
FOLDING AND NONFOLDING ELECTRON DISTRIBUTIONS IN. . .

+g&,), integrals m=1, 2 for W2&W& in Table II
vanish, and integral m = 2 may be developed as
follows:

0 ~2+v/2( &I-CP)+e

F»(&») =»m
e Q c'ia+1/2( gt-(2)-e

half-way between the energies of the two electrons
involved in the process, one of which is always at
t;»= - ~($~ —4). The variable change from l'» to
E appropriate to this special case is also given by
Eq. (19). Putting this into Eq. (25), we obtain

xU, (l.»+ ~)U, (l» —~)«, (») &f2(k») = Ug(&,'- & —2$g —2t'I), (28)

F»(l'») = lim Uq[2l'»+ 2(g~ —$~)]

~1,U. l '(-~,-~.-) n-l«,

F»(48) Ull2&»+. ((~ —4)1 ~

(24)

(25)

In these expressions g&z continues to be the energy

which shows that F& is not a fold at all but is the
U& function shifted to higher energy and expanded
in energy by a factor of 2. Equations (18)-(20)
apply to this case as weQ, showing that the shift
(4&+ 42) in Figs. 5 and 8 is equal to ($q —$~). The
ionization energy of the metastable level (E, —E„)
in Fig. 5 is equal to $z.
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We have calculated the band structure and electronic charge densities as a function of position in the unit
cell for several two-parameter pseudopotential models for group-IV elements. This was done in an attempt
to understand the relationship between charge density and band structure in crystalline diamond-structure
semiconductors. We have found that by changing only one parameter in the pseudopotential we can
simulate the properties of the group-IV semiconductors.

I. INTRODUCTION

The group-IV elements carbon, silicon, ger-
manium, gray tin, and lead form a very interest-
ing series. The four atomic valence electrons for
these elements are in the s p electronic config-
uration. For the crystalline state, in the eases
of C, Si, Ge, and Sn (but not Pb), the formation
of gp hybrid orbitals gives the strongest bonding

overlap and this is the most: stable configuration
in the crystalline state. The gp3 orbitals give rise
to four equivalent tetrahedrally coordinated bonds
and this bonding results in the diamond structure
for these crystals. In this group, the bond energy
is a decreasing function of the atomic number;
carbon has a very strong bond, while gray tin is
only stable at low temperatures and undergoes a
phase transformation at 292 K to metallic white
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tin. Lead crystallizes in the fcc structure and is
metallic.

The optical properties of these crystals ean be
correlated to their bonding properties. The fact
that empirical-pseudopotential-method~ (EPM)
calculations on charge density predict the bonding
trends in tetrahedrally coordinated crystals so
well indicates that trends in the imaginary part
of the dielectric function &z(&o) (which is the input
in EPM calculations) contain the relevant informa-
tion about how these crystals are bonded. In dia-
mond ty-pe crystals sa(u) consists essentially of
two main peaks, one at low energies (energy E~)
associated with transitions at the I. point of the
Brillouin zone (BZ) and another prominent peak at
higher energies (energy Er) associated with a re-
gion around the X point of the BZ (actually this
structure is associated with Z and a). Phillips and
Van Vechtens have pointed out that the strongest bond
is expected when all optical oscillator strengths
are concentrated at one energy gap. Furthermore,
for a fixed average gap E, if one part of the con-
duction band is close to the valence band, appre-
ciable mixing of the valence band with the conduc-
tion band is expected, so that a measure of the de-
hybridization of the wave function is given by Er/E
where E is an average of E~ and the energy of the
smallest direct gap.

Two important features are essential when
doing an EPM calculation: (1) the nearest-neigh-
bor distance, which increases in going from C to
Pb and (2) the pseudopotential, which depends on
the element of interest. These features raise an
interesting question: Is it the change in nearest-
neighbor distance d that is responsible for the
marked differences between these materials, or
is it the different effective potential that the elec-
trons feel outside the core which produces such
differences'P A partial answer comes from pres-
sure experiments. The application of hydrostatic
pressure is expected primarily to decrease d. What
one observes in this ease is an increase in the
average direct gap and a trend toward metalliza-
tion. These effects are contradictory when com-
pared with changes in d between different elements;
i.e. , d increases going from C to Sn. Therefore,
results based on hyrostatic pressure alone cannot
explain the observed trends in the group-IV mate-
rials.

To investigate the dependence of the properties
on the potentials used, we have calculated the band
structures and electronic charge densities in the
diamond structure for three model pseudopoten-
tials using only two parameters to specify the
pseudopotentials. One of these parameters was
kept constant, while the other was chosen to give
the band structure of a 1-eV gap semiconductor
like Ge, a zero-gap semiconductor such as Sn, and

a band structure with overlapping bands having
metallic properties. We have also calculated the
band structure and charge density in the Thomas-
Fermi approximation for a pseudopotential appro-
priate to Ge. All through this work the lattice
constant used was that of Ge.

A similar approach has been taken by Heine and
Jones. They investigated the dependence of the
band structure of diamond-type semiconductors
on the pseudopotential form factors e(M3) and
v(~8) (the same ones used in this work). From
their calculations using perturbation theory, they
suggest that when the pseudopotential form factor
v(M8) is zero, the bonding charge is zero. Our
charge density calculations show that both the cri-
teria of Phillips and Van Vechten (essentially
E~-0) and Heine and Jones [v(v 8 ) —0] are equiv-
alent and give complete dehybridization. This ex-
plains in part why Pb does not crystallize in dia-
mond structure since the Heine and Animalu e(~8
for Pb is negative.

II. PSEUDOPOTENTIAI. METHOD

In this approximation, the crystal is considered
as a collection of N spherically symmetric ions
located at the lattice sites. The ZN valence elec-
trons do not interact with each other except in a
Hartree sense, and they interact with the ions
through a weak local pseudopotential g(r). This
pseudopotential includes the Coulomb attraction
with the ions, —Ze /r and a repulsive term near
the core arising from the requirement that the
valence-electron wave functions be orthogonal to
the core wave functions (the highly localized core
states are not solutions of the yseudopotential
Schrodinger's equation, so that the pseudopoten-
tial is much weaker near the core region than the
actual potential). The final contribution to the
pseudoyotential comes from the interaction arising
from the valence electrons which can be included
by using a screening function.

Once the pseudopotential is fixed, the energy
bands and electronic charge density can be ob-
tained by solving for the eigenvalues and eigen-
vectors of the one-electron Schrodinger equation

[(p'/2m) + V( r ) ]W„~&r ) = E„(k)y„f ( r ),
where k is the wave vector, pg. the band index, and
where the pseudopotential is given by

The cxystal symmetry is easily taken into account
when this pseudopotential is expanded in the re-
ciprocal lattice. In the diamond structure, with
two atoms per cell at positions+ v where 7= Sa
&(1, 1, 1) (a is the lattice constant), Eg, (2) be-
comes
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: = q/2k,
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choose are v($3) & 0 and v($8) )0. The actual val-
ues for the model potential we chose are given in
Ry below. For model potential I,

v($3) = —0.25, v($8) = 0.OV1;

for model potential II,

v(/3) = —0. 25, v(/8) = 0.053;
for model potential III,

v(/3) = —0. 25, v($8) =0.0 .
We have also investigated a Thomas-Fermi model
with a cutoff of the potential at q =4(2r/a). The
resulting form factors are in Ry:

-0.5—

FIG. 1. Pseudopotential parameter V(q/2k» = 0.901)
for models I, II, and III is shown by dots. V(q/2k~
= 0.551) and V(q/2k&=1. 056) are fixed for the three mod-
els. The pseudopotential of Animalu and Heine (Ref. 6)
is given by the upper solid line. The parameters of
Cohen and Bergstresser (Ref. 5) are given by the crosses.
Finally model IV is given by the stars connected by a
solid line.

v($3) = —0.3004,

v($8) = —0. 1688,

v(/11) = —0. 1338 .
For a given set of form factors, the Hamiltonian
can be solved for the energy eigenvalues and wave-
functions g„p(r)at many k points in the Brillouin
zone. The charge density for each valence band
is then given by

V(r)= Zv(G)cos(G ~ ~)s' ',
G

(3)

with

v(G) = (2/fl) f v(r} e' d'r, '

where 0 is the volume of the primitive cell and G

is in units of 2z/a. Usually, in EPM calculations
only the form factors v($3), v($4), v(/8) and v(/11)
are allowed to be nonzero, but the structure factor
cos 6 7 =0 for iG I

= 2 for diamond-structure ma-
terials. Therefore this method uses three adjust-
able parameters to fit the known energy-band fea-
tures. In Fig. 1 we show the three form factors
obtained by Cohen and Bergstresser' for Ge to-
gether with the theoretical pseudopotential of
Animalu and Heine and the parameters used in
this work.

The pseudopotnetial curves v(q) can usually be
divided into two regions separated by a point where
v(qp}= 0 (qp is related to the radius of the atomic
core rp), For q & qp, v(q) & 0 and this region rep-
resents the screened attractive Coulomb potential
outside the ion cores; for the region q) qp, v(q) is
positive and approximately represents the repul-
sive part of the potential arising from the orthog-
onalization conditions inside an effective core ra-
dius. With this in mind, one would expect to ob-
tain all the main properties of the band structure
and electronic charge density from only two form
factors, each representing one of the two regions.
Generally, since q p

~ $8(2v/a), the parameters we

TABLE I. Comparison of the main energy gaps (in eV)
between model potential I, those calculated by Cohen and
Bergstresser (Ref. 5) and experiment. The energy gape
for models II and III are also given.

I'25 -I'2 I 25' Li 1 25.-Xf L3.-L X4-Xi

Expt
CB
I
II
III

1, 0
1, 2

1.0
0

—3, 08

3.4
3. 5
2. 1
2. 20
3.4

0 ~ 8
0. 9
0, 41

—0. 07
—1.46

1.0
l. 0
0. 34
0. 25

—0. 07

2. 1
2, 0
1.74
1.24

-0.19

4. 3
3.8
3.5
3.35
2. 85

In the diamond structure there are a total of
eight valence electrons per primitive cell and two
valence electrons per energy band. The charge
density results given in the next section are plotted
in the form of contour plots in the (1, —1, 0) plane,
which contains an atom and two of its nearest
neighbors. The density is plotted in units of e/0,
where 0 is the volume of the primitive cell.

III. RESULTS

a. Model potential I. In Figs. 2 and 3 we show
the calculated energy-band structure and electronic
charge density, in the valence band, for model po-
tential I.

Table I shows a comparison between the main
energy splittings obtained by Cohen and Bergstress-
er (CB) using three form factors, the present
model using two form factors, and the experimen-
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PIG. 2. Band structure for model pseudopotential I.
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FIG. 4. Band structure for model II.

tal values for Ge. The main difference between
our results and those of CB occurs in the first in-
direct gap. There are smaQer differences in the
higher conduction bands and even smaller differ-
ences in the valence bands. This model would pre-
dict optical properties close to those obtained by
a CB potential.

From the total charge density for the four va-
lence bands (Fig. 3) the covalent bonding is appar-
ent. The concentration of charge in the bond is a
little weaker than that calculated by Walter and
Cohen using a CB potential. This is not inconsis-
tent with our model since the valence-to-conduc-
tion-band average energy gap for this model is
smaller than the one calculated by CB. Thus a
simple model pseudopotential that uses only two
parameters, one representing the screened Cou-
lomb attraction to the atoms Iv(/3)], and another
that represents the repulsive orthogonalization re-
quirements [e(/8)j, describes quite well the ener-
gy-band structure and bonding properties of Ge.

b. Mode/ potential II. As the pseudopotential

form factor v($8) is reducedth, e repulsive part af
the atomic potential decreases and the s-like levels
which are more sensitive to the potential near the
atoms become more tightly bound. For a value of
0.053 Ry for n($8) the energy af the I"~s. and I's,
levels becomes equal, giving a band structure
similar to that of gray tin.

In Fig. 4 the calculated energy-band structure
is given and in Fig. 5 the total charge density for
the four valence bands for our second model po-
tential is shown. The energy-band structure is
actually that af a semimetal with a small overlap
of 0.07 eV from F35. to I.j, the first direct gap is
zero, as in the case of O. -tin. Table I shows the
main energy splittings obtained in model II—all the
4-5 splittings are smaller than those of model I.
In the next paragraph we show how the changes of
the energy splittings with v(/8) are easily under-
stood from the form of the wave functions at the
bottom of the conduction band.

In a separated but related work, we have cal-

i
su
YA
BA

!, ) ~~~
FIG. 3. Electronic charge density in the (1, -1, 0)

plane for model I (summed over the valence bands).

SUM OF T

YAI.ENC
SANDS

:~!=-- . ]) I'~~
FIG. 5. Electronic charge density in the (1, -1, 0)

plane for model II (summed over the valence bands).
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VALENCE BA

/
v{3) = -0.25
v{8) = 0.071

FIG. 6. Electronic charge density in the (1, -1, 0)
plane for the first valence band for model I.

eulated the charge density for the I'. , L» and X&
states in the conduction band of Si. Our results
are as follows:

(I) The charge density for states near I'z, is
highly peaked near the atoms and it is very sensi-
tive to changes of the pseudopotential in that re-
gion in real space. It is therefore very sensitive
to changes in e($8).

(2) The charge density for states near L, , is
more "free like, " but is peaked between the atoms
and the antibonding site, so that they are less
sensitive to changes in V8 than I'z..

(8) The charge density for states near X, is al-
most constant so that the energy splitting I"35.-X&
is very little affected by changes in u($8).

Figures 6 and 7 show the charge-density contour
plots in the first valence band for model potentials
I and II, respectively; the reduction of v(/8) from
the first to the second model has caused a decrease
in the repulsive part of the potential near the
atoms, and the electronic charge tends to pile up
closer to the atomic sites; the same effect is ob-
served in band 2. Bands 3 and 4 are almost iden-
tical for models I and H; p-like bands are quite
insensitive to the potential near the atoms. The
only trend we observe in comyaring Figs. 5 and 3
is a small trend to pile up charge closer to the
atoms in model II; this tendency is also present
in the charge densities of %alter and Cohen going
from Si to Ge to o-tin. This is mainly caused by
the charge density of the first two s-like valence
bands, as already discussed.

c. Mode/ potential III. Figures 8 and 9 show the
energy-band structure and total charge density in
the valence band for model potential III. v(/8) is
zero in this model; the energy-band structure is

0

C

z

l A 1- 6 x U, K Z
@/AVE VECTOR k

FIG. 8. Band structure for model III.

that of a semimetal and Table I includes the values
of the main energy sylittings.

Since u($8) is now zero, the piling of the charge
density closer to the atoms is more accentuated,
as shown in Fig. 9. The charge density fox va-
lence band 3 is affected slightly, since it includes
antibonding states near L» which is now in the va-
lence band. The inclusion of these states affects
the bonding charge for this band by about 8%, com-
pared with the third valence band of model L The
charge for valence band 4 is again almost unaf-
fected by the change in e($8).

The charge density given in Fig. 9 is not pre-
cisely the charge densitywhieh our model potential
would have at 0 K. The Fermi level is some-
where between the L3, and I'z&. levels, so that a
region around I'zs. in the third and fourth bands
is unoccupied. Since the wave functions near Le.
are very similar to those near I'35., we do not ex-
pect that Fermi-level corrections will be very
important.

VALENCE BAND 1

V{3) = -0.25
v{8) = o.os3

)su~ oF
VALEN
BANDS

FIG. 7. Electronic charge density in the (1, -1, 0)
plane for the first valence band for model II.

FIG. 9. Electronic charge density in the (1, -1, 0)
plane for model II (summed over the valence bands).
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0
C
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—24-

-26—

V(8) — —0.1688
V(ll) = -0.1338

1

overlap on the charge density; hence the charge
density shown in Fig. 11 is approximate. Never-
theless, since the charge distribution in the first
two bands is highly peaked around the atoms, and
bands 4 and 5 add an almost constant background
to the total charge density when compared with the
first two, we expect that Fermi-level corrections
would not appreciably affect the total charge den-
sity. The main point is that the repulsive poten-
tial is too weak to keep the electrons outside the
atoms, and the formation of sp orbitals is not en-
ergetically favored.

IV. SUMMARY AND CONCLUSIONS

A 1 6 x UK. X

%(AVE VECTOR k

FIG. 10. Band structure for the Thomas-Fermi model.

It is interesting to compare the band structure of
lead, assuming it could crystallize in the diamond
structure, with the results of model III. To do
this, we have calculated the band structure using
the Heine-Animalu pseudoyotential for lead. The
lattice constant is chosen so that the nearest-neigh-
bor distance d in our hypothetical phase for Pb is
the same as the nearest-neighbor distance in its
fce phase. The justification for this choice is
that when Si and Ge undergo a metallic phase
transformation under pressure the nearest-neigh-
bor distance is almost unchanged. The band struc-
ture obtained in this manner is similar to that of
model III.

d. Thomas-&exmi mode/. In the Thomas-
Fermi approximation, the pseudopotential is given
by

Sn e'z
g(q3+y2) 3 F

( 2+F3)

Here 0 is the volume of the primitive cell, z the
number of outer electrons per atom and for Ge —,'&&
= 0. 57 Ry. Since the Thomas-Fermi potential is
attractive for regions even close to the cores, (no
orthogonalization conditions have been imposed on
the valence electrons), the electrons tend to pile
up in the core region. This is reflected in
the energy-band structure obtained for this
model, as shown in Fig. 10. The states in
the first two s-like bands are separated by a gap
of 20. 5 eV from the rest of the states in the va-
lence band. These states behave essentillly like
core states and are not available for the formstion
of sp orbitals. The band structure is that of a
semimetal (or metal) with a large overlap. As in
model ID, we have not computed the effects of the

%ith a simple two-parameter model pseudapo-
tential with one variable parameter it has been
possible to simulate the variation observed in the
group-IV elements. A comparison between our
results for model I and model II, shows how a de-
crease in the repulsive part of the potential can
take into account the main differences in band
structure and bonding properties between Ge and

gray tin. Of course, this model is too crude to
include all the band-structure features of these
elements, but we believe that the main trends going
from Ge to gray tin are explained by a reduction
in the contributions from the repulsive orthogonal-
ization requirements (v($8)) to the pseudopotential.

Assuming that we could construct two diamond-
type crystals, one Gf Ge and the other of Pb, with
the same interatomic distances, the major differ-
ence in their pseudopotentials, apart from screen-
ing effects, would come from the orthogonalization
conditions imposed on the pseudo-wave-functions
from the two different cores of Ge and Pb. That
is, the main difference in the yseudopotentials
would be inside an effective core radius ro. This
repulsive contribution to the yseudoyotential would
be mostly affected by the form factors V(q) for
large q, which we have included in only one vari-
able parameter v($8). As the positive V(q) for
large q decreases, the pseudopotential in real
space becomes less repulsive, allowing the elec-
trons to concentrate in a region between the real
core and our effective core. If the electrons are

SUM
VAl
BAN

I

FIG. 11. Electronic charge density in the (1, -1, 0)
plane for Thomas-Fermi model (summed over the val-
ence bands).
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too close to the cores, there are fewer electrons
to form the bond; hence the bonds formed when
the crystal is constructed are weak and the energy
gain in the formation of the bonds might be smaller
than the energy required to promote the electrons
from the s p ground state to the sp configuration.
The crystal would most likely change to a more
stable configuration.

With respect to the band structure and electrical
properties, since states near I'z. and I.j are con-
centrated close to the atoms, a decrease in the
repulsive part of the pseudopotential affects them

most. Therefore, decreasing the repulsive po-
tential would decrease the potential energy of these
states. Consequently, the first direct as well as
the first indirect gap in the band structure would
be decreased.

Because of this study using a two-parameter
model, which simulates the repulsive and attrac-
tive parts of the pseudopotential, we can under-
stand and roughly predict the dependence of the
total electronic charge density on the pseudopoten-
tial without going through a calculation of the en-
ergy-band structure.
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