
a function of frequency, over a substantial fre-
quency range. If ~ is a reasonably smooth func-
tion, then one can argue very roughly that if g~~/
g„-g for all n, then 8:„„/g™gC,which implies an
exponential form for 0.. Apparently, the condition
g~~/g„™gis rea'lixed in practice, at least in ap-
proximate fashion, as discussed in Sec. ID.

Although somewhat ax tificial, the Einstein model
shouM nevertheless be useful in deducing various
qualitative information regarding a{a&). For real-
istic models, p is a eo tinuous function of &, a d

smoothing of higher-order eonvolutions mould be
expected to lead to a corresponding smoothing of
cR(&0). It is thus reasonable to assume that just the
average rather than the particular details of the
phonons involved are important fox large n. In
this spirit, the curve for e obtained by continuous-
ly connecting the (i-function strengths of the
Einstein model (value of n integrated over the n
phonon regime), defined at integer n=-~/&go to all
values of co, is expected to provide a qualitatively
meaningful picture of the frequency dependence of
a for more general cases as mell. The emergence
of exponential behavior follows very naturally in
the Einstein model, as discussed previously and
arises independently of crystalline effec'ts ( +0)
although crystallinity may be important in deter-
mining the absolute magnitude of 0..

Inspection of Eqs. (28) reveals that all else being
equal, the absorption decreases faster with in-
creasing &o as the falloff parameter (+) in the po-
tential increases. For a Gaussian or Born-Mayer
v inthe Einstein case, this is seen explicitly, as
o is equal to the sum of lnfC plus other terms.
The details of the absorption depend on the shape
of e as mell, although an exponential-like behavior
mould be expected to arise for most physically
reasonable choices of g.

Existing experimental data on alkali halides'
ixllplles that for T= 0 K and M &&~~o, A c(-8 To,
with o -3. 5 for NaCl, KCl, and KBr, and o -2.4
for LiF. In terms of &o/&oz, o (viz, o is the longitudi-
nal-optical-phonon frequency), in which units the
data in Ref. j.V are presented, the corresponding
o™5.6, 5.2, 5. 1, and 5. 3; me employ sealing in
~ here to provide orientation of the multiphonon
results with the fundamental resonance peaking
at ~0. We here ealeulate o within the Einstein
model, and appropriate to the Born-Mayer poten-
tial [see Eq. (89)j. Employing the average value
of the quantity n 1n(tPS! ) between n= 4 and 10,
and the Born and Huang 8 values for A., and calcu-
lating C~ empl, oying the k= 0 TO phonon ~& for
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~0, one obtains 0™3.6, 3.6, 4.0, and 2. 6 for the
same crystals. The use of ~o for wo is probably
inaccurate, as the optic-phonon frequency varies
substantially over the Brillouin zone' for alkali
halides. It is not unreasonable to guess that an
appropriate weighted frequency lies between about
1.1~ to 1.4~O. If ~0= 3..2~& then one finds
0-3.2, 3.2, 3. 6, and 2. 2 for NaCl, KCl, KBr,
and LiF, respectively. Considering the crudeness
of the Einstein model, these results appear to be
in adequate agreement with experiment. When one
employs a power law for e in place of the Born-
Mayer potential, the agreement with experiment
is much poorer, especially for large n. This is
not surprising, as the power law is conventional, ly
determined from thermodynamic prescriptions re
quiring just the first few derivatives of v, while
in the present case we require accurate values for
the higher derivatives of v as well.

TemPerature dependence. The explicit temper-
ature variation of ImP obtained here is exactly
equivalent to that of existing work' 4 when differ-
ences in notation are accounted fox, in the low-
temperature limit (n„~1). Essentially, an n-pho-
non process contributes a term proportional to the
absorption. It should be emphasized that for cal-
culations applicable to real crystals one must also
incorporate thermal expansion and self-energy ef-
fects on the phonon spectrum, as discussed by
Cowley, for example. Such may be done either
from first principles, or in a semiphenomenolog-
ical fashion, as in calculations by Namjoshi, '9 for
example.

At very high temperatures {n„"»1),the Debye-
Waller-like factors in Eqs. (28), which constitute
a temperature-dependent "vertex renormaliza-
tion, " become signif icant. This renormaliza-
tion is not accounted for in theories employing ex-
pansions in u, . Our results show that the n- ' de-
pendence predicted in this limit by the l.atter theo-
ries is, in fact, cut down by exponential factors
of the form e "V. For the Einstein model, for ex-
ample, let us examine the effect of retaining
Debye-%aller factors in a typical term in A„, such
as the first in Eq. (32). One needs to evaluate
(5=0)

A- J dqI„(2q Ceno)e ~os' 8 . (43)

For purposes of illustration the potential
-i /3 By~= q '~ae ~0' enables the integral to be evaluated

explicitly, whence

A= AC~ tl

(g+IlosaC )'~ +Ic+soC (g+ftonoC )'~

(44)
Thus, for keT/wa&Rz/Cs, the dependence of A(T)
on T and n becomes relatively weak. In practice,
temperatures where A deviates substantially from

tg
' may or may not be reached prior to melting,

depending on the particular values of ffo and Cs
for the crystal concerned.

Comps&on soiN other &cork. The expressions
for lower-order processes in ImP can be shown
to be equivalent to existing results' ' obtained by
various authors utilizing what amounts to pertur-
bation theory for the Green's functions {(at(t);
tg{0))). In contrast to the latter works, however,
we here obtain a single unified expression for the
damping {imli-ImP) which contains phonon pro-
cesses summed to all orders.

Recently, several simplified theories of multi-
phonon absorption have been presented. Sparks
and Sham ' consider n-phonon splitting processes
at a single vertex. The resulting expressions are
evaluated by assuming the major contribution to
involve just a single critical-point phonon ~, a
concept not far removed from an Einstein approach,
in practice. It can be seen from the convolution
expansion that under the same conditions where
just p„dominates the n-phonon regime, the split-
ting process mentioned yields the dominant contx i-
bution to 0,. In another recent tx'eatment by
Hellwarth et gl. , an Einstein-l, ike model, where
only discrete phonon transitions within a unit cell
are allowed, is employed. Both treatments appear
to obtain the exponential-like behavior as here.
Mills and Maradudin have also obtained an expo-
nential behavior, within a classical model. The
agreement between the various theories is not
surprising, in view of the similarity of assump-
tions regarding the suppression of phonon disper-
sion. Also, the fact that erystaBinity plays a
minor role in determining the exponential behavior
allows for considerable leeway in the choice of
models. The predicted temperature dependences
are also equivalent, with the exception of the very-
high-temperature regime, where the present ap-
proach leads to the modifications discussed pre-
viously.

It should be noted that the present approximations
leading to Eq. (23) account for contributions to n
from just processes occux'ing at a single vertex,
similar to those in the treatment in Ref. (21).
Presumably, processes involving repeated ver-
tices could be accounted for by employing vertex
corrections, as suggested recently by Sparks and
Sham. The l.atter authors find corrections which,
as an upper estimate, appear to modify the re-
sults for n=1-6 by changing o-o (&o), where
o —0 ~ —0. 3. This suggests that for alkali halides,
where 0-3.5, one obtains a reasonable estimate
of the frequency dependence by omitting vertex
corrections all together, although these may be
important for large n, or if very accurate results
are required.

We have not here treated the contribution of
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higher-order electric momentss to 0.. In general,
these could be equal in importance to the anhar-
monicity effects. 5 However, the rather good
agreement with experiment achieved in their ab-
sence in the case of alkali halides suggests that
the effects might be smal. l in these crystals. Hell-
warth has calculated electric-moment contribu-
tions within his model, finding them to be small
except for highly anharmonic crystals, such as
LiF. The methods of the present paper are well
suited for calculating absorption due to electric
moments acting separately, 5 as well as in com-
bination with anharmonic interactions.

In closing, it should be remarked that multi-
phonon absorption in real crystals involves impor-
tant contributions due to extrinsic as well as in-
trinsic, and surface as well as bulk processes. '
The present methods can be adapted to treat the
latter effects, although the resulting expressions
could well become difficult to evaluate, due to a
lack of translational invariance in one or more
crystal dimensions.
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APPENDIX

The retarded Green's function for the phonon
operators A; (t) = b„(t)+ bt„" (t) is defined as

iGg (f —t )=e(t-f )&[Ap (f), A~, .(t )]& . (Al)

In the development that follows we suppress the
branch index e for notational simplicity. We will
here follow closely the procedures and notation
employed in Ref. 26, which treates a slightly more
general problem, and obtains results equivalent
to, but in a different form from, those derived
here.

To derive Dyson's equation [Eqs. (10)-(12)]we
first differentiate G~~~ (t- f ) with respect to t, and
the Green's function generated by this operation
with respect to t . Time derivatives of A„"(f) that
appear are reexpressed in terms of the original
Ap(f) operators by using the equations of motion
as determined by the full anharmonic Hamiltonian

H =P (ugbtfb„+ V~ .
k

To carry out these operations, we first take the
second derivative of G„~ (f —t ) with respect to t,
which gives

Gggr (f —f ) = (5(f —f )& [Ag(f) Age (f )]))+ b(f f )& [As(f) Age (f )]&+ (t —f )& [Aj(f) Aje (f)]& .

Using the equations of motion, the required time
derivatives of Ag(t) are found to be (5=1)
iA~ (t) = [A~ (t), Hl = vp+(t) + [A~ (t), V~] = &ups(t),

(AS)

iA„"(t)= —i&of [&(t),H] = &og f- A)A„(t) —i [BP(t), V„l)

or, using the definition in Eqs. (12) for Fp,
~ 0

Ag(f) = —(0)A)(f) —2(OfEf .

Taking the Fourier transform of Eq. (A2) with
respect to t gives

e'"' G~. (t —t ) dt= e'"' —(b(t —t )&[Af(t), A„-. (f )]&)dt
J 3

df

+ e'"'(b(f- f')&[A (f), A- (f )]&+ e(f- f')&[A (f), A- (f')]&)«.
J ce

(A4)

Upon integrating by parts, the first term on the right-hand side of Eq. (A4) may be seen to vanish, so that

2vz~'Ger(~-) = j die'"'(5(f)(-i~„-&[~(f),A„;(0)l& —i&[[A;(f), V„],A;, 1&)

+ e(f)(- ~„-&[A;,(f), A„. (0)1)—~& [2F„-(f),A,".(0)]&)) . (A5)

Using

&dy 7l'

(aP —(o'+ ie) '

Gp; (&o) may be expressed in terms of the GF
«F;, A';, )&„as

G~ (&o) = Gg(~) [bfP + &&~g, Ag )) ] .
the equation of motion for the Green's function Having defined the GF on the right-hand side of
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Eq. (A6) as

f«F (f),4(f )&) = e(f- t )&[F (f),~"(f')]&, (A7)

we proceed, as before, first taking. the second
derivative of (&Fp(t), A~ (t ))) with respect to t,
then reexpressing A„"(t) via the equations of motion,
and finally Fourier transforming with respect to
T= t —t . These procedures give for the GF in Eq.
(A7)

+ 8(r}[([F„(v),—(u„"Ar (0)1)

+ &i~ ([Ff(r)i
—2F&~ (0)])) ~ (A6)

= 2 ( [F,B».]) p + &(Fg, Fp )&„. (AQ)

The equal-time commutator of Fg(0) with Ap (0)
vanishes, so that

7„„((o)= [G,' 4o)] '((~j„&g ))

4 a 00

dv e'"' «Fg(0), &1,(- r))&

dr e'"'(- ice 6(r)([Fp(r},A~. (0)] )
j s. eo

—6(v)([Ff(r), i(up(g~ (0)])

Using (A6) and (A10), the equation of motion for
the Green's function G~ (&u) may be written

G&, (~) = g„;G~9(~)+G;(~)P-, (~)C4. (~), (A10)

from which Eqs. (10)-(12) of the text follow direct-
ly.
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