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We have calculated the frequency dependence of infrared absorption in the classical limit
for an exactly soluble model of a lattice of noninteracting diatomic molecules, each bound in-
ternally by a potential for which the classical equation of motion can be solved in closed form.
Four potentials have been used: a Morse potential, a potential of the form Vb;) =a/x + bx,
an infinite-square-mell potential, and a triangular- well potential. The analytic results we
obtain show that the absorption coefficient for large frequencies associated with potentials
which admit an harmonic approximation decreases nearly exponentially over the frequency
region covered by recent experiments, with significant deviations from exponential behavior
at higher frequencies. For the square- and triangular-well potentials, the absorption de-
creases as (d for frequencies large compared to a characteristic frequency.

I. INTRODUCTION

The absorption of electromagnetic radiation by
the 1.attice vibrations in anharmonic crystals has
received considerable attention from both theorists
and experimentalists for many years. However,
most studies have focused attention on frequencies
either in the near vicinity of the fundamental
reststrahl absorption bands, or at frequencies suf-
ficiently lom that the dominant portion of the ab-
sorption may be accounted for by processes which
involve at most tmo phonons.

Recently, interest has been aroused in the be-
havior of the absorption coefficient at frequencies
several times (say, 2-10 times) the maximum vi-
brationa1. frequency of the crystal, but still small.
compared to the electronic band gap. In this fre-
quency region, the principal contribution to the
absorption coefficient in a pure crystal presumably
comes from multiphonon processes, where the
number of phonons involved may be quite large.
The behavior of the absorption coefficient in this
frequency regime is clearly important to under-
stand for fundamental physical. reasons. There is
also a great deal of practical interest in this re-
gion, since high-power CO~ lasers produce intense
beams of radiation at 10.6 p, . This corresponds to
a frequency several times that of the maximum
vibrational frequency of many materials that may
prove usefu1. for the fabrication of windows and
lenses for use with these devices. Because the
radiation from these lasers is very intense, even
a small amount of absorption can lead to apprecia-
ble heating of any window through which the beam
passes. It is therefore of interest to understand
the nature of the intrinsic absorption processes,
as mell, as impurity- and surface-induced absorp-
tion at frequencies high compared to the character-

istic vibrational frequencies of the crystal.
One may readily come to appreciate the difficulty

of carrying out a first-principles calculation of the
frequency dependence of the absorption coefficient
in the multiphonon regime for a realistic model of
an anharmonie crystal lattice. What is quite in-
triguing is that experimental studies of the fre-
quency dependence of the absorption coefficient in
several alkali halide crystal. sa have revealed that
in all the eases studied, for frequencies in the re-
gion 200-800 cm, the absorption coefficient at
room temperature may be fitted quite accuratel. y

by the empirical formula

p((u) =A e e",

where P(&o) is the absorption coefficient at frequency

+, and A and B are constants characteristic of the
particular crystal. It is extremely important to'

know whether Eq. (1) can be derived from a the-
oretical model of some generality and, if so, it is
important to know if it holds to frequencies as high
as 10.6 p, and also if it holds at temperatures high-
er than room temperature.

In this paper, me wish to address ourselves to
these questions. Because of the difficulty of car-
rying out calculations of the absorption coefficient
in the multiphonon regime that are both realistic
and that lead to conclusions of a general nature,
we have chosen to explore the properties of a
model of a solid that is highly schematic, but which
allows simple analytic expressions to be obtained
for the absorption coefficient for a variety of in-
teratomic potentials. We replace a diatomic solid
which consists of N unit cells by an array of N
electric-dipole-active, but anharmonic, oscilla-
tors. While such a model is rather oversimplified
if me choose to represent a real solid by it, by an
examination of the model we can gain insight into
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the question of whether the form in Eq. (l. 1) is
valid quite general. ly. If it is valid quite generally,
it should also be valid for our model. If a real-
'istic potential is chosen for the anharmonic oscil-
lator, we think the model also provides a reliable
semiquantitative estimate for the magnitude of
the absorption in the multiphonon regime. On the
basis of our model. , we will also be led to the con-
jecture that at high frequencies the magnitude of
the absorption coefficient might be quite sensitive
to the presence of certain impurities.

Since the region of experimental interest to date
is room temperature and above, we have used the

,'methods of classical physics to compute the absorp-
tion coefficient. We obtain a general expression
for the absorption coefficient for the model de-
scribed above, and then apply the expression to the
study of the frequency dependence of the absorp-
tion coefficient for four potential functions. %e
consider absorption by anharmonic oscillators
described by the Morse potential, a second poten-
tial. which possesses a hard core and admits an
harmonic approximation [V(x)= bra+a/x~], the
square well, and a potential of triangular shape.

The outline of the paper is as follows: In Sec.
II, we obtain a general expression for the absorp-
ti,on coefficient of the oscillator array by the use of
the methods of classical statistical mechanics. In
Sec. III, we apply this expxession to the four ex-
amples mentioned in the preceding paragraph. - In
Sec. IV, we present a discussion of some implica-
tions of the results obtained in Sec. III.

Quite recently, McGill, Hellwarth, Mangir, and
%'inston have also presented a theoretical discus-
sion of multiphonon absorption by an ax'ray of un-
coupled oscill.ators. In the body of this paper,
these authors present a diagrammatic calculation
of the absorption coefficient which they argue leads
to an exponential form identical to that displayed
in our Eq. (1.1) for a specific model of the inter-
atomic potential. Their model. presumes that in
the crystal Hamiltonian the term proportional to
the nth power of the atomic displacements is pro-
portional to only the quantity g" ~/n!, where g is
independent of n, and the factor n t apparently
comes from the Taylor-series expansion of the
crystal potential. This model is quite specific,
since one may find a large variety of realistic po-
tentials that admit an harmonic approximation and
for which their factor g" wil, l be replaced by a
quantity that exhibits a fundamentally different de-
pendence on n. (Consider the Lennard-Jones 6-12
potential, or any potential that contains a term
which varies inversely with a power of the inter-
atomic separation. ) Their conclusion that the ab-
sorption coefficient varies exyonential. ly with fre-
quency follows upon counting the number of impor-
tant diagrams in the first few orders of perturbation

theory. In view of the discussion in the following
yaragraph and Sec. IV of the present paper, we
are led to question the conclusion that for a poten-
tial of general form, the theory produces an analy-
tic expression for the absorption coefficient ex-
ponential in character in the multiphonon regime.

In Appendix A of their paper, Mcoill et aE.
consider an array of noninteracting oscillators,
each of which is described by a Morse potential.
They insert the expression exhibited by Heaps and
Herzberg for the appropriate electric dipole mo-
ment matrix element into the quantum-mechanical
form for the absorption coefficient. A simple
analytic expression for the absorption coefficient
of the model follows from this procedure. If +0
is the maximum vibration frequency of the crystal,
then when k~ T & @coo the correspondence principle
applies, and their expression may be compared
with the result we obtain below. The two results
agree in this regime. However, whil, e both re-
sults provide a rather good fit to the room-tem-
perature data in the regime of frequencies explored
by Deutsch, and thus appear qualitatively consis-
tent with the form in Eq. (l. 1), at higher fre-
quencies significant deviations are predicted by
both expressions. As the temperature is increased,
these deviations are expected to set in at progres-
sively lower frequencies. Neither our calculation
nor that presented in the appendix of the paper of
McGill et a/. produces an analytic expression for
the absorption coefficient of an array of indepen-
dent oscillators which exhibits the exponential, be-
havior suggested by Eq. (l. 1), although, as re-
marked above, the quantitative differences are
small in the frequency regime explored by the ex-
periments so far. Thus, while one may construct
a particular potential that leads to something close
i.n form to an exponential law, we feel that quite
generally the exponential law is not valid and one
may fit the data quite well by the forms we obtain
below.

In contrast with the nonperturbative approach to
the problem of multiphonon absorption taken in this
paper, in a recent paper Sparks and Sham ' have
calculated multiphonon contributions to the absorp-
tion coefficient of crystals of the rocksalt and zinc-
blende structures by many-body perturbation theo-
ry. Their analysis yields an absox'ption coefficient
which is consistent with the experimental data.

II. GENERAL THEORY

Since we consider the crystal. to be an array of
noninteracting molecules, inf rared absorption by
the collection of oscillators will be N times that
of a single molecule, where N is the number of
molecules in the crystal. Thus, in what follows,
we consider only the absorption by a single mole-
cule. For this the motion of the center of mass of
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the molecule is irrelevant, since it makes no con-
tribution to its dipole moment. Consequently, the
equation of motion which provides the starting
point for our treatment is

terms of like order in E(t) on both sides of the
equation, we obtain the system of equations

~p, ~po 8&o ~po»o
8t 8g 8p 9p Bg

(2. 6)

~ dV(x) dM(x)mx= P=- + Ef
dx dx

(2. 1) Spy Spy SHO Spy SH)) Spa dM
@( )8t ag Bp 8p Bg 8p

(2. e)

where m is the reduced mass of the molecule, x
is the relative coordinate of the two atoms com-
prising the molecule with p the momentum canoni-
cally conjugate to x, V(x) is the interaction poten-
tial energy between these two atoms, M(x) is the
dipole moment of the molecule, and E(t) is the
electric field of the incident infrared radiation.

To obtain the rate at which energy is absorbed
by the molecule from the eleetromagnetie field,
we multiply both sides of Eq. (2. 1) by x and re-
write the result in the form

We now use the results that

{2.ioa}

8H dV
p8x dx (2. 10b)

—po=0,d
(2. 11}

Equations (2. 6) and (2. 9) can then be rewritten as

—[-, m» + V(x)]=Z(f) ZM(x)
dt dt

(2. 2) d 8po dM
df

P'=-
SP

(2. i2)

= Ho —M(x)E(f), (2. 3)

The left-hand side of this equation is the instan-
taneous time rate of change of the energy of the
molecule; we denote it by dg/dt. It is not the in-
stantaneous time rate of change of the energy in
the molecule we require, but rather its average
with respect to the canonical ensemble described
by the Hamiltonian for the system,

H = gP/2m+ V(x) —M(x)E(t)

where dpo/dt and dp&/dt are the total time deriva-
tives of po and p&, respectively. From a physical
point of view, dp/dt is the change in the distribu-
tion function seen by an observer moving with a
particle that traverses the orbit generated by the
Hamiltonian Ho and which passes through the point
(x, g)) in phase space at time t.

For the equilibrium distribution function po we
assume the canonical form

and the time average of the resulting expression.
The average with respect to the canonical en.-

semble can be expressed in the form

dS
& p(, P, &)

~ s ~IO

dM(x)(,p, )() „, , (2. )

po=e "o/Z, P=I/S 7'

where the partition function g is defined by

Z= f'" df f'"dxe

If we now use the fact that

po dpo ~Ho P
SP=dH Sp= ~

Eq. (2. 12) for ~ becomes

(2. 13)

(2. 14)

(2. 15)

t ax ~p ~p &x
(2 6)

In view of Eq. (2.3), this equation can be rewritten
as

Bp Sp SHO Bp SH~ 8p dM(x}&
St Sx SP Sp Sx SP d»

where p(x, p, f) is the canonical distribution func-
tion which obeys the Li,ouville equation (2. 16)

(2. 17)

The solution of Eq. (2. 16) that obeys the initial
condition Eq. (2. 17) is

dpi ~ dM= /pox E(t) .
We now assume that the perturbing electric field
was switched on adiabatically in the infinitely dis-
tant past, so that

We now expand p in powers of the driving electric
field of the infrared radiation,

p~(&) = P E(f )dt (2. iS)

p= po+ pi+ (2. 7)

where the subscript denotes the order of the cor-
responding term in E(f}. When we substitute the
expansion of Eq. (2. 7) into Eq. (2. 6), and equate

With the results given by Eqs. (2.7), (2. 13), and
(2. 16), we can rewrite Eq. (2. 4) in the form

+ IC
w +OO

dP dg p g'
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4I tgl

+P' dt ~(
s EO

z(t')z(t) dt + ~ ~ ~ . (2. 19)de, . dt

If we use Eqs. (2. 3) and (2. 13), and rewrite the
first term on the right-hand side of Eq. (2. 19) in

the form

and where for any function A(x, P, t),

Q), = f™dt j "dx po(x, p)g(x, P, t)

For Z(t), we now assume the form

z(t) = zo cosset e"',

(2.23)

(2. 24)

where e"' is an adiabatic switching factor (g is a
positive infinitesimal). With this choice, Eq. (2. 21)
becomes

o ~t ~to~ ~

~ aO

x cosset cos~t e""' ' dt . (2. 25)

Let t = t —7', and integrate over ~ rather than t .
Then

y 00

~ ~

= pZ~~ e+' cosset ~i {M(t—v)M(t))0

x cosa&(t r) e 'd& —. {2.26)

Because Ho is time independent, our system pos-
sesses time translation invariance, which in the
context of the present problem is expressed by

(M(t —r)M(t)), = {M(0)M{v)),. (2. 2V)

The time average of Eq. (2. 26) thus becomes {in
the limit g-0)

P d7' cos (gT' g~ M 0 M T

(a. as)
In Eq. (2. 28), we can replace r by —v as an inte-
gration variable and use time-reversal symmetry,
which leads to the identity

(M(0)M( —v))0 = (M(0)M(r))0 .

Z(t)l

dpi'

'"-'~ —i dxe-"" dM

m. dx'
(2. 2o)

we see that it vanishes because of the vanishing of
the integral over p. Thus, the first nonvanishing
contribution to (dS/dt) comes from the second
term. This term may be arranged to read

( —P ~g ~g Eg gg

where we have introduced the notation

M(x(t)) = M(t)

We then obtain an alternative expression for {{d8/

0

2 PE3 d7'cos (oT g" M Q M &

(a. so)

Upon adding half of Eq. (2. 26) to Eq. (2. 30), we
obtain

t
= 4P o ~

M G M v cos+7'e~'"dw
~ oo

(a. 31)
for the time and thermodynamically averaged rate
at which energy is absorbed by a diatomic mole-
cule acted on by an external ac electric field.

The result in Eq. (2. 31) may be recognized as
a classical version of the well-known Kubo for-
mula for the absorption coefficient.

In what follows, we shall confine our attention
to the case of infrared absorption by a first-order
dipole moment. That is, if we expand M(x) in a
Maclaurin series,

M(x)=M (0)x+ 2M (0)x + ~ ~ ~, (2. 32)

where the primes denote differentiation with re-
spect to x (we assume the equilibrium configura-
tion of the molecule has no dipole moment), we re-
tain only the contribution from the leading term in
the expansion. McGill et a/. have examined the
effect of the second term on the absorption coef-
ficient and find its effect quantitatively small. 3 The
coefficient M (0) has the dimensions of a charge,
and we denote it by q in what follows. Thus, the
starting point for the investigations in this paper
is the following expression for the average rate of
energy absorption by a diatomic molecule:

( p(0)p(r))0 cos((ur) e~'" dr .
W

(2. 33)
%e next turn to the problem of casting the mo-

mentum autocorrelation function (p(0)p(r))0 into a
form convenient for computational purposes. This
autocorrelation function can be written explicitly
in the form

(P(0)P(t)&0=(I/&) j d0 J dxe"' " '"'""Pp(t).
(2. 34)

Because the Hamiltonian is time independent, we
have expressed it in terms of the values of p and
x at time t=o in Eq. (2. 34). Thus, here and in
what follows p and x denote p(0) and x(0), respec-
tively. In addition, as integration of the equations
of motion shows, the value of the momentum at
time t is a function of the initial values x and P,
and we indicate this explicitly by writing P(t) as
P(x, P, t).

We now rewrite Eq. (2. 34) in the form
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& P(O)P(t))o l dZ e o -ll dPli d„z I

~ «00 ««00

dxP(x, Ps, t}= Q P„(E)e'""'s", (2. 4l)

p'x5 E —V'x- ppx, p, t

where

~ oo (E) "+~

dpz
min x {s&1

x 8(p p )+ 8(p+ p )
pp{

pQ

(2. 38)

p, =(2m[Z - V(x)]]'" (2. s8)

and x, (z) and xo(z) [chosen so x, (z) «xo(z)1 are the
classical, turning points for motion in the potential
V{x), i. e. , they are the solutions of

z= v(x) . (2. 37)

We assume the potential V{x) is such that there are
two classical turning points for energies E ~E „,
where E „is the minimum value of V(x). The
physical significance of p~ is that it is the momen-
tum at t = 0 in a motion corresponding to the total
energy E.

Upon carrying out the integration over p in Eq.
(2. 35), we obtain

{p(O)p(t)), =(m/Z) f dZe '
min

and we have defined

~(z) = »/T{z) . '(2. 43)

To obtain a simple expression for p„(z), note
that the solution of the equation of motion for a
particle moving in a one-dimensional potential is
given explicitly by

)&/ol dx
[Z —I (x')]'" '

~ &(s)

x, (Z) == x x, (Z) . (2. 44)

In writing this expression, we are measuring time
with respect to an instant tD at which the particle
is at the left-hand turning point ~(z). It is neces-
sary to know x as a function of t only for x, (z) —x
—xo(z) because as t increases past to+ & T(z),
where x= xo(z), the motion reverses itself [i.e. ,
x(t) is symmetric about t= to+-, T(z)] until the time
to+ T(z) is reached, at which point the particle has
returned to x, (z) and the motion begins to repeat
again.

The solution of Eg. (2. 44) can be written

where
T(E)

p„(Z) =
( l

dt dx p(x, p„ t) e'""""
«D

(2. 42)

x[ f* "dxP(x, P„ t) x(t) = x, (Z)+f, (t —t,), (2. 48)

dxT(z) = (2m)
ll [ { )]g go

«x1(E)
(2.4o)

This result holds for any initial position x and mo-
mentum p~ in a motion corresponding to total en-
ergy E. Thus, the lintegral over a period in Eq.
(2. 39) is a periodic function of time with the same
period T(E), and we expand it in a Fourier series:

+ f ', dx p(x, —ps, t)]. (2. 38)

Since the momentum at t= 0 for x in the interval
[xo(z), ~(z)] is the negative of that at the same
point in the interval [x,(E), xo(z)], because the mo-
tion reverses itself at each turning point, the ex-
pression in brackets is the integral over one pe-
riod of the motion beginning at x~(z), and returning
to x&(z) after one period. Thus, we may write Eq.
(2. 38) in the form

(p( )pO(t)), =( /mZ) f dZe-" $ dxp(x, p„ t) .
~min

(2. 38)
The one-dimensional motion of a particle in a

region bounded by two turning points is a periodic
function of time with a period T(z) given by'

where the function fs(t) is an even function of t, is
periodic in t with period T(z), is even about
t= —,

' T{z), and vanishes as t-0. The momentum

pe(t) for the orbit of energy E is

df~{t—to)p, (t) = m = m g, (t —t,),dt (2. 48)

where ge{t) is an odd function of t, is periodic in
t with period T(z), and is odd about t= —,

' T(z).
With these results, Eq. (2. 42) becomes

p. (z) = 1
T(z)

p (Z)
o d an~&si~o

T(z)
F(E)

x ' dt m ge(t) sin[ms(z)t], (2. 48)

' &(&)
xl dtmg (t- t,)e'""' "' 'o', (2. 4V)

o

where the integrations over x and t have been in-
terchanged. Since ge{t) is periodic with period
T(z), and we integrate over a complete period,
this result becomes
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where we have used the fact that gs(t) is odd about
t= 2 T(E). We now convert the first integral from
an integral. over x into an integral over tp.

~ + ~f(g)
p (E) — '

I dt baal($)t p

T(E) I

0 dta
Q

"F(E)
x ' dt m gs{t) sin[no&(E)t]. (2. 49)

p

The coordinate x is obtained as a function of tp by
setting t= 0 in Eq. (2. 44). The limits on the first
integral follow from the fact that the original in-
tegral on x around a period of the motion corre-
sponds to t- to increasing from 0 to T(E}as x goes
from x, (E) to sz(E), and back to ~(E). Setting
t=0, we see that to goes from 0 to —T(E) as x
makes the same circuit. Making the change of
variable to= —t, and using the fact that fs(t) in Eq.
(2. 45) is an even function of t, we obtain for p„(E)

m T(E)
p (E) l

dt' (t'} -l ($&t'

~ 0

&(8 )
dt m g (t) sin[no&(E)t]

m p,

or, using the oddness of gs(t ) about t =-,' T(E),
we find finally

(2. 50)

m p„(E)= ~{E)/TN),
where

{2.51)

&„(E)= f dt p (t) sin[n&u(E)t], (2. 52)
p

where the momentum ps{t)= m gs(t) appearing in

Eq. {2.52} must be understood to be obtained from
Eq. (2. 44) with to=0 [since that is how g(t) is de-

finedd].

Upon combining Eqs. (2. 39), (2. 41), (2. 43), and

{2.51), we obtain for the momentum autocorrela-
tion function

4ao n g@

{P(0)P(t)),= P I

" ~(E)4' (E}e '&»t-
2vZ

mia
(2. 53}

I

When this result is substituted into Eq. (2. 33),
and the integration over time is carried out, we
obtain (as g-0+)

0 dE ~ PS(4) E (jg E
mta

x[5(&o —n&o(E))+ 5{++n&u(E))] . (2. 54)

If we note that (P~(E) vanishes for n = 0, and is an
even function of n for n 0, we finally obtain for
the average rate of energy absorption by a diatomic
molecule

dS (d () 1

mls

x e es P„(E)5(v —mu(E)), (2. 55)

where we have assumed co &0.
The dynamics of the problem are seen to enter

simply through the necessity of knowing tk(t) for
the evaluation of 4'„(E) and &u(E). Moreover, if
&o(E) is 'a sufficiently simple function of E so that
the equation u=nv(E) can be inverted, the integra-
tion over E can be carried out using properties of
the 6 function.

We briefly summarize in words the procedure for
computing the quantities that enter Eq. (2. 55).
Given a potential function V(x), one requires the
period T(E) as a function of energy. This function
may be obtained from Eq. (2. 40) and &o(E) is de-
fined by Eq. (2.43). By solving the equations of
motion, one finds the momentum as. a function of
time ps{t) for an orbit of energy E, with the origin
of time chosen so the parameter to in Eq. {2.44)
is set equal to zero. The quantity 4'„(E) is a mea-
sure of the amplitude of the nth harmonic in the
function ps{t}, and is obtained from Eq. (2. 52).
Finally, Z is the partition function.

We conclude the present section by displaying a
remarkably simple relation between the partition
function of the oscillator, and the function T(E),
that gives the period as a function of energy.

We have

0 +~+ +e0 i +eo my

Z= l dp l~ dxe ~ ~'"" =I dEe ~ dp
~

dx&(E- V(x}—p /2m)
m ~40 a 00

BIO

+40

dEe e

fnin g (~)
1

x (S)
dp[6(p-tk)+ 5(p+ ps)] C

!
dEe ' (2m)'"

gmia ~ (s)1

or finally

Z= f dEe ~T(E) .
min

(2. 55)

HI. APPLICATIONS OF THE FORMALISM TO THE STUDY
OF MULTIPHONON ABSORPTION FOR SOME SPECIFIC

POTENTIALS

We next proceed to apply the results of the pres-
ent section to the examples mentioned in Sec. I.

In this section, we study the behavior of the ab-
sorption coefficient as a function of frequency for
four specific forms of the interatomic potential
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V(x). We first derive the form of the absorption
coefficient for the Morse potential, a form used
frequently in molecular physics. We then consider
the potential V(x}=ax0+b/x0, the square well, and
the potential V(x) = y x for x ~ 0, V(x) = ~ for x & 0.
The last two potentials are interesting examples to
consider, since one cannot construct a discussion
of a perturbative nature, because an harmonic ap-
proximation does not exist for either case.

A. Morse Potential

The Morse potential may be written io the form

V(x) =D(1 —e "*"0') (S.1)

The minimum value of V(x) is zero and the minimum
occurs at x= ~. For large values of the interpar-
ticle separation V{x) approaches the constant value
D, the dissociation energy of the molecule. For
most cases of interest here, D assumes a value of
the order of 1 eV, an energy very large compared
to k&T, as long as we confine our attention to tem-
peratures the order of or lower than the melting
temperature of the solids of interest to us. We
shall make use of the fact that k~T «D in the dis-
cussion below.

If we consider only motions of small. amplitude,
x remains near x0, and V(x) is well approximated
by the parabolic form

1 E 1/2
+ —ln 1 — — cos0/(E)t, (3.6)a D

where we have introduced the quantity &u(E), de-
fined by

0/(E) = /d0(1 -E/D)'/0 . (3.7)

From Eq. (3.6), it is evident that the period T(E)
of the motion is

T(E) = 2 v//d(E) . (3.6)

For small energies, T(E) assumes a value inde-
pendent of energy and equal to 20//d0, and the
period lengthens as E increases.

The momentum ps(t) is found from mx(t), with
x(t) given by Eq. (3.6). If this differentiation is
carried out and the result substituted into the ex-
pression for /J„(E) given in Eq. (2. 52), one obtains

(2mE)' /'/d (E)

(D —E) D-e 08 } w

(DE)1 /2 NL'08 )I+ 2

(S. 5)
If this relation is solved for 8 as a function of t,
and x(t) is obtained from this result, one finds

x(t) = x0+ —ln
1 D

V(x) =De'(x- x,)' . (S.2)

Thus, in the limit where the amplitude of the mo-
tion is small, the molecul. e behaves like an har-
monic oscillator with frequency ~p given by

(u00 ——2a D/m. (S.3)

x (E —D+ 2De~ *0» —De ~ *0» ) (3.4a)

The integral can be evaluated in closed form.
This may be done by letting H=e and 8~=e
If we then define C=De2~p, B=2De~p, and A=D
-E, the integral becomes

m)&/2 "~~ dH'(Ee'-W-Cs') '"
a 2] Hl

{3.4b}
For bound motions of the molecule, the only case
of interest here, B8 ~A+ C8 everywhere. The
integral is then readily evaiuated to give

(D —E) -De"0g'li '
m

We begin by deriving an expression for the quan-
tity Pe(t) defined in Sec. II, following the procedure
outlined there. We begin with Eq. (2. 44), which
with tp equal zero becomes

sinn0/(E) t sin/d (E)t
1 —(E/D)' cos0/(E)t

( )
2w(2mD) (fE

cop Ii4D
(3.11)

In this limit, the function /d(E) may also be re-
placed by the approximate form &p independent of
energy, for E«D. From Eq. (2. 56), one readily
sees that the expression for the partition function

dp.
2(2mE)'/0 ~' sinnysiny

1 —(E/D) /0 cosy

(3.9)
The integral in Eq. (S.9) may be evaluated exactly,
to give

(2 E)1 /2 D (rt+1& /2 E 1 /0 n

s.(E)= 1- 1-—
(Op E D

(3.10)
The discussion shows that for the Morse potential,

exact results for all quantities which enter the ex-
pression for the absorption coefficient are readily
obtained, for the bound orbits. We shall compute
an approximate form for the absorption rate in the
limit k~T«D, where only orbits with energy
E «D contribute significantly to the rate af ab-
sorption. In this regime, we replace S'„(E) by its
leading contribution when E«D:
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becomes

Z=2v/(()oP. (3.12)

If these approximations are inserted into the ex-
pression for ((dl/dt)) displayed in Eq. (2. 55},
one finds that

r x2

1/2 I dpt= —, (-, m)
i
(,)„,

"x (g)

1 r~'t g g E —2bg=
31(Y(,)l 2

-"" (8 4,()ua) . (s. ao)

+n~ —+~p (3.Isa)
If we evaluate this expression for x=x2(E), the

left-hand side must be set equal to 2 T(E), and in
this way we obtain

where
T(E)= 2{m/ab)'/2 . {s.21)

~ q'z.', (). r),
For the case n = 1, we have

(3.13b) Consequently, the frequency &o(E) is given by

(d(E) = (Sb/m)' /2 -=(o2 . (3.22)

ei=-~ p m, (3.13c)

a
{ (t2, T "'

I, 4D
{3.14)

B. Potential V(x)=a/xi+hei

The second potential function we consider is

V(x)=a/x'+bx', x O. (3.15)

Setting t2 = 0 in Eq. (2. 44), we obtain for the equa-
tion determining x(t),

m i" xdx
2

i

(-a+Ex'-bx')'" '
~ xg($)

The turning points x, ,2(E) are the solutions of the
equation

(3.16)

E= a/x'+ bx'

and are found to be

Z —(E'-4ab)"' ~)' "
ab

(3.17)

(S.16a)

independent of temperature, the well-known result
for the integrated strength of the fundamental ab-
sorption line of a simple harmonic oscillator of
mass m, charge q, and frequency u&2. (Recall that

E2 is the peak value of the field. )
The integrated strength of the absorption peak

at the frequency ar = n&u2 (the n-phonon absorption
peak for this model) is related to that of the funda-
mental absorption peak by the simple relation

Q p2 exp 2P gQ 1/2

Xi dz e 22&2(E) 5(a& —n&u()) . (3.24)
&min

If we make the change of variable E= 2(ab)'/ (z+ 1),
we obtain the convenient form

2 g &/ 0 P&

dz exp [-2P(abz)'/2]1

n=f + ~ p

&iII(2(ab)' (a+1))) ()( —nw~) . (3.25)

Since 2(ab}1/2=E „,we see that for temperatures
such that E „k~T, only values of z-1 contribute
significantly to the integral. We now turn to a
determination of 6'„(E).

Inverting Eq. (3.20) we obtain for x(t),

E (E2 4ab)1 /2
x(t) = — cos(d() t (3. 26)

It should be noted that the period T(E) and the cor-
responding frequency v(E) for the potential (3. 15)
are independent of the energy E.

It follows immediately from Eqs. (2. 56) and
(3.21) that the partition function Z is given by

Z= (22/(6(L) ) exp[ —2P(ab) / ]. (3.23)

Expression (2. 55) for the rate at which energy is
absorbed by the molecule described by the potential
function (3. 15) now becomes

E+ (E2 4 b)1/2 1/2
x2{E)= (3. 18b) from which we immediately obtain p(t):

The energy E „equals the minimum value of the
potential energy (3.15). Equivalently, it is the
energy for which x1(E)= x2(E), and hence is given
by

() / (E —4 b)
P' = m Eg/2

sincogt (3.27)
(I - [(E —4ab) / /El cos(d tj'/

E „=2(ab) / (s. 19)

The change of variable x2=y transforms Eq.
(S.16} into

The integral 6'„ in this case is given by

( ) 2( )1/2 6
i

s111xsintgx
(d() ~ (I —5 cosx)'/2 (s. as)
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where we have set

5= (E —4ab) ~ /E . (s. 29)

=(az)'i [I--'z++z + ~ ~ ], 0-z 1.
(3.37)

The change of variable x= m-2p yields the follow-
ing expression for 6'„(E):

mE~' ' 2ay ( ) ( ) g (mE 2

0

cosa(n —1)p- cosa(n+ 1)y
(I —[25/(1+ 5)1 sin'q»'"

Thus, the leading term in the expansion of
O'I(2(ab)~~z(l+ z)) for small z is

S'z(2(ab) (1+z))-z ~ 2(ab)
~0

[(an —2)!]
2~,[( 1),]-, z +O(z ). (

The integral.
~ t/2

Z„(k) =,
COS2RX

(1 —k' sin'x)' "
0 —k&1, n=0, 1, 2, . . . (3.31)

When this result is substituted into Eq. (3.25),
and the integral over z is carried out, we obtain
finally

2) ~+1

has the following expansion in powers of 4

X (v- n)! (v+ n)!
I

, „Z r(n+-,') ' k~
2 T(-,' ) (an)!

(as i 1) (as+ 1)(an+ 3)'
32(2n+ 2)

Consequently, since in the present case

k =25/(1+ 5) &1,

(3.32a)

(s. sab)

(3.33)

(yyN1
5(&o —n&uo) . (S.39)

iEmin

We see from this result that the integrated strength
of absorption at the frequency &o=&uo, (sq /4m)EO,
is independent of temperature and has the same
value as in the case of the Morse potential. The
integrated strength of the absorption at the fre-
quency ~ = n~o is related to that of the fundamental
absorption peak (n=1) by

[(2„2)r]z, kzT " '
2"-'[(n -1))]' " E (3.40)

which is very close in form to the corresponding
relation (3.14) obtained for the Morse potential.

C. Square Well

the first two terms in the expansion of +„(E)are
found to be

z (mEPlz (T(n —~)~ I (25)
I (-.' ) & (an - 2) ~ (I+ 5)" ' "

Consequently, we have that

z mE I'(n —z )
~

1 (25)
4 ~,' I(.') ) [(an--2)t]' (1+5)*"'

1+
5 +Oi

i 5 i . (3.35)
an —1 2& (( 2&

Since 6&1, we can simplify this expression to

an-2)»' T(E)= L(2M/E) z = av/(u(E) . (s.41)

We next apply the method to compute the shape
of the absorption spectrum for a particle trapped
in a square-mell potential, with infinitely steep
sides. This example is an interesting application
of the formalism developed in Sec. II, since the
potential does not admit an harmonic approxima-
tion. In Sec. IV, we argue that there are certain
impurities in alkali halides that may be regarded
as moving in a very steep-sided potential that can
be approximated by a square well, at least for
qualitative purposes.

We suppose that the square weQ has width L, with
infinitely steep sides. If we consider motion of a
particle of mass m in the well, with energy E,
then the velocity v of the particle is (2E/m}' ~z.

The period T(E} is 2L/v, or

(s. Se)
If we make the replacement E=a(ab) +(z+1}in

Eq. (S.29), we find that as a function of z, 6 is
given by

5= (2+ 2z)' ~z/(z+ 1)

For the momentum pz(t}, one has

P (t) = (2mE)' ™,0 & t & —' T(E)

= —(2mE)', —', T(E) & t & T(E) .
A short calculation gives for this potential

S'„(E)= (amL/zn)[I —(-1)"] .

(3.42}



1626 D ~ L ~ MILLS AND A. A. MARADUDIN

It is a straightforward matter to insert this ex-
pression into Eq. (2. 55}, and obtain the form of
((d8/dt)). The computation of the partition func-
tion is also quite elementary. The final result is
best expressed in terms of a characteristic fre-
quency ~~, given by

a)r = w(2k, T/mr, s)"s . (3.43)

In terms of co~, the expression for the rate of en-
ergy absorption is

dt n'" m co

exP[ —(us/(osr (2n+ 1) ]
(2n+ 1)s

The absorption coefficient is thus a superposi-
tion of a sequence of Gaussians. The function on
the right-hand side of Eq. (3.44) has a prominent
peak very near co=co~, with weak subsidiary max-
ima at higher frequencies. Of particular interest
is the behavior of the absorption coefficient for
frequencies large compared to ao&. In this region,
one may find the asymptotic form of the absorp-
tion coefficient by replacing the sum in Eq. (3.44)
by an integration. For ~ » e~, by this means one
finds

4 gEs e dS & uP 1
wsss m ~s y ~l(- ~~ ~g

TA,
Q

T

2 q8~
S/8 (s. 45)

Thus, for frequencies large compared to the
characteristic frequency ~~, the square-well po-
tential gives rise to an absorption coefficient that
falls off as ~ ~, a result qualitatively different
from the empirical form displayed in Eq. (1.1).

D. Triangular Well

We next display the form of the absorption coef-
ficient for a potential V(x) of the form

V(x) =, x&O

=yx, x&0
(3.46)

where the constant y is presumed positive. This
is a second example of a potential for which there
is no harmonic approximation.

The classical equations of motion for this ex-
ample are quite elementary. For an orbit with en-
ergy E, the period T(E) is

T(E) = (2/y) (2mE)' ~s, (3.47)

and the momentum of the particle as a function of
time is

p (t) = (2mE)' ~s[1 —2f/T(E)], O & t & —.
' T(E)

= —(2mE) ~s[1 —2t/T(E)], s T(E) & & & T(E).

A short and straightforward calculation then
gives

&„(E)= 4mE/w yn,

and for the partition function

Z= [(2w m) /y](ks T)

(s. 46)

(s.4s)

When these results are inserted in Eq. (2. 55},
one finds that the results assume the form

n exp -n

(s. 5o)
where A~ is a characteristic frequency given by

Ar = wy(2mksT) ' '. (s. 51)

When ar» A~, the form of the absorption coef-
ficient may be deduced by replacing the sum over
n by an integration, as we did in the preceding ex-
ample. In the high-frequency regime, one finds
that

2 qsE,'f1
dt / m

(s. 52)

a result remarkably similar to that obtained for
the square well. In both examples, for ~ large
compared to a characteristic frequency, the ab-
sorption falls off as cu ~.

IV. GENERAL DISCUSSION

The purpose of this section is to examine some
implications of the results in Sec. GI.

We first examine the question of the validity of
the phenomenological form displayed in Eq. (1.1),
which is suggested by the absorption data reported
to date. If this form is in fact a general result
which holds in the limit of high frequencies, then
we should expect it to emerge from our analysis.
If we consider the Morse potential and also the
potential bx + a/x, our independent oscill, ator
model predicts a series of absorption peaks at the
frequencies e„=n+Q, where vQ is the fundamental
vibration frequency of the anharmonic oscillator.
If the exponential law is obeyed for these models,
then we should expect the integrated streagth of
the n-phonon peak (the absorption peak at naos) to
vary with n as &", where E is a parameter indepen-
dent of n that depends on the details of the inter-
atonic potential and the temperature.

If we examine the results obtained in Sec. III,
we see that a relation of this form does not hold
for any of the four potentials we have examined.
The two potentials most directly applicable to real
physical systems are the Morse potential and the
potential bxs+a/xs, since both of these potentials
admit an harmonic approximation. If we denote
the integrated strength of the n-phonon peak by

e„, then for the Morse potential we find that
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a„=s!(kT/4D)" 'a, , (4. 1)
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FIG. 1. Comparison bebveen the multiphonon data in
KCl and the noninteracting oscillator model, fox the case
where the motion of the oscillator is governed by the
Norse potential. The solid line passes through the room-
temperature data points of Deutsch and all the data lie
to the left of the square bracket placed on the curve near
750 cm ~. The barred circles are computed from the
theoretical model, with parameters adjusted to fit the data
at I=2 and G. The crosses give the theoretical predic-
tion when T=600'K, and the dashed line is a straight line
drawn as an aid to the eye.

where a, is the integrated strength of the funda-
mental reststrahl band at ~0. A very similar re-
lation obtains for the potential be~+ a/x~, as we
have seen. Because of the factox of nl that ap-
pears in Eq. (4. 1), a plot of a„vs n does not give
an exponential law of the form displayed in Eq.
(1.1). It is for this reason we think that the proof
offered by McGill et g/. leads to conclusions that
are not correct. Both exampl. es we have inves-
tigated lead to results which contradict this con-
clusion. As we remarked in Sec. I, these authors
have also calculated the intensity of the multiphonon
absorption peaks for a set of independent oscilla-
tors, each of which is described by the Morse po-
tential. Their calculation is carried out by a quan-
tum-mechanical means, and yieMs a result in
agreement with ours in the limit I(do & k~ T, where

the correspondence principle dictates that the
classical and quantum-mechanical results must
concux' ~

One must then inquire into the reason why the
data are so mell fitted by the exponential form dis-
played in Eq. (1.1). Of course, it may be that our
independent oscillator model is so highly simpli-
fied that conclusions based on it are unreliable.
We think that the problem does not lie here, but in
the fact that the data obtained to date extend only
over a rather small range of frequency, from 2coo

to 6+p at best. The frequency only varies by a
factor of at most 3 through this range. While the
absorption coefficient changes by many decades
as one passes through this fx equency xa,nge, mea-
surements over a wider range of frequencies, or
at higher temperatures, will be required to deter-
mine whether the phenomenological form in Eq.
(1.1) ls valid.

We illustrate this point in Fig. 1, where we
present the multiphonon absorption data obtained
by Deutsch, and compare it with the prediction of
Eq. (4. 1) at integral values of n&oo. The solid line
in Fig. 1 is a straight line, chosen with slope such
that it passes through the data obtained by Deutsch.
We have omitted the data points simply to avoid
cluttering the figure but, as noted by Deutsch, the
data fall on the straight line. It mill be important
for our purposes to note that the data points all
lie below the frequency of 750 cm ', to the left of
the square bracket which ha, s been placed on the
straight line. Thus, the portion of the straight
line to the right of this bracket represents an ex-
trapolation of the data to higher frequencies, in
particular to the frequency of the COB laser. This
extrapolation assumes that the phenomenological
form given in Eq. (l. 1) is valid for all frequencies,
since it is a linear extrapolation on a semilog plot.

In Fig. 1, the barred circles represent the pxe-
diction of Eq. (4. 1). To place the points on the
figure, we have adjusted o., and D so that Eq. (4. 1)
fits the data at the two points n = 2 and 5. When
we then calculate the strength of the absorption at
n = 3 and 4, we obtain results that agree very well
with the data, to within the accuracy of the graph.
Thus, we can also fit the function in Eq, (4. 2) to
the data, and it is clear that the measurements do
not extend over a range of frequencies large enough
to warrant the conclusion that the exponential law
provides a unique description of the results.

It is not hard to see why we obtain a good fit to
the data. The ratio ks T/4D is quite small, of the
order of 10 ~ typically, as we shall see shortly.
If we plot the data on a semilog p1ot, then we are
concerned with the behavior of lna„as a function
of n Equation. (4. 1) then gives

4D 1
)

4Deglne„=-n ln ——lnnl +ln
@~T n 8
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TABLE I. Morse potential parameters D and a required to fit the TO phonon frequency and multiphonon absorption
data of Deutsch, for a series of alkali halides. Included is the (linear) thermal-expansion coefficient computed from the
model for these crystals, along with measured values of the thermal-expansion coefficient, at room temperature.

Crystal

NaCl
KCl
KBr
LiF

D (units of
10 ~2 erg)

0.73
0.60
0.77
0.32

a (in units of
10 cm)

1.2
1.4
0.9
2.2

Calculated thermal
expansion coefficient

(units of 10+'K)

40
40
46
75

Measured thermal
expansion coefficient

(units of 10+'K)

40
37
39
33

If n is large enough for Stirling's approximation to
be used, lnnt =-n inn —n and

inn„= —n 1+In —inn +ln4D 4Daq

B B

Since 4D/ks T» 1, the 1n(4D/ks T) contribution to
the quantity in square brackets is quite large.
Furthermore, if we plot inn„as a function of n,
deviations from a straight line arise only because
of the inn term. Since inn is a slowly varying
function of n, a plot of inn„vs n can give a result
approximated very well by a straight line, if only
a small range of n is examined.

If, for the moment, we accept the results of our
independent oscillator model as realistic, then
from Fig. 1 one can see that extrapolation of the
exponential law in Eq. (1.1) to higher frequencies
can lead to serious errors in estimates of the ab-
sorption coefficient. For example, by the time
n = 7, the expression in Eq. (4. 1) gives a value of
the absorption coefficient larger by a factor of 5
than that obtained from extrapolation of the expo-
nential law. This example suggests that to estimate
the absorption coefficient at 10.6 p, by the use of
Eq. (1.1) to extrapolate data from lower frequen-
cies may lead to a serious underestimation of the
absorption coefficient at 10.6 p, .

If the temperature of the crystal is raised, the
discussion above suggests that deviations from the
near-exponential behavior should be expected to be
more severe, and to set in at lower values of n.
To illustrate this point, on Fig. 1 we have placed
a series of crosses to represent the prediction of
Eq. (4. 1) at T=600 K, once e& and D have been
adjusted to fit the room-temperature data at n=2
and 5, as described above. The dashed line is a
straight line place on the graph as an aid to the
eye. The deviations are indeed more pronounced,
although on the semilog plot they do not look large
if one adjusts the slope of the straight line to give
the best fit.

In order to see if the independent oscillator
model provides a fit to the data with realistic pa-
rameters, we have done the following for the case
where the molecular potential is assumed to be

where the second term is small compared to ~.
We identify the coefficient of (linear) thermal ex-
pansions with the ratio 5(x)/x05T, where 5(x) is
the change in the mean separation of the atoms
produced by the temperature change 5T. If we call
P~ the expansion coefficient, then

P r = 3ks /4aDxp . (4. 3)

the Morse potential. We have determined the pa-
rameters of the Morse potential by the use of the
value of the TO frequency, and the multiphonon
data on the four alkali halide crystals studied by
Deutsch. When this information is combined with
the tabulated value of the interatomic spacing, the
coefficient of (linear) thermal expansion may be
calculated for the model. We shall describe the
details of the analysis below. The results of the
investigation are summarized in Table I. For
NaCl, KCl, and KBr, this procedure gives results
in remarkable accord with measured values of the
thermal expansion coefficient. For LiF, the agree-
ment is poorer, but the estimated and measured
value of the thermal-expansion coefficient still dif-
fers by little more than a factor of 2. On the basis
of this analysis, we conclude that multiphonon ab-
sorption processes of an intrinsic character are
indeed responsible for the absorption measured by
Deutsch.

To obtain the numbers displayed in Table I, we
have employed the following procedure. From Eq.
(3.14), one sees that the slope of a plot of Ino.„
vs n is controlled only by the parameter D, for the
Morse potential. We have obtained the value of D
given in Table 1 by fitting the ratio n, /o~ to the
data of Deutsch. The value of a is obtained by
identifying the frequency no [Eq. (3, 3)] with the TO
phononf requency of the crystal. The parameter xo in

the Morse potential is chosen to be equal to the near-
est-neighbor interatomic spacing in the crystal.

In the quasiharmonic region, where kBT«D,
it is an elementary matter to calculate the mean
value (x) of the interatomic separation of the two
atoms in the molecule. One finds
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The figures in the third column of Table I have
been obtained from Eq. (4. 3), and in the right-
hand column we give the experimental data.

One intriguing feature of the results of Sec. III
is that the strength of the n-phonon absorption peak
for the Morse potential, and for the potential
bx + a/x, exhibits nearly the same functional de-
pendence on n. This leads one to expect that the
result in Eq. (4. 1) may be rather general in the
limit of large n, valid in the classical regime for
any potential that admits an harmonic approxima-
tion, as long as the anharmonic corrections to the
particle motion are small. At this time, we have
not succeeded in providing a general proof of this
result, however.

%e conclude this section with some comments
about the possible role impurities may pl.ay in af-
fecting the behavior of the absorption coefficient
at high frequencies. If the impurities are coupled
to the ions of the host lattice by means of an inter-
action that may be crudely represented by either
the Morse potential or the potential bx + a/x,
then within the framework of our model, the im-
purities will not affect the qualitative behavior of
the absorption coefficient. However, they will
affect it in a quantitative sense, since a certain
fraction of the lattice oscillators wil1. then be de-
scribed by parameters that differ from the oscil-
lators that describe the host lattice.

However, there are certain impurity ions that
behave in an anomalous manner when present as
substitutional impurities in alkali halides. An ex-
ample is the Li+ ion, which frequently gives rise
to a very-low-frequency-resonance phonon mode,
even though it is a very light ion which would produce
a high-frequency local phonon mode if it is coup1.ed
to the host ions by interactions characterized by
harmonic force constants comparable to those in
the host matrix. Evidently i.n the case of Li', in
the harmonic approximation the force constants
are very much smal1er than those which character-
ize the host, small enough to offset the tendency
of the light mass to create a high-frequency local
mode. In fact, in KC1 the Li' ion sits off the sub-
stitutional lattice site, in the [Ill j direction; while
it sits on site in KBr. These facts suggest that
the Li' ion moves in a potential. we1,1 with a rather
flat bottom, while terms higher order than qua-
dratic in the displacement of the Li' ion from the
substitutional site play an important role in the
lattice potential energy. This notion is supported
by theoretical studies and by experimental obser-
vations, which show very large electric-field-
induced shifts in the frequency of the resonance
mode. ' It is also true that a number of other ions
have been observed to produce resonance modes
with frequencies very much lower than the fre-
quency expected on the basis of mass-defect con-

21
16 1/2f SQ' 1 ~(d

m
(4. 3)

where n =N/V is the number of unit cells per unit
volume of the host crystal and f is the impurity
concentration. In Eq. (4. 3), q and m are the ef-
fective charge and mass of the impurity. Let qo
and ~ be the effective charge and reduced mass
of the unit cell in the host crystal, and let

(4. 4)

siderations alone. 'o

The remarks of the preceding paragraph indicate
that there are a certain number of impurities that,
when placed in alkali halides, may be crudely de-
scribed as moving in the cage formed by their
nearest neighbors, with the floor of the cage quite
flat in character. The calculation presented in
Sec. III of the contribution to the absorption coef-
Q.cient from the particle in the square well suggests
that these impurities may give a contribution to
the absorption coefficient that falls off as co 2 for
frequencies large co~pared to the resonance fre-
quency u~ at which the peak in the impurity-induced
absorption occurs. Thus, the presence of a sig-
nificant number of impurities that give rise to
very-low-frequency resonances may have a signif-
icant qualitative effect on the behavior of the high-
frequency absorption coeff icient.

Before we proceed to an estimate of the quantita-
tive effect of these impurities on the absorption
coefficient near 10.6 p, , we first note that for
typical values of parameters, the characteristic
frequency su~ in the discussion of Sec. IIIC indeed
lies in the proper spectral region. For example,
if I.=3&108 cm and if m is chosen to be 50 a. u. ,
then ~~ =15 cm ', a frequency in the spectral re-
gion where the low-lying impurity-induced lattice
resonances are observed. Also, the resonance-
mode frequency in some cases is observed to in-
crease significantly with temperatures. Of course,
we cannot expect our very crude model to account
for the features of these resonance modes in a
systematic and complete manner, but the over-all
qualitative features seem to be reasonable.

It is a straightforward matter to find an expres-
sion for the contribution of N~ impurities to the
absorption coefficient, in the limit »& ro&. This
may be done by multiplying Eq. (3.45) by Nl, the
number of impurities in the sample, dividing the
result by the (time-averaged) energy stored in the
electromagnetic fieM (e„FZ0/Bx, where e„ is the
optical dielectric constant and V the crystal vol-
ume), then multiplying this by e ~ ~/c to obtain
I/I, , where I is the distance required for the en-
ergy density of the wave to decay to I/e of its in-
itial value. One finds
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Then Eq. (4. 3) may be written

(4. 5)

1/L~5f(cm '), (4. 6)

where &, = &„+4wn'qo/~aP~ is the static dielectric
constant of the host.

For the purposes of providing a crude estimate
of the sensitivity of the absorption coefficient at
10.6 p, to the presence of these anomalous impu-
rities, we set R and (e, —e„)/a ~ ~ equal to unity,
and suppose &u/&uo-7 and &ur = 20 cm '. We then
find

where f is the impurity concentration.
The quantitative estimate of L displayed in Eq.

(4. 6) must be regarded as extremely crude, be-
cause the model is highly oversimplified. It does
suggest that near 10.6 p, , the absorption coeffi-
cient of the crystal. may be quite sensitive to small
concentrations of Li, Ag, Cu, or other impurities
which give rise to impurity-induced resonance
modes with frequency very much lower than expected
on mass defect considerations. It would be ex-
tremely interesting to measure the effect on the
absorption coefficient of dopiag KC1 with Li, with
concentrations in the range of 0. 1 at. % to test
this conjecture.
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The Raman scattering of a powder composed of small crystals. of a noncentrosymmetric ionic material is

considered using the Nyquist-theorem approach of Barker and Loudon. For modes that are both Raman

and infrared active, the splitting of the transverse- and longitudinal-phonon frequencies is determined by the

local electric field. This local field depends on the shape of the particles and on the powder density. The

relative contribution to the Raman scattering from macroscopic electric field fluctuations and from atomic

displacement fluctuations is also dependent on the powder density. This effect yields an antiresonance in the

Raman intensity scattered by longitudinal phonons.

I. INTRODUCTION

It has been established experimentally that the
frequencies of infrared-active modes of vibration
can be dependent on the size and shape of the crys-
tal measured. ' If the crystal is small enough to
make an electrostatic approximation, this effect
can be attributed to a change in the local field in
a unit cell due to the surface depolarization charge.
The local field influences the long-wavel. ength

characteristic frequencies. This simplest of de-
scriptions would be applicable to an absorption
experiment performed on one crystal with dimen-
sions on the order of 1 p, m. The optical-phonon
frequency in such a sample would be shape depen-
dent and size independent. It is, of course, not
convenient to make optical measurements on only
one crystal of microscopic dimensions. The local
field in more convenient samples, composed of
many small crystals, is additionally influenced by


