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A mixed-valence-Coulomb-force field has been constructed and used to calculate the phonon
frequencies for waves propagating in symmetry directions of O. -HgS-cinnabar. The model is
similar to the one previously used to describe the lattice dynamics of partially ionic semicon-
ducting compounds with wurtzite and zinc-blende structures. The calculated frequencies and
velocities of sound are in agreement with the experimental values.

I. INTRODUCTION

There are two polymorphs of mercury sulphide:
O.-HgS or cinnabar is red and has a trigonal struc-
ture (Ds); P-Hg8 or metacinnabar is black and has
a cubic structure (T~). Tbe transition takes place
at 344 'C under atmospheric pressure.

Cinnabar appears to be a material of considerable
interest, since it is a II-VI semiconducting com-
pound with a highly anisotropic structure. It is
strongly piezoelectric and it is the most optically
active of all known mineral compounds. The prom-
ising acousto-optical properties of cinnabar have
been recently pointed out by Sapriel. Crystal

growth of cinnabar is very difficult. It is only
recently that a detailed experimental study of pho-
non frequencies by Raman scattering was made
possible because monocrystals of fairly good quality
and size were grown at the Centre N~'. ional d'Etudes
des Telecommunications (Lannion, France).

A fairly extensive study of the long-wavelength
vibrations and polaritons in cinnabar has been done
by Zallen, Lucovsky, Taylor, Pinczuk, and Bur-
stein. '

In this paper, we present the results of a calcu-
lation of phonon frequencies in o.-HgS-cinnabar.
The model is based upon the mixed-valence Cou-
lomb-force-field model previously used to cal-
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study of the crystal space group.
Our calculations are in fairly good agreement

with experimental data: infrared ' and Raman '

spectra and velocities of sound in cinnabar for
polarized elastic waves.

II. SYMMETRY PROPERTIES OF CINNABAR

(2. I)t, = —,a(WS) i ——,a j, t2=aj, t, =ck .
In Eqs. (2. I), i, j, and k are the unit vectors of
an orthogonal triplet, and c and a are the crystal
parameters; their values are, respectively,

c = 9. 497 A, a = 4. 166 A .

The structure of cinnabar has been described by
Zallen et al. The Bravais lattice is based upon
the vectors

FIG. 1. Elementary cell of cinnabar. The six atoms of
the elementary cell belong to the same helix.

culate phonon dispersion in CdS. ' As will be dis-
cussed below, the model which we used included
short-range forces designed to simulate the co-
valent-bond contributions and long-range forces
whose origin is in the partially ionic nature of the
bonding. The six atoms of the elementary cell
are placed along an helicoidal chain; one long-
range parameter and six short-range parameters
were necessary to take into account the main in-
terchain and intrachain interactions. %e are not
aware of any previous treatment of the lattice dy-
namics of cinnabar over the whole first Brillouin
zone of the reciprocal space. The calculation and
the diagonalization of the dynamical matrix is dif-
ficult, since the six atoms (2 HgS) of the elemen-
tary cell are at sites with much lower symmetry
(C2) than the crystal space group (Dz). In order to
diagonalize the dynamical matrix in the center of
the reciprocal space and to fit the model param-
eters on experimental frequencies, we had to use
group- theoretical considerations based on a detailed

The elementary cell of HgS is shown in Fig. 1;
it is made of six ions, the coordinates of which
are given in Table I. The nearest, second, and
third neighbors of each ion are shown in Fig. 2
and listed in Table II. The symmetry operations
of the point group D3 are shown in Fig. 3 and
listed in Table IG. The structure consists of he-
lical chains, six atoms to a turn. ' The nearest
neighbors of an ion belong to the same chain as it
does, but the second and third neighbors belong to
four other chains. Therefore the forces between
nearest neighbors are intrachain forces and the
forces between second and third neighbors are in-
terchain forces.

The hexagonal first Brillouin zone of cinnabar
is shown in Fig. 4. The allowed irreducible repre-
sentations of the space group at symmetry points
of the reciprocal space have been calculated. They

TABLE I. Coordinates of the sites of the atoms of the
elementary cell (X=0.72, Y= 0.48).

Hg 1

Hg 2

Hg 3

S2

aX~3

--,'aXv 3

-'a Y&3

—paX

-ya Y1

-ya Y1

c2
3

~C
8

1 c6

yC
1

FIG. 2. Nearest, second, and third neighbors of each
atom of the elementary cell. The nearest neighbor of an
atom belongs to the same chain as it does, but the second
and third neighbors belong to four other chains.
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TABLE II. Neighbors of each ion in the elementary cell.

First
neighbors

Second
neighbors

Third
neighbors

r
H

Hg

Hgm

Hg3

Sg

S2

S3

6
4
7

20
3
2

16
14
15
10

9
8

18
19
17
12
13
11

29
27
28
23
21
22

30
30
29
25
26
24

First neighbors
2.34 A

Length of bonds

Second neighbors
3.10 A

Third neighbors
s.si A

Angles bebveen first-neighbor bonds

172'
105'

S-Hg-S
Hg-S-Hg

Z coordinate of iona in Fig. 2

2
He

~ ~

=S
HI ..

0
c/6
c/3
c/2

2c/3
5c/6
c

—c/6
—c/3

3
5
1
6
2
4

20
7

31

13
16

9
18
10
14
12
15

26
17

8
19
11
27
25
28

29
21
30
23

22

24
6
0

Hg „...~ \ ~ 0 ~~ g ~ ~ ~
~ r

~ S
Ha

FIG. 3. Symmetry operations of cinnabar (space group D43).

are listed in Table IV. The compatibility rela-
tions are given in Table V. Those presentations
and compatibility relations have been used to label
the computed dispersion curves and to check the
symmetries of the normal modes of vibration of
the lattice.

III. THEORY

ll
IOIM ( , E)MZ)(I,I(, uI(l', K') . (l. l)

r'z'B

ln Eq. (3. l), 2w&u is the frequency of a normal
mode, and M& the mass of the Kth ion of the ele-
mentary cell; u, (/, K) is the ath component of the
ionic displacement. The force constants are de-
fined by

The equations of motion of the ions can be writ-
ten, in the harmonic approximation, as

/ /' s'(/
~ K K' Su„(/, K)eu&(/'K')

The normal coordinates are defined as

w (k, K) = (M /N) Q u (/, K)e

(3.3)

TABLE III. Point group of cinnabar. v~ = pck.
= 3ck= 21'~. Ce and C3 are threefold rotations around the z
axis ~ )|)f $2 and $3 are binary rotations around the axis
perpendicular to the threefold axis.

(3.3)
In Eq, (3. 3), 5(/, K) is the equilibrium position of

Class

Cg

C2

C3

Element Operation

(& I

(~It}(C, Ig,}
{E I t }(CB I t2}

{& I t}(/(g I T'2}

&I~}(s2 ItD
(~ I 3&(&3 I o}

g I
QsQ

~J
~ah

FIG. 4. First Brillouin zone of the reciprocal space
of cinnabar.
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A
I' E C3

r, 1 1 1 A1
I'2 1 1 —1 A2
I'3 2 —1 0 A3

E E'
Cf Cp

H11 -1 -1 1
H21 —1 —1 1
H32 -2 1 —1

bi 61'

62 62

63 63

1 —1
—1 1

0 0

K E C 6 E' C' 6' E" C"

K1 1 1 1 j
K2 1 1 —1 j
K3 2 1 0 2j

j'
j -j 2 j~2 .2

-j ~2 2

-j'
0

'T *T'
i~ 1

2$2
2rjT ~ t

3 2rjV' ~ f

$C38, +t3
(C) I T)+I)

91 i T2+ t)
Qt ~Tt+9
{~3it)

2rjT ~ t

M E t5 E'
1 1 -1 -1
1 —1 —1 1

2 cos(2Ifk't)
2 cos(27r%' t)

*83 2 cos(2' t)

z

(Eight

{c3iTf+t)

Z aj 0

(Cg IT(+Qt

(Cg)72+t -t3)
«1 i &2+6
(52 ~ Tt+ t)
{~3it j

0
0
0

2 cos[2gk(t +TI))
2 cos[2mkpt+T&)+27f/3)
2 cos[2gk(t +v'I) +47'/3)

(Ct I +Ttt) (t~ I Tt+t) (5) I T~+t) Qt I t)

2rjC t
j

TABLE IV. Allowed representations of the groups
Gp/Tg for symmetry vectors k of the first Brillouin
zone.

tt'(K, P) .
It has been shown" that under the operation Q,

the normal mode w(k) is transformed by a unitary
matrix S defined as follows:

tt T (k ~) 5 'tie t, e&,s &
+tt T

f&'4 -$1 041-g~) (3.8)

In Eq. (3. 8), B is a reciprocal-lattice vector de-
fined by

Qk=k+ B

and R„, is the lattice vector separating the ele-
mentary cell of the ion (l, ttt) from the elementary
cell of the ion deduced from (l, ttt) by the operation

(3. 9)

try group of the dynamical matrix D(k) is the space
group at the wave vector k: G(k). The vectors
w(k I j) are transformed by any symmetry opera-
tions of G(R) as irr'educible representations k"'
of the group G(k). From this result we can obtain
the invariance relationships of the dynamical ma-
trix and the projection operators necessary to cal-
culate the normal modes of vibration.

Let Q= (& I (,}be an operation of the group G(k)
in which e is the rotation part and ( the nonele-
mentary translation associated with n. Under
such an operation an ion of the sublattice K will
be transformed into an ion of the sublattice

the Eth ion of the lth elementary cell.
Equation (3. 3) can be inverted:

u (l,K)=,z&Zw (,K)e ' ' "'r'. (3.4)

(3. 10)Qwtt(k, Kt)= Q gp"2(k, $)wT(k, Km) .
yE2

The set of matrices S(k, Q) is a representation of
the group G(k) which is the symmetry group of the
dynamical matrix D(k). Therefore S(k, Q) com-

From equations (3. 1) and (3.4), one obtains

(Ao (k, K) = Q D tt (k
l
K, K') w ~ (k, K' ) . (3. 5)

E g

In Eq. (3. 5), D(k) is the dynamical matrix; its
elements are given in Eq. (3.6):

Des(k IK K')=( ~i»ia ~ 4.t
(K'K')

TABLE V. Compatibility relations.

I'3 -Q (+) Q

K) Tj
K2 ~T2

(3.6)

Let s be the number of ions in the elementary cell.
The dynamical matrix is a square matrix 3s x3s.
For each wave. vector k the eigenfrequencies and
normal modes of vibration correspond to the eigen-
values and eigenvectors of the dynamical matrix:

D(k)w(k)= ~ w(k) . (3. I)
2The eigenvalues are sr~(k) and the eigenvectors

w(k, j) where j labels the 3s branches of disper-
sion curves.

Koster' and Rowe have shown that the symme-

I'3-T, 0T,

Z]5

M] T(

M2 T2'

K& S&

K2 Sg

K3 ~S2 0+S3

K3~Tg ST2

M; Zg

Kg Tg'

K2 T2'

K3 Tg' 0+ T2'

Hg S2

H2 S2

H3 Sg 0+ S3
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mutes with D(k):

S(k, $)D(k)=D(k)S(k, Q) . (3. 11)

Equation (3. 11}gives all the symmetry invariants
of the dynamical matrix. In order to diagonalize
the dynamical matrix, we need the unitary matrix
U(k) which diagonalizes the matrices S(k, Q). This
matrix can be obtained using projection operators
defined as follows:

(3. 12)

kNo,
' is the (Xp)th element of the matrix k ~~I(p)

representing Q in the irreducible representation
k ~~' of G(k). In order to fit the model parameters,
we had to diagonalize the dynamical matrix in the
center of the reciprocal space (I'}. The eigenvec-
tors of displacements in the elementary cell are
listed in Table VI. They are shown in Fig. 5.

We have also determined the representations of
the space group corresponding to the symmetries
of the dynamical matrix for every symmetry point
of the reciprocal space. The results are given in
Table VII.

TABLE VII. Group representations of the normal modes.

F =2I', 4I', a+6~3

A-66, 0+642 C+6A3

A ~3Ag 3A2 0+6A3

T 8Tg 0+10T2

K ~2K) 0+ 4K2 $6K3

T' 8T1' 10T2'

Z 18 Zg

+—Q k~ ro[5e(ijk)]3+— Z kIIr~~[5e(ij k)]
S HgS HgS Hg

+- Z k, [r„][r„][ee(i~k)]' . (3.»)1
2 Hg-S -Hg

The force constants appearing in Eq. (3. 13) are de-
fined as follows:

(i) X is a central-force constant between near-
est-neighbor ions belonging to the same helix. The
first sum is extended over all pairs of nearest-
neighbor ions.

(ii) p and v are central-force constants between
second- and third-neighbor ions belonging to dif-
ferent helices. The second and third sums are,
respectively, extended over all pairs of second-
and third- neighbor ions.

(iii} kII and k~. are the angular stiffnesses cor-
responding to angles S-Hg-8 and Hg-S-Hg in the
same helix.

(iv) k~ is an angular stiffness corresponding to
the angle of second- and third-neighbor S-Hg bonds
with a sulfur ion at its vertex.

2. Long-Range Forces

Let u& and u, be the respective displacements
of nearest-neighbor ions separated by a vector
r&& with I r&& t =ro.

Phenomenological Description of Model

In order to calculate the dynamical matrix D(k),
one must express the force matrices Q z (» «.) in
terms of a potential Q. This potential is given
using microscopic force constants which arise
from two kinds of interactions: (a) The short-
range valence forces are due to an overlap of the
electronic orbitals. (b) The long- range Coulomb
field is due to the interactions between the ionic
dipole moments and the local electric field.

1. Short-Range Forces

The potential used to describe the short-range
valence forces is the following:

SV, =—EX[Sr(pq)]'
1
2 1st

+—Q p, [argq)]'+ 2Zv [6r(pq)]'
1 1

'3 3
) I

l

I

FIG. 5. Symmetry of the normal modes of vibration.
The eigenvectors of the dynamical matrix are linear com-
binations of those modes corresponding to the same irre-
ducible representation of the space group.
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Let q~ be the ionic charge, 0,'the polarizability
of the ion i, and ythe polarization due to the de-
formation of the bond. The total electric dipole
moment at site i is then

Pg=qgsg+ ag@+y, Z ~ . (8. 14)u&)]

Ko

In the Ss-dimensional vector space on which the
dynamical matrix has its basis, Eq. (3.4) can be
written

5= [Q+N(k)] U+ n,'E . (8. 15)

In Eq. (3. 15), the matrices N, n, and Q are de-
fined by

350

300

1SO
1Io ---------"----

100~

W AQ

0
I" K

Qgg = QgQ]g

~4~4) y

~ +fJ+[+Il(ul uk)]
p ~

ro

(3. 16)

(3. 1V)

(3. 16)

FIG. 6. Dispersion curves of the phonons in ci~~bar.
The dispersion curves are shown in the directions I'-I-
X-i -A of the first Brillouin zone.

u& and u& are expanded in terms of plane waves and
therefore N(k) defined by (3. 16) is a function of k.

The electric field E is related to the polarization
vector by the relationship

E= B(k). P, (3. 19)

where B(k) is the Lorentz matrix which can be cal-
culated using Ewald's method. '

From (8. 15) and (3. 19), one obtains

P = [Q+N(k)] U+ aB(k) P, (8. 20)

or

&i= &r[+ &rI ~ (4 1)

3 2+2= ~r ~ra y

8 2 3
Qg = Qlr)+ (g)ra + (drs3'

8 8 8 2 8 3+a= ~r)+ ~r~+ ~rJ ~r~+ ~r~ ~rl ~

8 2 2

(4. 2)

(4. 3)

(4 4)

IH in which the ions are supposed to be rigid
(o.= y= 0). The force constants were adjusted using
the following experimental data:

P=[f—aB(k)] '[Q+N(k)]U . (3.21) 65= fdp& GPra fdr3 y

3
8 3 2' (4. 5)

The long-range dynamical matrix is then given by

D(k)=-M ii [Q+N(k)]tS(k)

x [I- oB(k)] [Q+ N(k)]I I . (3.22)

IV. RESULTS AND DISCUSSIONS

The calculation presented here is based on a
simplified version of the model described in Sec.

TABLE VIII. Model parameters.

y=2. 6204 x 106 dyn cm ~

p, =l.7120 x 105 dyn cm"~

I =0.4679 x 10~ dyn cm ~

kz= —0.7873 x 105 dyn cm ~

$~=2.0944 x 105 dyn cm ~

k~, =0

q*=0.35e

(4.6)

In E~s. (4. 1)-(4.6), 2va&r~ is thefreguencyof the
jth normal mode with X'& symmetry. Those fre-
quencies correspond to a vanishing wave vector
paral1el to the crystal axis. If the wave vector
vanishes perpendicularly to the crystal axis, the
frequencies of the I'z and I'3 modes have different
values because of the discontinuity of the macro-
scopic electric field. From this discontinuity we
can obtain the value of the ionic effective charge
qQ

The short-range parameters X, p, v, k, 4~,
and k~ have been calculated using the numerical
method of Rosenbrock. " The best-fit values are
given in Table VIII.

The calculation was done on the C. I.I. 10070
comPuter of the University of Rennes. The dy-
namical matrices were diagonalized using the
Jacobi method.

The dispersion curves in directions T, Z, M, T',
k, T, j;, 4, andA axe shown in Fig. ~. The
branches are labeled by the space-group repre-
sentation to which they correspond.
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TABLE 1X. Phonon frequencies at 2,

1655

Wave vector parallel
to crystal axis

Experimental Calculated
frequencies frequencies

(cm-') (cm )

Wave vector perpendicular
to crystal axis

Experimental Calculated
frequencies~ frequencies

(cm-') (cm-')

r,
Fg
K'2

I'2

F2
F3
F3
13
I'3
I'3

r,
r,
F3
I'3

F3

256
43
39

141
361
342
342
280
280

87
87

108
108
43
43

259
43
39

146
363
339
339
286
286

86
86

109
109

1.7
1.7

256
43
33

110
333
350
342
288
280

91
86

147
108
48
43

259
43
33

109
338
349
339
299
286

88
86

143
108
30
1.7

'References 2, 4, and 7-9.

TABLE X. Sound velocities in cinnabar.

LA
TAg

TA2

Kll c
Theor.
(m/s)

2320
1140

900

Expt. ~

(m/s)

2450

Theo r.
(m/s)

1980
1020

890

Expt.
(m/s)

1960

'Reference 1.

The calculated eigenfrequencies at the center of
the first Brillouin zone are given in Table IX and
compared with the experimental values. '4' ' Ex-
cept for a low-frequency T& mode, the agreement
between our calculated results and experimental
data is quite satisfactory.

We have calculated the eigenvectors correspond-
ing to the normal modes of vibration of the crys-
tal and we have been able to check the symmetry
predicted by group-theoretical considerations.

The lower ~3 mode was experimentally found'
at 43 cm '. We have not been able to calculate it
with our seven parameters model. The very weak
forces acting On this mode are not represented
here, and we are now working on a more elaborate
version of the model in order to suppress this
discrepancy. The corresponding branches of
dispersion have been drawn with dotted lines on
Fig. 6.

Sound velocity. The slopes of the dispersion

curves at the center of the first Brillouin zone in-
dicate the sound velocities. Our calculated values
are given in Table I and are compared with the
available experimental values. ' The predicted val-
ues are in close agreement with the experimental
data.

The sound velocity is much slower when it prop-
agates along a direction parallel to the x-y plane,
than when it propagates parallel to the crystal
axis. This is due to the very large anisotropy of
the crystal.

V. CONCLUSION

The present work seems to indicate that the lat-
tice dynamics of cinnabar can be expressed in
terms of a model using a small number of micro-
scopic parameters. We have been able to adjust
seven parameters in order to fit ten optical fre-
quencies with a vanishing wave vector parallel to
the crystal axis and the eight extra frequencies
with a vanishing wave vector perpendicular to the
crystal axis.

An interesting feature of the phonon spectrum is
that it reveals a gap. No modes are to be expected
with frequencies between 150 and 250 cm

A mode of very low frequency could not be inter-
preted using the present model. A more elaborate
version of a deformable-ion model will be worked
out to take this discrepancy into consideration.

We must also point out the close agreement be-
tween our calculations and the measured sound
velocities.
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A. near method is presented that permits the direct calculation of a localization parameter for the
wave functions in any type of oneMimensional disordered potential chain. The results agree with

previous work, and extension to ch~i~s of coupled one-dimensional oscillators and electromagnetic waves

in stratified media appears to be ~ible.

I. INTRODUCTION

The phenomenon of wave propagation in disordered
materials is little understood, and theories have
appeared only for the simplest systems, Recently,
however, there has been a resurgence of interest
in the study of these systems, stimulated mainlyby
the discovery of certain amorphous materials that
may have electronic properties~ of technological
interest. Current literature is replete with new
work on the subject, but a thorough understanding
still eludes us.

Much of what we do know now is derived from
studies of waves in one-dimensional systems. ~ Ne
know, for example, that there are gaps in the den-
sity of states in amorphous as well as in crystal-
line materials, 3 and that eigenstates in amorphous
materials are almost always localized. We re-
port here a method of calculating the degree of lo-
calization of the eigenstates. Whereas other tech-
niques require either the numerical solution of a
functional equation ' or the computer production of
sample chains, 6 our method allows us to calculate
a localization parameter directly.

II. CONSTRUCTION OF TRANSFER MATRICES

%e consider only potentials that may be parti-
tioned into cells, with zero potential at the cell
boundaries, as shown in Fig. 1. Schrodinger's

equation is equivalent to the set of equations

PJ' (7') + (2m/Sa)[E —Vq(7')]Pq(r) = 0

for

0 —T —dg = xg+$ +f

(where prime denotes differentiation with respect
to the argument} along with the matching conditions

V tx')
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FIG. 1. Partition of the potential energy function for
a one-dimensional amorphous solid into N cells.

for j=0, 1, . . ., N —1.
For a particular energy E there are always two

linearly independent solutions of Eq. (1). We
choose the functions e~(v), which satisfy the bound-
ary conditions

e'(0)=1 and e'(0)=i=(-1)'~',
and its complex conjugate ef(v). The wave function


