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Then Eq. (4. 3) may be written

(4. 5)

1/L~5f(cm '), (4. 6)

where &, = &„+4wn'qo/~aP~ is the static dielectric
constant of the host.

For the purposes of providing a crude estimate
of the sensitivity of the absorption coefficient at
10.6 p, to the presence of these anomalous impu-
rities, we set R and (e, —e„)/a ~ ~ equal to unity,
and suppose &u/&uo-7 and &ur = 20 cm '. We then
find

where f is the impurity concentration.
The quantitative estimate of L displayed in Eq.

(4. 6) must be regarded as extremely crude, be-
cause the model is highly oversimplified. It does
suggest that near 10.6 p, , the absorption coeffi-
cient of the crystal. may be quite sensitive to small
concentrations of Li, Ag, Cu, or other impurities
which give rise to impurity-induced resonance
modes with frequency very much lower than expected
on mass defect considerations. It would be ex-
tremely interesting to measure the effect on the
absorption coefficient of dopiag KC1 with Li, with
concentrations in the range of 0. 1 at. % to test
this conjecture.
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The Raman scattering of a powder composed of small crystals. of a noncentrosymmetric ionic material is

considered using the Nyquist-theorem approach of Barker and Loudon. For modes that are both Raman

and infrared active, the splitting of the transverse- and longitudinal-phonon frequencies is determined by the

local electric field. This local field depends on the shape of the particles and on the powder density. The

relative contribution to the Raman scattering from macroscopic electric field fluctuations and from atomic

displacement fluctuations is also dependent on the powder density. This effect yields an antiresonance in the

Raman intensity scattered by longitudinal phonons.

I. INTRODUCTION

It has been established experimentally that the
frequencies of infrared-active modes of vibration
can be dependent on the size and shape of the crys-
tal measured. ' If the crystal is small enough to
make an electrostatic approximation, this effect
can be attributed to a change in the local field in
a unit cell due to the surface depolarization charge.
The local field influences the long-wavel. ength

characteristic frequencies. This simplest of de-
scriptions would be applicable to an absorption
experiment performed on one crystal with dimen-
sions on the order of 1 p, m. The optical-phonon
frequency in such a sample would be shape depen-
dent and size independent. It is, of course, not
convenient to make optical measurements on only
one crystal of microscopic dimensions. The local
field in more convenient samples, composed of
many small crystals, is additionally influenced by
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the dipolar interaction of neighboring particles. 3'
For such a sample, the optical-phonon frequencies
would be shape and powder-density dependent. If
the particles composing the powder are larger than
the wavelength of light at the phonon frequency,
then the optical-phonon frequency is size dependent
as wet. l as shape and density dependent. '

It shouM be possible to measure, also with
Haman-scattering techniques, similar size-shape-
density effects on phonons that are both Baman
and infrared active. Such measurements shouM
have several advantages over the infrared-absorp-
tion measurements. Firstly, one can observe
both the shifted transverse and longitudinaI. optical
modes in noncentrosymmetric crystals. In ad-
dition, we will show that the relative contribution
to the Raman scattering from macroscopic elec-
tric field fluctuations and from atomic-displace-
ment fluctuations can be varied by changing the
density of a powder sample. These two contribu-
tions can be written in the form

where P(&u, ) is the sp, Fourier component of a
dipole moment induced by the laser field E(&u, )
which is modulated by the atomic-displacement co-
ordinate Q vibrating at frequency m„and its as-
sociated electric field E(ar„). We will show that
Haman scattering measurements on powder samples
should allow the relative sign and magnitude of the
d coefficients to be determined.

Baman scattering measurements on powders
also present several diff iculties. However,
Rayleigh scattering does not appear to be one of
them. Although the Rayleigh background may be
as high as several thousand counts per second,
the Raman signal is also enhanced in powder. This
increase in signal is due to inelastic scattering
occurring only after many elastic scatterings have
occurred. One might say that the effective volume
is increased in a powder sample. In fact, if the
material is absorbing, a powder sample may give
a better signal-to-noise ratio than a bulk sample.
Qne real disadvantage of using powders is that
only back-scattering experiments can be made con-
veniently. This geometry is necessitated by the
large scattex ing losses. In addition, one loses
all polarization information owing to the random
orientation of the small crystals composing the
powder. Another disadvantage is that the size of
the crystals should be much smaller than 2m divided
by the momentum transferred in the scattering
process. In practice, this means that the particles
should be appxeciably smaller than 1000 A, that
is, more than one order of magnitude smaller
than particles appropriate for a simple interpreta-
tion of infrared-absorption data. It is often dif-
ficult to prepare samples of such small. particles.

Two experiments have been reported which
claim to have seen a shift in the Raman lines of
small crystals. Nair and %'alkere have reported
the Raman scattering from the mixed crystal. sys-
tem KBr„I&„. For a certain range of x this system
consists of small crystals of three different
phases. They interpret one of theix lines as due
to depolarization-f ield- shifted Brillouin- zone-
boundary modes. However, it seems physically
unrealistic to expect a uniform depolarization fieM
to change the frequency of a short-wavelength
mode. Scott and Damen have reported experi-
mental results on a simpler system. They have
observed Baman scatteri. ng from CdS films de-
posited onto glass. These films wexe found to be
composed of small crystallites. Haman scatter-
ing was observed at a frequency shifted by the
crystallite depolarization fieM. However, they
found that they could explain their shift quantita-
tively only if the crystallites were assumed to be
long, thin cylinders.

In this paper, we formulate a xnodel for Raman
scattering in powders which will help interpret
experiments of this type. The model includes in-
teraction between the particles in the powder. %'e

will see that this interaction greatly influences not
only the frequencies of the Baman lines but also
the relative intensities. In the modet. used each
smal. l crystal is described completely by a fre-
quency-dependent complex dielectric function. The
crystal is assumed to be able to support a polari-
zation wave but its atomicity is in other respects
ignored. Vfe will make the further assumption that
the only mode with appreciable Baman activity is
the mode with uniform polarization. This assump-
tion can be shown to be vabd if the particles are
small enough. For an isolated sphere it has no
meaning to characterize the mode with uniform
polarization as being either transverse or longi-
tudinal. The modes which would normally be
called transverse or longitudinal are identical.
However, a powder composed of interacting par-
ticles can support plane-wave-like modes that
have either transverse of longitudinal character.
More specifically, the powder layer behaves
optically as a homogeneous isotropic medium.

II. FORMULATION

According to the classical theory of radiation,
the energy flux from an oscillating dipole in a
dix ection perpendicular to the dipole is

Here, (P (a&, )) is the a&, Fourier component of the
mean-square fluctuations of the dipole moment
per unit volume. The index of ref x'action at u,
has been denoted by n„ the speed of l, ight by e,
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the distance to the dipole by 8, and the volume
of the sample by s. As me have already indi-
cated in Eq. (1), the dipole moment has two
contributions. A similar separation may be
made in writing an expression for the fluctuations
in the dipole moment. Both fluctuations in the
macroscopic electric field «(&o„)) and fluctua-
tions in the atomic displacements (Q (&u„)) result
in Haman scattering in the presence of an intense
laser fieM E(a&,). In addition, a correlation term
proportional, to «Q(~„)) must also be included:

&&(r,)) = ~&(~l) I't4«'(~„))+ 2dao«e(~l, ))

+ do(Q'(~l, ))~ (6)

This expression is particularly useful if dz and

d are real and frequency independent. Such a
simplification can be made only when all fre-
quencies are far from electronic transitions.

A. Nyquist'8 Theorem

Barker and Loudons have recently developed a
technique for calcul. ating the frequency dependence
of the fluctuations in Eq. (3) in terms of a quan-
tum-mechanical Nyquist theorem. More re-
cently, this technique has been presented in a
more convenient matrix form by Hon and Faust.
According to this method two pairs of conjugate
variables must be defined. The product of each
pair gives the energy inside a unit cell. One pair
of variables will be taken to be the macroscopic
eleetrie fieM E and an external driving polariza-
tion field divided by the number of unit cells per
unit volume, P„„/f¹ Here N is the number of
unit cells per volume in a bulk sample. !n a pow-
der sample, however, N must be reduced by a
factor f, the fraction of the total sample volume
occupied by small particles. The other pair of
conjugate variables consists of Q, the relative dis-
placement of plus and minus ions in a diatomic
unit cell, and F/fN, an external force per unit
volume divided by the number of unit cells per unit
volume. %'ith these conjugate variables we can
define a linear response matrix T defined by

Nyquist s theorem can now be used to express the
fluctuations in E and Q in terms of the response
matrix T. Since we are interested in the

fluctuat-

ionss within a unit volume, the fluctuations within
a lllllt cell lllllst be nlllltlplled by f ¹

(E (u) )) = [n(&o) + I j Im Tll (co),
fNK
2'

«9( ))= t ( )+Ill &„( ),fNK

+11E++la@= +tres ~

BlqE+ Ills@=F .
(6a)

(6b)

The procedure for a calculation is now cl.ear.
We will derive equations with the form of (6a) and

(6b). The coefficients of E and Q will define a
matrix R. The matrix 8 can then be inverted to
find the elements of T used in Eq. (6).

In the long-wavelength approximation, the equa-
tion of motion for an optical mocie can be written
in terms of local quantities defined within a unit
cell. Fox a diatomic lattice, the appropriate
equation is

(~0 —61')0= (el /P)&l..+ F/f NIl,

Gp=~ -scop . (6)

The reduced mass hss been written p, and the local
ionic charge e, . A phenomenological. damping has
been introduced with the term y. The character-
istic frequency in the absence of a local field E„,
has been denoted by coo. Since E was defined as a
force per unit volume, the appropriate driving
force per unit cell. in the powder is F/fN.

The equation of motion (7) must be modified if
it is to have the form of Eq. (6b). That is, the
local field must be expressed in terms of the
macroscopic field E and Q. The derivation of such
an expression for a bulk sample has become well
known. '0 Howevex, some new approximations
must be made when deriving a local field for a
powder sample.

8. Local Field in a Powder

The powder is considered in some respect to be
a homogeneous medium capable of sustaining the
propagation of a long-wavelength optical phonon.
This presents no conceptual difficulties if the pow-
der is so dense that there are many particles per
phonon wavelength and if the particles are much
smaller than the wavelength. Although the par-
ticles have no short-range interaction, they do
interact through their long-range dipole fields,
providing the necessary coupling for phonon prop-
agation. It is well known that in a homogeneous
medium the macroscopic field of a, longitudinal and
a transverse phonon are given by

(Q'(lo)) — ls((o)+ I] Imr„(&o) .fNK
2r

The familar quantum-mechanica1 thermal factor has
been denoted by n(v).

It is more convenient to find first the matrix
elements of the inverse of T rather than T direct-
ly.

If 8= T', then Eq. (4) becomes explicitly
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E~=-4.P,
—4'

1 —c g /td

(9)

(io)

Mossoiti relation and Eq. (13), we obtain

e,
1+fp(e —1)/(&„+2)

(i7)

In addition to this macroscopic electric field, the
local field will have three other contributions.
Firstly, there is the usual Lorentz +~ ~P term.
Secondly, there is a depolarization field which is
dependent o.n the shape of the particle. This term
is normally written —4zgP, where g is the so-
called depolarization factor. An ellipsoid will, in
general, be defined by three depolarization fac-
tors, one for each principal axis. However, to
simplify the following algebra, we will assume the
powder to be composed of oriented el.lipsoids.
Therefore, the depolarization field in a properly
oriented sample can be defined by just one g. The
local field has one additional contribution which
arises from the interaction of the particles. This
term will be chosen so that for f equal to 1 the
local field of the powder equals the local field in
the bulk material. An additional requirement will
be that for f equal to 0, the local field of the
powder equals the local field of a single isolated
ellipsoid. The interaction term which satisfies
these requirements is 4m gP". P" is defined as

pav fp, '

where P is the polarization inside one particle.
The local field can now be written as the sum of
the four terms we have described:

E,',", = E' '+ 4vgP'" —4v gP++ vP,
A more convenient form is

E,=E++paP

where

0 = & g+ (1 —& g)/f . (i4)

Here, we have suppressed the superscripts dis-
tinguishing the transverse and longitudinal pho-
nons. The expression for the local field can be
further reduced by separating the polarization into
a lattice contribution and an electronic contribu-
tion. Such a separation may be made either in
terms of local quantities

and

Sf(e.—i)
e +2-f p(e„—1} (is)

(
2 R)Q av E+

N}J,
(19)

This equation has a characteristic frequency »
which is related to ~0 by the expression

g g
&".—1+ s/f}' e'-1+2/p ' (2o)

Equation (19) has the form of Eq. (Gb}. The coef-
ficients R» and R can immediately be seen to be

&,2 = fNe„, —

Qa fNit((d r —Cr
—
)—.

(2i)

(22}

An equation with the same form as Eq. (5a) can
be derived from the general requirements of
Maxwell's equations on transverse and longitudinal
waves. For a longitudinal wave, according to
Eq. (9),

Note that for f equal to 1, Eq. (17) reduces to the
Szigeti effective-charge relation. According to Eq.
(18), for f equal to 1, &'„' is equal to e T.hat is,
the limiting values of both equations are correct.

Strictly speaking, Eq. (15) together with Eq.
(12) is not always valid. For a semiconductor,
it is often assumed that the electronic polarization
does not contribute to the Lorentz field. We could
treat the case of semiconductors properly by de-
fining yet another effective charge. However,
since our results are indepedent of such consider-
ations, we will continue with a notation that is
strictly valid only for insulators.

C. R Matrix

Using Eqs. (13) and (16), the local field can be
expressed in terms of Q and E. Substituting such
an expression into the equation of motion (7) and
combining terms linear in Q,

P"=fP=fNe, Q+fNn&„, t ot V( + tv so) (23)

or in terms of macroscopic quantities

P"=fP=fNea, Q+
" E .

~"—1
4w

(is)

Using Eq. (16) to express P" in terms of E and
Q, we arrive at an equation with the appropriate
form:

The local effective charge e, and the unit cell
polarizability a have the standard definitions.
However, the average effective charge e„and the
average electronic dielectric constant must be de-
fined to characterize a powder sample. Compar-
ing Eqs. (15) and (16) and using the Clausius-

—(&"/4v)E fNe„Q = P„„. — (24)

fttoog b'av /4

According to Eq. (10), for a transverse wave,

(25)

This allows the remaining element of R to be de-
fined for a longitudinal wave:
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(c q /ar —1)E'=4v P„,=4v(P" + P„„)
or, using Eq. (16),

(26)

(1/4w)(c q /sP —e")E' —fNe„Q = P„„. (27)

Since this equation has the form of Eq. (6a), the
coefficient of E' defines R&& for a transverse wave:

c'q'
4w (u' )

(26)

D. Fluctuations and Raman Scattering

It is an easy matter to invert the R matrix de-
fined by Eqs. (21), (22), (25), and (29) in order to
find the elements of the response matrix T. Then
using Nyquist's theorem, Eq. (5), the fluctuation
spectra follow immediately. The results can be
summarized as follows: For transverse waves,

(E'(~)& = 0,

&9'(~)) = 4(~)+1~ s s s s s
&uy

271p &u -&o +toy

(Ee( ))=0.

(30)

t

(31)

(32)

For longitudinal waves,

As we have used an electrostatic approximation
in defining the local field, for consistency c should
here go to infinity:

(29)

sion for the fluctuations approach the bulk values
&or and &oz. The dependence of &osr and &osz, on f
is evaluated from Eqs. (20) and (36) and is dis-
played in Fig. 1 for parameters appropriate to
CdS. A set of curves is shown for each of three
different shape factors; g equal to 3 corresponds
to a sphere, g equal to & is the appropriate shape
factor along an axis perpendicular to an infinite
needle, and g equal to &z, along an axis parallel
to a long but finite needle. It should be possible
to compare these calculated values with the experi-
ment of Scott and Damen. ' The value of f for the
polycrystalline thin films used in their experiments
is not reported, but it should be at least 0. 9. For
such large values of f, &usz is almost independent
of shape factor and has a value approximately
0. Qp below ~z, . The experimental value of ~s~,
however, is about I' below &uz. Only if the film
used in this experiment was extremely rough or
porous could the experimental result be interpreted
according to our model as a depolarization-field
effect. The discrepancy between the experiment
and our calculation is probably due to the fact that
we have used a continuum model which neglects
microscopic effects such as domain boundaries.
Microscopic effects may be important in high-den-
sity samples where the depolarization-field effects
are small. Measurements using a low-density
powder would provide a better test of our model.

It is well known that interference often occurs
between Raman scattering from electric field

(E( ))- t ( ).11&Rv (&2 &2)2+ &sys

(33)

~n(~)+1~ s ~s)s, „sys
vy

(34)

fN z/2
(EQ((g)) = — „h[n((o)+1]

p, w~
'

2 2 1/2
~ (~sr. . ~sr) &y

(35)s s)s+ &sys

where

310

I

E 290

~ 2BO
Q7
X
~m
UJ

~ 260

"sc/~sr = "o /e (36) 250

and &s is defined by Eq. (18) with e„everywhere
replaced by &0. It is useful to discuss these ex-
pressions in two limiting cases. For f approach-
ing zero, the powder sample behaves as one isolated
particle; that is, the expressions for the trans-
verse fluctuations become identical to the expres-
sions for the longitudinal fluctuations. In partic-
ular, (E ) and (EQ) are zero, for both polarizations
and &osr and &os& are equal. For f approaching the
value 1, the sample behaves as the bulk material.
In particular, the poles ms~ and ws~ in the expres-

240—
I I

0.2 OA

I I

0.6 O.B 1.0

FIG. 1. Longitudinal phonon frequencies (upper branch)
and transverse phonon frequencies (lower branch) of a
powder as a function of the fraction f of the volume occu-
pied by particles. The parameters are chosen to repre-
sent CdS for three different particle shape factors g. The
dotted line indicates the frequency observed by Scott and
Damen (Ref. 7).
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This ratio is plotted in Fig. 2 as a function of f
for several values of ds/do. Note that for a cer-
tain range of values of ds/do, the intensity of the
scattering from a longitudinal wave should have
an antiresonance as f is varied through a realistic
range of 0. 1 to l.0.

Scott et af. have determined ds/do to be ap-
proximately —Q. 2xlr's (in cgs units) for CdS.
This value indicates that the intensity of the
transverse phonon scattering should be relatively
weak in small-crystal samples with large f, in
agreement with the measurement of Scott and
Dam en.

FIG. 2. Ratio of the integrated Raman intensity of a
longitudinal phonon line to the corresponding intensity fox
a transverse phonon as a function of the fraction f of the
sample volume occupied by particles. The parameters
are chosen to represent CdS fox' several values of dz/dq.

fluctuations and from atomic-displ. acement fluctua-
tions. The fact that the electric field fluctuations
of a longitudinal wave are f dependent while the
atomic-disp1. acement fluctuations are independent
of f indicates that an exact cancellation should
sometimes be possible. In order to examine this
effect more carefully, it is useful to write down
an expression for the ratio of the integrated scat-
tered intensity from a longitudinal wave to the cor-
responding intensity from a transverse wave. For
the case of small damping, this ratio has the
simple form

I fsna(&~) d&~ &r ~sr &sr
~ ftran(&6) d~s &r ~sr &sr,

III. CONCLUSIONS

If a powder is composed of crystals smaller than
the wavelength of the incident laser light, this
sample may be considered optically as a homo-
geneous material with well-defined transverse and
longitudinal long-wavelength phonons. The fre-
quency of these phonons wil, l depend on the density
of the powder sample and on the shape of the par-
ticles.

The relative contribution to the Haman scatter-
ing from electric field fluctuations and from atomic-
displacement fluctuations is also dependent on the
density of a powder sample. This leads to an
antiresonance in the intensity of scattering from
longitudinal phonons for certain values of sample
density.
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