
EFFICIENT LUMINESCENCE CENTERS IN H- AND. . . 1669

(1972).
'The Si-Si or C-C distance of 3.08 A is used here as a measure

of the size of the Si vacancy.
'W. J. Choyke and Lyle Patrick, Phys. Rev. 127, 1868 (1962).
'D. F. Nelson, J. D. Cuthbert, P. J. Dean, and D. G. Thomas,

Phys. Rev. Lett. 17, 1262 (1966).
'J. S. Jayson, Phys. Rev. B 6, 2372 (1972).
D. G. Thomas and J. J. Hopfield, Phys. Rev. 150, 680 (1966).

'P. J. Dean, Phys. Rev. B 4, 2596 (1971).
'W. S. Johnson and J. F. Gibbons, Projected Range Statistics in

Semiconductors (Stanford University Bookstore, Stanford,
Calif. , 1969).

Lyle Patrick and W. J. Choyke, Phys. Rev. B 5, 3253 (1972).
' R. R. Hart, H. L. Dunlap, and O. J. Marsh, in Radiation

Effects in Semiconductors (Gordon and Breach, New York,
1971), p. 405.

"W. J. Choyke and Lyle Patrick (unpuolished).
"G. Herzberg, in Spectra of Diatomic Molecules (Van

Nostrand, Princeton, N. J., 1950), Table 39.
"We can neglect the very small differences in these distances at

inequivalent sites, and the deviation from tetrahedral
symmetry.

' Lyle Patrick, Phys. Rev. B 5, 2198 (1972).
' P. J. Colwell and M. V. Klein, Phys. Rev. B 6, 498 (1972).
' D. G. Thomas and J. J. Hopfield, Phys. Rev. 128, 2135

(1962).
"D. W. Feldman, J. H. Parker, Jr., W. J. Choyke, and Lyle

Patrick, Phys. Rev. 173, 787 (1968).
"There is a close parallel between the MC phonons of 6H SiC

and those of cubic (3C) SiC, and our terminology would be

accurate and appropriate for 3C.
"D. R. Hamilton, W. J. Choyke, and Lyle Patrick, Phys. Rev.

131, 127 (1963).' P. J. Dean and R. L. Hartman, Phys. Rev. B 5, 4911 (]972).
"Lyle Patrick, Phys. Rev. B 7, 1719 (1973).
"A. A. Maradudin, in Solid State Physics, edited by F. Seitz

and D. Turnbull (Academic, New York, 1966), Vol. 19, p. 1.
N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction
to Infrared and Raman Spectroscopy (Academic, New York,
1964).' G. Venkataraman and V. C. Sahni, Rev. Mod. Phys. 42, 409
(1970).

"We wish to thank K. L. Shaklee of the Bell Telephone
Laboratories at Holmdel, N.J. for making this measurement.' P. J. Dean, R. A. Faulkmer, S. Kimura, and M. Ilegems,
Phys. Rev. B 4, 1926 (1971).

"J. D. Cuthbert and D. G. Thomas, Phys. Rev. 154, 763
(1967).

"D. G. Thomas, J. J. Hopfield, and C. J. Frosch, Phys. Rev.
Lett. 15, 857 (1965).

"R. A. Faulkner, Phys. Rev. 175, 991 (1968).' Crystal temperatures were obtained by measuring the relative
intensities of thermally excited lines of the defect described in
Ref. 9.

'J. J. Hopfield, J. Phys. Chem. Solids 15, 97 (1960).
W. J. Choyke and Lyle Patrick (unpublshed).
W. J. Choyke and Lyle Patrick, in Proceedings of the Eleventh
International Conference on the Physics of Semiconductors
(PWN-Polish Scientific Publishers, Warsaw, 1972), p. 177.

PHYSICAL REVIEW B VOLUME 8, NUMBER 4 15 AUGUST 1973

Heat-Pulse Propagation in Dielectric Solids

H. Beck~
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14S50

R. Beck
Institut fiir Theoretische Physik der Universitat Zurich, Zurich, Switzerland

(Received 19 January 1973)

The usual phonon Boltzmann equation is solved by using two mean relaxation times, r~ for normal
and r„ for resistive processes. For a Debye solid with three polarizations, an explicit expression for the
Fourier transform of the local temperature in a heat-pulse experiment is calculated. It describes
hydrodynamic phenomena for Ar & 1, such as second sound and diffusive heat conduction, and heat
transport by ballistic phonons for Ar & 1. In the intermediate regime, Qr —1, we find the following
results: a second-sound wave with wave vector $ can only propagate if Qr„and Qra are smaller
than certain critical values, (Q r„), and (Qr~), , i.e., «r T & T„assuming the usual monotonic T
dependence of r„and r„. The velocity C~ of second sound strongly depends on these relaxation
times. Its maximum value, occurring at T = T„ is the larger the smaller the ratio (r„),l(r„),. Then
C, decreases with rising T and finally goes to zero for Ar„& 1.

I. INTRODUCTION

In a solid the condition for second sound to be
observable is the well-known frequency window

ATN « 1 « QTg,

where 0 is the frequency of the second-sound os-
cillation, and T„and T„are mean relaxation times
for momentum-conserving (normal) and momentum-

destroying (resistive) phonon scattering processes.
The crucial part of (1.1) is the second inequality
which requires a very pure crystal with high values
of the thermal conductivity near its maximum. Up
to now second sound has been detected i.n solid
He, solid He, 4 NaF, and in Bi In al].

these experiments essentially the same technique
was used: A heat pulse is generated at one end of
the crystal at t= 0 and the deviation of the local
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temperature from the equilibrium value To is mea-
sured at the opposite side of the sample as a func-
tion of time for t&0. The main features of the re-
sults are the following.

At very low temperatures To where there are
virtually no phonon collisions except for boundary
scattering, i.e. ,

with

two sharp pulses are seen corresponding to single
longitudinal and transverse ballistic phonons tra-
veling almost freely through the crystal with the
transverse and longitudinal sound velocities C,
and C„respectively. (In an off-symmetry direc-
tion, where the transverse branches are not de-
generate, two such pulses can be resolved. ) When

To is raised 7 gets smaller. The longitudinal pulse
(which arrives first since C, & C,) normally does
not change very much in shape; its amplitude, how-
ever, is dimi, nished by the increasing number of
phonon collisions. The behavior of the transverse
pulse depends on the purity of the sample. For a
dirty crystal its energy is also diminished and a
broad diffusive signal with no definite arrival time
appears which finally carries the whole intensity
of the heat pulse. If the crystal is of a better qual-
ity a, new feature arises: A secondary peak which
is rather broad appears between the original trans-
verse pulse of decreasing intensity and the diffu-
sive ramp. This peak is identified with second
sound and its velocity corresponds roughly to the
theoretical value C,z which is given in (4. '7). In a
very good crystal the second sound shows more
variation. The transverse pulse first broadens
and shifts to later arrival times. For higher To
this peak narrows again and is now identified with
second sound with a velocity higher than C«. The
original transverse signal appears again at the
slope of the second-sound pulse, now strongly
damped. The second-sound peak now gradually
moves to later arrival times and finally again dis-
appears in favor of diffusive heat conduction.

The theoretical approach to these phenomena
usually involves a phonon Boltzmann equation which
determines the time behavior of the number of
phonons carrying heat in the crystal. Such a col-
lision equation has been derived from an enhar-
monic lattice Hamiltonian by various authors using
equilibrium or nonequilibrium Green's func-
tions. 13'4 Whereas these derivations are in-
volved, but in some sense straightforward, there is
so far no explicit solution available for the Boltz-
mann equation. Sussmann and Thellung15 have re-
placed the collision integral by relaxation times to
find expressions for macroscopic quantities such

as energy density, etc. , valid for 07«1.
they arrive at explicit expressions for velocity and
damping of second sound. Meier1~ has generalized
this procedure to an energy- and momentum-de-
pendent relaxation rate. Guyer and Krumhansl 7

provided a more rigorous basis for discussing sec-
ond sound in solids expanding the unknown phonon
density in terms of the eigenfunctions of the col-
lision operator C. %eiss1s and Thellung and
W'eiss1~ have calculated explicit expressions for
the attenuation of second sound by using only those
eigenfunctions of C belonging to eigenvalue zero,
a procedure which can be justified for small values
of 07. All the above-mentioned ealeulations, how-
ever, have yielded explicit results only for the hy-
drodynamic regime 07«1.

There are two attempts to cover the whole range
07»1 to 07«1 theoretically. Rogers has used
hydrodynamic equations for a single-branch model
introducing a second viscosity depending strongly
on 07. Thus he obtained a continuous transition
between the ballistic and hydrodynamic regimes
describing the above-mentioned situation for a very
pure crystal quite adequately. Recently Rannin-
ger o treated the same problem in a semiphenom-
enological way using conservation laws for energy
and momentum density. He also finds a smooth
transition from transverse ballistic heat pulses to
second sound, pointing out that the ballistic pul-
ses are in fact also collective excitations of the
phonon system. He furthermore pointed out that
the second-sound velocity will decrease as a func-
tion of To due to the rising influence of resistive
processes, a fact which has been observed in NaF
as mentioned before. We shall compare Raxmin-
ger's conclusions to our results in Secs. IV and
VI.

The purpose of the present work is to present
explicit numerical results describing heat-pulse
propagation in a dielectric crystal from 07» 1 to
07 «1. The calculations are done for various
strengths of resistive scattering, simulating crys-
tals of different purity. The whole procedure is
based on the linearized phonon Boltzmann equation
for the deviation of the phonon density from its
equilibrium value Nz, exposed in Sec. II. The lo-
cal temperature T(r, f) is defined in the usual way
by the help of the deviation of the local energy from
the equilibrium value. Section IG is devoted to the
solution of the Boltzmann equation approximating
the normal and resistive parts of C by relaxation
times ~„and v„, taking into account, however, the
zero eigenvalues (collision invariantsi). We use
an isotropic three-branch Debye model for the
phonon spectrum in order to be able to calculate
all expressions explicitly in terms of ~„and 7z.
In Sec. IV the two limiting cases 07»1 and 07.«1
are discussed analyticaDy. The main results of
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our analysis which are found numerically are pre-
sented in Sec. V and finally summarized in Sec. VI.

ufo= (ksTo) (2 2)

II. MATHEMATICAL DESCRIPTION OF HEAT-PULSE
EXPERIMENTS

The usual experimental arrangement for observ-
ing heat-pulse propagation consists of four parts:
the sample through which the heat has to propa-
gate; the heater, generating a short heat pulse at
t=0 on one side of the sample; a detector mea-
suring the temperature on the opposite side as a
function of t; and a cryostat fixing the equilibrium
temperature for t & 0. The dielectric sample crys-
tal is assumed to be described by the usual phonon
Hamiltonian

H=Z II(k)(a,a,+a)+ 2 Vo(k, k, k )(a,+a~~)
aa'a"

x (aI,.+ a z) (aI,- + a ~ .) . (2. 1)

The anharmonic part H „ involving Vz gives rise to
phonon-phonon interactions. Higher anharmonic-
ities could in principle be included without mod-
ifying the following arguments, at least not quali-
tatively. The sum over k= (k, X) involves a sum-
mation over wave vectors k in the first Brillouin
zone and over polarizations A. . For the analysis
of heat-pulse propagation in the crystal we assume
that all necessary information is contained in a
space- and time-dependent phonon density
N(kX, r, t). For t&0 the sample is in equilibrium
with the surrounding heat bath, thus N does not de-
pend on r and t and is given by

neglecting hereby the fact that H~ in (2. 1) intro-
duces a small correction to the energies oI(k) and

leads to phonons with finite lifetimes.
After the heat pulse, generated at t=0, the pho-

non distribution deviates from an equilibrium dis-
tribution. It is convenient to represent it as

N(k, r, t&0) =No(k)+m(k) y(k, r, t)

with

m(k) = N, (k) [N,(k)+1] .

(2.4a)

(2.4b)

( )
s(g(k)

8k
(2 'f)

For low-intensity heat pulses the time dependence
of rp is governed by a linearized transport equa-
tion. The latter has been derived from the Hamil-
tonian (2.1) by several authors (see Refs. 10, 12,
14, and others) using various mathematical tech-
niques. Omitting the quasiparticle-interaction
term included in the results of the above references
and Fourier-Laplace transforming according to

p(k, Q, O)= fdr e'e' f dte ' ' p(k, r, t)

for ImQ &0, (2. 5)

the phonon transport equation reads

[- tO + tv(k) Q - C] q (k, Q, fl) = q (k, Q, t= 0') .
(2. 6)

Here

N(k, r, t & 0) = No(k) = (e o"I"—1) '

with

(2.2)
is the phonon group velocity and C stands for the
linear ized Peierls-Boltzmann collision oper ator
defined by

Cy(k, Q, 0) = — Z [m(k)m(k')m(k")]'~

x(2~ Vo(k, k, —k )~ 5((o(k)+oI(k ) —oI(k )) [p(k, Q, fl)+IIo(k, Q, 0) —OI(k, Q, 0)]

y
~

Vo(k, —k', —k")
~

o5(oI(k) —III(k ) —(II(k' )) [rp(k, Q, g) —Ip(k, Q, g) —rp(k, Q, fl)]],

where Vz is the anharmonic coupling parameter in
the Hamiltonian (2. 1).

Finding an appropriate form for the initial value
SI(k, Q, t=0') in (2. 6), immediately after the short
heat pulse has been applied, would in pri.nciple re-
quire detailed knowledge about the heating mech-
anism and the coupling between heater and sample.
These questions have been examined by Kwok ~ and
by von Gutfeld. ~2 Here we assume the relaxation
times of the heater to be very short. Thus a heater
temperature T„can be defined after the duration
&t of the pulse. If the coupling between heater and
crystal is strong enough there will be a layer L in

N(k, r, t = 4t) = No(k) —m(k)III(k)&po(r)

with

(2.9)

the crystal where the local temperature has already
adjusted to T„. The thickness of L will be of the
order of &tc, c being a mean phonon velocity of
the crystal. Therefore

N(k, r, t = &t) = (ea"' '~' —1) (2.6)

where p(r) = (ko T„) ~ for r in the layer L and p(r)
=(koTo) ~ for r in the rest of the sample. For low-
intensity pulses (T„—To)/To is small, and (2. 8) can
be expanded:
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&4 = Nr) —&o = s ~0(r)/ks &0 (2. 10)

~(k, Q, f=0') =~(k)», (Q)/k. &= (k) ~V,(Q) .
(2. 11)

To calculate the temperature measured by the
detector on the opposite sample boundary in the
heat-pulse experiment we proceed as follows: %e
compute the local energy density

z(Q, n) =Z ~(k)lv(k, Q, n) . (2. 12)

The deviation hE from the equilibrium value Eo,
given by

d,Z{Q, n)=Z~(k) (k)q(k, Q, n), (2. 13)

III. SOLUTION OF THE PHONON BOLTZMANN EQUATION
IN COLLISION-TIME APPROXIMATION

Unfortunately it has not been possible so far to
solve Eq. (2. 6) exactly. A formal solution can be
found by using the fact that the collision operator
C is negative and symmetric in a Hilbert space of
functions f(k) with the scalar product

(f» fa&=&f»(k)»»»(k)f2(k) (S.1)
k

the weight function m being defined by (2.4b). Thus
the phonon distribution function qg can be expanded
with respect to the eigenfunctions X„(k) of C:

q (k, Q, n) =2 s„(Q, n)q, (k) . (3.2)

In the absence of umklapp processes there are four
eigenfunctions with eigenvalue zero (collision in-
variants):

is proportional to the deviation LT of the local tem-
perature:

b Z(Q, Q) = C„d,T (Q, &), (2.14)

C„being the heat capacity per unit volume. This is
the usual definition of » (see, e. g. , Refs. 10, 12,
and 13). Assuming that the detectors used in these
experiments can immediately adjust to the local
temperature at the sample end the energy density
(2. 13) which can be calculated provided the solution
y(k, Q, 0) to the transport equation (2. 6) is known

is a direct measure for the detected signal. These
assumptions about the interaction between heater
and sample, as well as sample and thermometer,
are of course very much simplified and according
to the experience of the experimentalists~ the
physical reality may be much more complicated

corresponding to the energy and the three Cartesian
components of the wave vector k of the phonons.
The numbers no and 0., assure the proper normal-
ization of the eigenfunctions. If momentum-de-
stroying processes can take place go is the only col-
lision invariant. All the remaining eigenvalues are
negative. (For an infinite system the continuous
spectrum of C extends, however, up to zero~ see,
e. g. , Ref. 24. ) These facts and the expansion
(S. 2) have been used to derive equations describing
second sound, thermal conductivity, and the elastic
behavior, etc. , in the limit of small Q and fl by
various authors. '0'3'7 For arbitrary values of Q
and 0, however, Eq. (2.6) would have to be solved
by some numerical procedure. Although ihis may
yield interesting information about the detailed be-
havior of the experimental quantities, as it has been
shown by Naris and by Meier and Beckae for the
velocity of sound in superfluid helium, a simple
and intuitive collision-time approximation for C
still seems to be a good method to describe the
qualitative behavior of the phonon system. This
approximation is introduced in the following way:
The expansion (3.2) is written in the form

3

V'(k, Q, fl) = »»0(Q» fi)~(k) + +»»»(Q» fl)k» + X(k, Q, fl)»
»=1 (3 5)

X standing for all the terms involving eigenfunctions
with nonzero eigenvalues. C is split into a normal
part C„and a resistive part C~, the latter describ-
ing momentum-nonconserving processes:

C —CN+C~ . (S.6)

The effect of C operating on the right-hand side of
(3 5) 18 approx1mated by

C»»» (k) = 0,
Ckg = C~k) = ——

)pal,
~R

1«=- —+—Ix=--x .
Ta j

(3.7)

7'„and 7'~ are relaxation times for normal and re-
sistive processes, respectively. In principle they
may be chosen to be % and X dependent. The rep-
resentation (3.7) for C seems to be appropriate for
the case where umklapp processes are still less
frequent than normal ones. If both types of col-
lisions are at least of equal importance (v»»/~„& 1)
it is more adequate to use only one collision in-
variant, Pu(k), and to replace (3. 5) and (S.V) by

y(k, Q, 0) = »»»»(Q, A)»»»(k) + X'(k, Q, 0) (3.5')

and

Xo(k) = ~u(k) =~(k) (3.3) CX'(k, Q, fl)=-(1/~)X'(k, Q, fl) . (3 "f')

and

q, (k)=n,.k, -=k,. (f= 1, 2, 3) (S.4)

The results for this case, which is actually less
interesting since there will be no second sound,
will be listed, at the end of this section for the sake
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of comparison.
By means of (S.7) the contribution X to the solu-

tion (S. 5) of our Boltzmann equation can be repre-
sented as

I

X(k, Q, A) =D (k, Q, A) y(k, Q, t =0') —[-in+iQ' v(k)]ap(Q, n)p1(k) — —in+iQ v(k)+—Paz(Q, A)k, ,
~R

(3. 8)

with

D(k, Q, A) = —in+iQ' v(k)+1/z. (3.9)

—ina, +i Zn, (k„v,y) (k+„(1/r„)y)= (k„rp(t = 0')) .
(3.11)

Here the symmetry of C and the relations (S. 5) and
(3.7) have been used, and v, are the Cartesian com-
ponents of the group velocity (2. 7).

So far our expressions are valid for arbitrary
phonon spectra 4p(k, X). To be able to evaluate
(3.10) and (3. 11) by analytical methods as far as
possible we now introduce an isotropic Debye
model with two transverse and one longitudinal
phonon branches, i. e. ,

The approximations described here correspond
to the model solution of the Boltzmann equation
valid for a gas of particles discussed by Foch and
Ford. ~~ We shall use their method of analyzing the
results of such a calculation in Sec. V.

The unknown expansion coefficients a0 and a, are
determined by the help of the conservation laws
for energy and quasimomentum. These can be de-
rived by multiplying (2. 8) by p1 and k„respectively,
and taking the scalar product as defined in (3. 1):

—iAa p +Z Q, (&p, v,y) = (&3, qr (t = 0')) (3.10)

tion

dkk m(k, X)= dkk m(k, X)
~0 0

p5C5 +
(

+ 1)2 p5C5

and the definition

s„-=P—„,1

the coefficients C,&
and e, can be written as

C„=2S ZC2 iz(~),jQ 1

3 X X~)i.

zQ 3 1/2
C12=— 2 2 I2(X),

5 1 XTNIX

zQ
C21 = — Z 2 I2(X),

5, 1 PX

)tVN2X X TR X

z/y "' A+ i/7.„e,=-', Z, "I,(~),

Smy '" 1
e2= —zQ 5 Z —I (X),

P0 5 x C)t

(3.17)

(S.18)

(S.19)

(p(R)=C (3.12) with

Furthermore we replace the relaxation times
7„(k, X) and rN(k, X) entering the scalar products in
(3.10) and (3.11) by mean values rN 1 and T„„ap-
propriate for thermal phonons. In an isotropic sys-
tem the vector a(Q, A) can be split into a transverse
part a~ and a contribution parallel to Q:

a(0, n) = b (Q, A)Q/
~
Q

~

+ a'(Q, n) . (3. 13)

It is easy to see that the energy density EE which
has finally to be calculated does not couple to a .
Therefore, we end up with an inhomogeneous sys-
tem of two linear equations for the quantities a0
and b:

-1 -1=TN
)I, TR

+] &n

'Qc n /-- (3.20)

According to (2.13) and (3.3) the local tempera-
ture r T introduced in (2. 14) is closely related to
the coefficient a0.'

n, T= ap/a4C„. (S.21)

(3.22)

It is proportional to the initial temperature devia-
tion &T0,

&T(Q, n) =It(Q, A)~T,(Q),
11) P+ 12 1 PP

C21ap+ (n+C22)b = ezApp .

(3.14)

(3. 15)

The intermediate calculations are somewhat com-
plicated but straightforward. Observing the rela-

where the response function R is given by

R= (A+ C22)f1+ C12fz
(n+ c„)(n+ c„)—c„c„

with

(3.23)
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Z +
"

10(X),
1 n+i/r„

3=iq
2

Z —
z Iz(x),

3 5
(3.24)

portional to r„; therefore the denominator in (3.23)
can be replaced by Q~ and

the specific heat C„ for this model being

C„=4vySzi. z To (PE= 1) . (s.as)

Had we used the formulas (S.5 ) and (S.V ) for
the ease of strong resistive processes me mould
have found

(s.as)

with

ft(Q, n)
} n +c„(gn)

'

This result has to be used if r„/r„& 1.
IV. CALCULATION OF LET(Q,Q) FOR THE

HYDRODYNAMIC AND THE BALLISTIC REGIME

(3.2V)

Imn = —i/r„ (4.2)

since they involve integrals of the form (S.20).
This nonanslyticity will be essential for discussing
the general behavior of the resyonse function in
Sec. V. Here me mant to treat tmo limiting cases,
namely A 7»1 and 9 7«1, where A is a charac-
teristic frequency of the heat pulse being of the
order of the inverse of the pulse duration 4t and
7 represents a mean relaxation time of the thermal
phonons. In both cases 8 can be approximated by
a simple analytic function.

A. 0v» 1, Collisionless Domain

Here the coefficients C,z are small compared to
the relevant values of 0, since they are all pro-

The time behavior of n T for t & 0 is given by

~T(g i}=Jdnz-'"'ft(Q n)n. r (Q) (4 1)

If 8 (Q, n) were an analytic function of n for Imn
& 0 the possible excitations of the system mould be
determined by its zeros in the lower-half of the
complex frequency plane. The coefficients C,&

and

f, entering It have, however, branch cuts for

1 ~ 1
1

n-qc„+i/r~

This is exactly the same result one would obtain
by simply replacing the collision operator C in
(2.6}by the inverse relaxation time I/r, without
taking into account the collision invariants by the
prescriptions (S.V). In this regime where there
are only fem collisionh during a period of oscil-
lation 1/n heat propagates in the form of single
ballistic phonons with velocity C~ and lifetime r~

[if the phonon spectrum were not linear as as-
sumed in (3.14), C~ would be replaced by an aver
age group velocity of thermal phonons]. The total
effect of these yhonons to the heat pulse is calcu-
lated by integrating over all angles 8 between the
propagation direction Q of the pulse and the wave
vector K of the individual phonons (z= cos8) which
leads to the log-type behavior of R in (4.3). The
relative weight g„of the three polarizations is given
by

g„=1/C,'. (4.4)

Since C, & C, , the transverse branches t~ and t~g]P

are stronger than the longitudinal ones. This effect
is most pronounced in those symmetry directions
where the transverse velocities are degenerate.
Here one intense transverse pulse and a weak lon-
gitudinal signal are observed; see, e.g. , Refs. 5,
'{F', and 9. Since collisions are unimportant in this
domain it is not further surprisin that the form
(3.26) involving 8', appropriate for r„/r„~ 1,
leads to the result (4. 3}too, in the regime nr» 1.

B. Qr && 1, Hydrodynamic Regime

In this case the integrand in (S.20} can be ex-
, panded+

(qC„z n i/r„)-'=-ir, [-1 -ir, (q C,z n)+ "], -
(4. 3)

neglecting higher-order terms, since they are small
for the representative values of A. In this limit
R(Q, n) reads

n+ i/r„' (n+iqzC,",r)[n+ i/r„++ q' 'Cr( I—o.)]—q'C„(1 ~)(1+ainr) '

where the following definitions have been intro-
duced;

Czr'= Slabs ~

Qf- T Tg

(4.3)

(4.9)

ciz = Mass (4.V) Furthermore, for simplicity, me have introduced
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2 j 2
& = Cii - o Cxi(I —c'}

+II +( 1Z +II} '

They are situated at

(4. 11)

(4. 12)

e e CI '
10 2 C 4@2C2 v

1/2
(4. 13)

For QC»r„& 1 they describe a collective mode
of heat propagation —second sound. Since

a=7/r„=(1+ rs/r„) '
and I/rs itself are increasing functions of the am-
Ment temperature To as soon as umklapp processes
tend to increase more than normal processes (see
Sec. V for explicit T dependence of r„, r„}the
velocity of second sound will decrease from its
"classical" value C«, which is valid for 7~- ~,
and will nnally go to zero when qc„~„2. This
fact' is observed experimentally and has also been
accounted for by Ranninger o who finds

c,=+ c„/(1+2&)'~' . (4. 14)

%'e believe, however, that in the window range
where second sound is observable, i.e. , for

(4. Is)
the quantity a = (I + re/r„) ~ should still be much
smaller than 1, in order that (4. 15) be fulfilled.
Therefore the variation of C, according to (4. 14)
seems to be weaker than that of (4. 13) where the
t'erm I/4qoc«r„will finally drive Co to zero, when

Qc,,rs becomes small enough. In this domain the
momentum-destroyiag collisions prohibit the wave-
like propagation of a heat pulse. Heat is trans-
ported in a purely diffusive way. If 7~ « ~„ the
solutions n, in (4. 13) can be approximated by put-
ting ~ = 1 and ~~ = 7 which yields

n, =-f Q CP~r=o, (4. Is)

n =-f/r. (4. 17)

Had we pexfoxmed the hydrodynamic limit in R,
Eq. (3.2V), which is valid for r„&r„, we would
have found

mean relaxation times ~„, 7„, and 7 representing
averages of v.„~, ~~ „, and T„over polarizations.
The possible excitations are given by the zeros of
the denominator

n'+ &n(&qor+ 1/r„) —qod'=O+ 0(nr)', (4. IO)

with

The pole of this expression, situated at n = -iqoc, or

and representing ordinary heat conduction, thus
coincides with the limit n, in (4. 16}for r„«r„.

It is interesting to note that in the two limiting
situations Secs. IVA and IVB the response of the
system is determined by different contributions of
8: for AT» 1 the denominator reduces to Q whexe-
as the log terms in the numerator yield the ballis-
tic single-pm'tiele-LNe excitations. In the opposite
case (nr «1) the numerator behaves regularly tn
the important domain of the complex variable 0
whexeas the denominatox produces zeros describing
collective phenomena such as heat conduction and
second sound. These facts strongly suggest that
ballistic heat pulses and second-sound waves are
in some sense two completely distinct phenomena
between which there is no smooth transition. This
will become even more apparent in the analysis of
Sec. V.

V. NUMERICAL ANALYSIS OF THE RESPONSE FUNCTION

Qo =no/Co ~ (s. 3)

The final goal would of course be to calculate the
temperature response n T(r, f) for points r at the
sample end, i.e. , to evaluate the integral

&T(r, f) = fd'Qe'@'f dn e '"'R(Q, n)aT, (Q).
(s. 1)

It would require extensive numerical work to ob-
tain reliable results and the numerical procedure
would probably hide the mathematical facts which
are important to understand the transition from
the ballistic to the hydrodynamic regime. %e
therefore propose two different methods of investi-
gating the properties of R and R, respectively:
(a) B(Q, n) is considered as a function of the com-
plex variable n, for fixed Q. The behavior of its
slngularltles ls studied as they depend on different
magnitudes of r, re, and rz. (b) R(Q, n) is calcu-
lated as a function of the real variable 0 for a
fixed, representative value of Q. The results of
(a) and (b) should be sufficient to interpret the
general behavior of (5. 1) and to compare these re-
sults with the experimental data which show r T(r, f)
for I r 1

= L, 2 being the sample length.
Let us first introduce dimensionless variables by

representing the sound velocities C„and the wave
vectors Q as multiples of the lower transverse
velocity Co and a representative wave vector Qo,
respectively:

(5.2a)

(s. 2b)

Qo can be related to a characteristic frequency 00
of the heat pulse, given by no= 2m/&f, by

Z'(Q, n) =f/(n+'q'C, ', r) . (4. Ia) Defining a dimensionless quantity x by
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0 = zqCpQp= xCpQ (5.4) AN = 0.7 & 10 'K

1 QoCo ~Q

&N

etc. , the results of Sec. III can be written as

/ (x+ a~)hg+ aahs
R(q, x) =

2DsQoq (x+ a~s) (x+ ~s) —a~ass

(s. s)

and dimensionless relaxation coefficients $,
and f~ by

A„=O.2x10 3 'K (s. 14)

whereas A, varies between 0.0 and 0.08 K '. Now

we can proceed to the analysis of R and R for dif-
ferent values of T and AI.

A. Analytic Properties of R and R'

First we observe that the numerators z and z
are analytic functions, except for logarithmic sin-
gularities at

z(q, x)
2DsQoq D(q x)

and

( )
i h, i z'(q, x)

2DsQoq x+au 2DsQoq D(q, x)

Here

(s. s)

(s. 7)

(s. ls)

These singularities represent single ballistic
phonons. They move away from the real axis, as
the damping $ (T) increases; see Fig. 1. Fur-
thermore it is easy to establish that z and z go
to zero for x- —i/q$; namely,

Do=~ dV (s.8)

and the coefficients a,&
and h& follow from C&&

[(3.18)] and f, [(3.24)] by going to the new vari-
ables defined in (5.2)-(5.5). It can immediately
be seen that, besides the factor s/2DsQoq, the re-
sponse functions R and R depend on q only via the
quantities $q, $„q, and $„q. Therefore we can fix
q without losing generality since a variation of q
amounts to a new scaling of ~, („, and fs We.
chose q= 1, thus our results should be representa-
tive for Q =Qo, the main Q vector given by (5.3).

Instead of treating $„and $„as free parameters
in R and R we define a temperature dependence
for these relaxation times which can serve as a
model for NaF crystals of different purities. We
put

(s.9)

z(q, x)~(x+s/q])' for x+s/q] 0, -
z'(q, )x~( xi+/q$) for x+i/q)-0.

(5. 16)

(5. 17)

It is somewhat more difficult to analyze D and D .
First we remark that there are zeros for x= —s/q$;
namely,

D(q, x)~(x+s/q)P for x- —s/q$, (5. 18)

D (q, x)~(x+s/q$) for x- —i/q$ . . (5.19)

These zeros of the denominators do not produce
any singularities in R and R since, according to
(5 ~ 16) and (5 ~ 17), the numerators z and z vanish
with the same power of x+i/q$ Furt.hermore the
coefficients g,~ also have logarithmic singularities
at the values (5.15) of x. Since a&&" 1/fq or I/]„q
respectively, these singularities do not have a sig-

I/$„=A„T for normal processes, (5. 10)

I/(„=A„T'e 's'r for umklapp processes,
(s. Ii)
(s. 12)1/4= ArT.

A„and A„are considered to be intrinsic constants
of these crystals, independent of the quality of the
crystal, whereas $1 stands for all momentum-non-
conserving processes other than phonon-phonon
umklapp collisions, such as dislocations, impuri-
ties, etc. Although these processes may have a
temperature dependence different from (5.12) the
quantity AI may serve as a parameter to distin-
guish in an easy way between different purities and
growth qualities of the crystal. In accordance with
the definition (5. 5) and the numbers quoted in Ref.
7 we put

0~=350 K,

-0.2
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-0.6

0.25
I

0.5 g 0.75 1.0
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FIG. 1. Qualitative behavior of the different singular-
ities of R in the complex x plane as functions of T. The
arrows indicate the direction in which the positions of
the singularities move for rising T. Dashed-circles,
ballistic single-phonon excitations moving away from the
real axis at constant velocities dt =1 and d~ = Cg/'Ct
crosses, incipient second-sound poles at T= T~; directed
line, locus of the second-sound poles for T & T~. The let-
ters a-d give the corresponding value of AI.- (a) AI = 0,
(b) AI = 0. 01, (c) AI = 0. 04, (d) AI = 0.08.



HEAT-PULSE PROPAGATION IN DIELECTRIC SOLIDS 1677

TABLE I. Critical values of the relaxation time for
which second sound starts developing.

0.0
0.01
0.02
0.03
0. 04
0.05
0.06
0.07
0. 08

0.225
0.208
0. 193
0. 180
0. 168
0.158
0. 149
0. 141
0. 134

(q(g), '

0
0.078
0.155
0. 227
0. 301
0. 371
0.441
0. 508
0. 575

(q$),'

0.225
0.286
0. 348
0.409
0.469
0. 530
0.590
0.650
0.710

T'
C

(K)

7. 97
7. 85
7.73
7.62
7. 52
7.43
7. 34
7.26
7. 19

b

0. 805
0.787
0.763
0.735
0.699
0. 657
0.606
0. 543
0.466

~T value which produces the critical relaxation times
in our model for q=1.

Value of the velocity of incipient second sound in frac-
tion of Ct. In our model Cr/Ct=1. 7. Thus drr=Cn/
= 0.596. The attenuation of second sound at the onset is
equal to (q$)c

nificant influence, as long as (q$„) ' and (q$) ' are
small, and where (q$„) and ($q) ' are larger the
x values (5. 15) are out of the physically interesting
region, characterized by Imz being small. The
crucial thing is, however, to look for possible
zeros other than (5.18) and (5.19) of D and D,
which give rise to the collective excitations in R
and R . To do this we use the winding theorem for
a complex function F which proved to be a useful
tool in the model calculations of Ford and Foch. ~v

It says that the number of zeros of F in a domain
where F is analytic is equal to the number of times
the graph of F encircles the origin of the F plane. ~8

Because of the logarithmic singularities of D and
D we have to divide the x plane into two domains
G& and G~: G, encircled by the line Imx= —i/q$+i&
and the corresponding upper semicircle at infinity,
and Gz contoured by Imx= i/q$ —ic and the lower
semicircle. The result of this procedure is that
there are critical values ((q), and ($„q), such that
there is no further zero than (5. 18) and (5. 19) in
both domains, G& and Gz, as long as $q& ($q), and

$sq & ($sq)c. For q&z & (q(s) and q& & (q&) there
are, however, zeros in G„namely, two second-
sound poles with real parts of opposite sign for
R(q, x) and a heat-conduction pole with Rex= 0 for
R (q, x). Thus, in our model, there are charac-
teristic values T„or (q$), and (ques)„such that
the collective modes start to exist at T= T, and
develop for T& T„whereas they vanish for T& T, .
This peculiar fact is of course due to the nonanalyt-
ic behavior of R and R, and has also been found
in the model of Ref. 27. Some possible onset val-
ues T„()q)„dan()sq), are listed in Table I, and
the behavior of the poles for T& T, is described in
Fig. 1. Here we summarize some important facts.

(i) The onset value x, of the second-sound pole

depends strongly on $s. The smaller Az, i.e. , the
purer the crystal, the smaller )Imxol, the damp-
ing, and the larger Rex„ the velocity. For A, =O

the velocity lies almost half-inbetween C„and C, !
This explains the fact that in a pure crystal the
transverse pulse seems to move continuously into
the second-sound pulse (see, e.g. , the pictures of
Ref. 6), whereas for a crystal of lower quality,
with higher A„where Rexo=d», the second-sound
peak is broader and shows up as a distinct peak
separated from the transverse one, as it can be
seen in certain pictures of Ref. 7.

(ii) If Az is not too large, the pole moves first
toward the real axis, corresponding to a narrowing
of the second-sound peak, and the velocity de-
creases approaching the value C».

(iii) As soon as T rises more, such that intrinsic
umklapp processes become important, the velocity
decreases further and the damping gets larger.

(iv) Finally, as ~s/r„= &1, the poles reach the
imaginary axis showing the same behavior as the
heat conduction pole of R .

(v) The values of ($q), show, that second sound
can already develop for Q7„~ 1, which suggests that
the first inequality of the window condition may in-
deed be too strong.

B. Behavior of R(q,x) and R'(q, x) for Real x

In Sec. VA we have investigated the possible ex-
citations of the phonon system in a weak-pulse ex-
periment. One result was that ballistic pulses and
the collective modes originate in two distinct kinds
of singularities of R and R . It may thus be inter-
esting to plot these response functions, or at least
their imaginary parts, as a function of the real
frequency x, as they would enter the integral (5. 1),
to see how the different regimes match at 07.=1.
This is done in Fig. 2 for AI =0.001 'K showing
ImR(q, x), which can be interpreted as a, spectral
function for the heat pulse. It shows that, for fixed
q, the transverse pulse, which is rather high and
narrow at low T, broadens and is finally replaced
by a new pulse, the second-sound pulse with a ve-
locity $(T) behaving in the way described before.
Since, for a short initial pulse, (5. 7) contains an
integral over a wide range of q values, it is pos-
sible that 4 T(r, t), at an intermediate range 07 & 1,
shows both a transverse and second-sound pulse,
at the same time, since the higher q values with

q$ & ($q), still contribute mainly to the ballistic
peak, whereas smaller q's with qt & (q(), already
build up the second-sound peak.

VI. CONCLUSIONS AND SUMMARY

The phonon Boltzmann equation has been solved
in a collision-time approximation including normal
and resistive scattering for a Debye solid with two
degenerate transverse and one longitudinal phonon
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D

O

x
U'

l.0 l.5 2.0

branches. Different purities have been simulated
by varying a parameter A, which determines part
of the resistive scattering rate. We found the fol-
lowing results for the possible modes of heat trans-
port through a dielectric crystal.

(a) For GT» 1 heat is carried by single ballistic
phonons. It is partly a semantic question whether
this form of heat pulses is a collective or a single-

Reduced Frequency, x

FIG. 2. Imaginary part of R(q, x), Eq. (5.6), is plot-
ted as a function of z for q=1 and AI= 0. 001. The curves
for different temperatures —namely, circles, 2 K,
(q(z) =0.0002, (q$&) =0.002; crosses, 5'K, (q$z) '
=0.022, (q$z) '=0. 005; squares, 8'K, (q)N) =0.229,
(q$z) =0.008; tri.ngles, , 11'K, (q)N) =1.13, (q$&)
= 0. 074—exhibit the transition between the ballistic ap-
proximation (4. 3) and the second-sound approximation
(4. 6) to R (q, x). The longitudinal peak at z = 1.7 vanishes
in the tail of the transverse, whereas the latter broadens,
shifts to smaller x values and is finally replaced by the
second sound. Note that the value of x, where R(q, x) = 0
at 11 K, corresponds roughly to dzz=0. 596, as it can be
expected from (4.6) for vR&& 7&.

particle excitation. In the framework of this analy-
sis the latter terminology seems to be more ade-
quate, in contrast to Ranninger's opinion.

(b) For 07„&1 and QT„~ 1 heat can propagate as
second sound. Its velocity C~ will be a decreasing
function of temperature and finally go to zero as
7gA 2. This observation is similar to Ranninger's
result. Our variation of C~ seems, however, to be
stronger.

(c) For given Q there are critical values of r„
and r„such that second sound can only propagate
for QC, 7„&(QC,7.„),and QC, 7s& (QC, 7„),. Second
sound is therefore a collective mode which is dis-
tinct from ballistic heat pulses. The velocity Ca

at the point where second sound starts developing
is the lower the higher the ratio (T„),/(~„), .

It is our hope that the present work has added
some more realistic features to the previous treat-
ments of the transition from the ballistic regime
of heat conduction to second sound. We also sug-
gest that the general results of Sec. III can be used
to get more reliable information about the temper-
ature dependence of the relaxation times involved,
e.g. , by comparing such quantities as Cz(T) with
the experimental data. On the other hand, it is
clear that some of the facts listed in Sec. V may
be due to the approximations made in our calcula-
tion. A realistic anisotropic phonon spectrum
would certainly modify the details, although it
would hardly affect the general behavior. The
most serious approximation consists, of course,
in replacing the true integral operator C by two
relaxation times. It is therefore planned to inves-
tigate analytically and numerically what results
could be derived from the Boltzmann equation (2. 6)
using the true eigenfunctions of C.
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A theory of multiphonon absorption due to anharmonicity in crystals is presented, employing a
Green's-function technique. In contrast to previous theories, we do not expand the lattice-interaction
potential in powers of displacements. We are therefore able to obtain a single expression for the absorption
coeAicient a, which includes various classes of contributions to infinite order in phonons, and which is valid
for all frequencies in the multiphonon regime. The results involve just the displacement-correlation tensor
of the lattice, and the Fourier components of the interatomic potential v. Simplified expressions are obtained
for isotropic models, and specific choices of v. Within the Einstein model, one finds an exponential
behavior, a(co) e "„predicted values of cr within the model are found to be in good agreement with
recent experimental data on alkali halides. A general technique for evaluating a, the method of
convolutions, is elaborated. Predictions regarding the frequency and temperature dependence of n are
discussed and compared with other work.

I. INTRODUCTION

Multiphonon absorption in crystals has its origin
in two types of physical interactions: anharmo-
nicity and higher-order electric moments. While
the electric-moment interaction allows for direct
excitation of ph~nons by light, the anharmonic in-
teraction must act in conjunction with the electric-
moment interaction to produce absorption. A
number of papers have calculated the absorption due
to anharmonicity and higher order electric -mo-
ments separately, as well as in combination with
each other. From the results of these calcul. ations
it i.s not evident under just what conditions anhar-
monic effects, as opposed to those due to higher-
order electric moments, dominate. In recent work
on the latter question, it was found' that, for low-

order multiphonon processes, either mechanism
may dominate within a range of actual representa-
tive materials.

There has been much interest recently in con-
nection with highly transparent ultrapure infrared
materials, which, for example, are necessary to
provide relatively distortion-free optical elements
for high-power laser applications. 6 In practice,
the useful frequency range of such materials is the
many-phonon regime above the fundamental phonon
frequency, but well below the electronic gap. Past
calculations' of multiphonon effects have been
concerned chiefly with photon frequencies near
resonance, and have employed perturbative expan-
sions of the lattice potential in powers of lattice
displacements in order to calculate the quantities
of interest. Such methods become extremely


