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q15 q51 q35 ~2(D+ D )~

q15= q55=q55=2~2D ~

q54 = 2V 5D,

qq5 = —4, (D+-5D'),

q55
——(2/45) (D+ 3D'),

(820)

(821)

(822)

(822)

(824)

results we need in our calculations are the following: qq5 ——(2//5)(D'+ 2D),

&ss =0.

q55=- 242D'.

(825)

(825)

(82V)

In these equations the unprimed constants refer to
a transition from a ground-state sublevel to a level
designated by a e in Table X while the primed
quantities have a final state described by a 4.
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The binding energy of the excitonic molecule is calculated as a function of electron-to-hole mass ratio
and of anisotropy in the hole bands. A variational wave function is used which is a product of a
Hylleraas and Ore correlated exciton function and an'overlap function of the hole-hole separation. The
results are tabulated for CuC1, CuBr, Cu20, and for a number of II-VI compounds.

I. INTRODUCTION

The possibility of binding four light particles
into a neutral molecule was first demonstrated by
Hylleraas and Ore. ' They considered the complex
of two electrons and two positrons and obtained a
small binding energy relative to two positronium
atoms, Subsequently, Lampert raised the pos-

sibility that the analog of the positronium molecule
would exist in a semiconductor involving two
%annier excitons. Since that time, there have
been a number of claims to have observed emis-
sion lines from the decay of excitonic molecules
(or biexcitons). The evidence appears strongest in
the direct-gap semiconductors CuCl ' and
CuBr. 3'6 The observation of molecules in CuzO
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by Gross and Kreingold '" has recentlybeen chal-
lenged. ""InSi and Ge, however, it is now gen-
erally believed that the line, originally identified
by Haynes as due to a decay of an excitonic mole-
cule, is from droplets of a metallic electron-hole
liquid. ~ In this paper we will be concerned with
variational calculations of the binding energy of
an excitonic molecule and will comment only
briefly on the experimental. situation. Such calcu-
lations are useful in aiding the identification of an
emission line from an excitonic molecule. It is
also of interest to compare the energies of the
molecule with that of the metallic electron-hole
liquids' ' and to determine which state is more
likely at high densities of electrons and holes.

Since the electron (m, ) and hole (~) masses in
semiconductors are not identical, it is necessary
to consider the binding energy as a function of the
mass ratio o = m, /m„. In addition, in many cases
of interest the masses are quite anisotropic. The
first attempt to treat the former problem was that
of Sharma. ' He considered the binding energy of
the excitonic molecule as a function of o for values
between 0 (the hydrogenic limit) and 1 (the posi-
tronium limit). He found a number of unusual re-
sults. In the first place, in his calculations there
was no binding between 0. 2 &@&0.4 and secondly,
his value for the positron limit was a factor of
8. 5 larger than the value found by Hylleraas and
Ore. ' The former results were criticized by
Wehner, ' who showed that the slope of the binding
energy as o-1, was in error. Recently,
Adamowski et aL ' have proven that if the mole-
cule is bound at o = 1, it is bound for all values of
cr in the interval 0~ @~1, Sharma's'3 result for
the positronium molecule is also very different
to the binding energy which we and other workers'~
obtain and is, we believe, in error. '

Recently, Akimoto and Hanamura' have investi-
gated the range 0 &0 &1 for isotropic electron and
hole masses. They used a variational wave func-
tion which was a product of the Hylleraas-Ore
wave function and an overlap function for the holes.
In the limit e-0, the choice of a 5 function for
the overlap function leads to a wave function for
the hydrogen molecule previously considered by
Inui' and Nordsieck' and gives a binding energy
per electron of 0.299 Ry, as compared to the
exact value of 0. 348 Ry. The binding energy de-
creased monotonically with increasing cr to a value,
at o=1, of 0.018 of the positronium rydberg
which is very close to the value obtained by Hyl-
leraas and Ore. "~ In this paper we will always
work in energy units of the rydberg of the single
atom, e. g. , the positronium rydberg equals
6. 8 eV.

In this paper we investigate the effect both of
unequal masses and anisotropy of the heavier

mass on the ground state of the excitonic molecule.
In Sec. II we consider first isotropic masses. We
use a variational wave function which is similar
to that employed in Ref. 16 but with a more gen-
eral overlap function. We derive a wave equation
for the overlap function and find a binding energy
which is significantly larger than that of Ref. 16
in the interval 0. 2 & o & 1. In the limit g-1 our
method yields a binding energy of 0.029 of the
positronium rydberg, which is a considerable im-
provement over previous estimates. " Recently
Akimoto and Hanamura 0 have obtained a value of
0.027, very close to the value reported here.

In Sec. III we extend our calculation to aniso-
tropic band structures. In group-II-VI compounds,
such as CdS and CdSe, a considerable simplifica-
tion can be made by noting that the electron
masses, which are much lighter than the hole
masses, are almost isotropic. Since the light
electron mass dominates in the reduced mass en-
tering a single exciton, the exciton wave function
will be very close to isotropic. Therefore, it is
reasonable to include the anisotropy only in the
overlap function of the holes. This simplifies the
problem considerably, since a wave equation can
be derived for the overlap function which will in-
volve the same potential as for isotropic bands.
We have carried out detailed calculations for an
isotropic electron band and an ellipsoidal hole
band with masses m, and m for the range of pa-
rameters 0&a &1 and 0&y(=m, /m„) &1. We have
confined our attention to ellipsoidal band struc-
tures for the holes. The complicated valence-
band structure of the group-III-V compounds pre-
sents a formidable obstacle to a detailed calcula-
tion and we have not included the anisotropy in
these compounds.

In Sec. IV we review the experimental situation
and quote values of the binding energy in CuCl,
CuBr, and CuzO, and also in the group-II-VI com-
pounds CdS, CdSe, and ZnS. Excitonic molecules
are observed by examining the emission spectrum.
The most likely processes which will show up as
sharp lines in emission are those in which an ex-
citonic molecule decays into a photon and an ex-
citon in a 1s singlet or a 2s, 2p state. The decay
process into a photon and free electron and hole
will be difficult to identify since the spread of
kinetic energies of the electron and hole will lead
to a linewidth of the order of an exciton rydberg.

II. ISOTROPIC BANDS

In the effective mass approximation, the Hamil-
tonian for a system of two electrons of mass m,
and two holes of mass m„ is
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where the potential energy V is given by

(2. 2)

We have denoted the electron (hole) coordinates by
the subscripts 1 and 2 (a and b), and I r, —ri I

= r,z,
etc. In (2. 1), and throughout this paper, the unit
of length is the exciton Bohr radius a, =

each

/p, e,
and the unit of energy is the exciton rydberg
R, = tie /2&~05, with eo being the static dielectric
constant of the crystal and p, being the reduced
mass (ti ' = m, '+ m„').

It is not possible to solve the four-body problem
exactly and we therefore employ a variational
technique. Since in the range of parameters we
are studying the hole mass is heavier than the
electron mass, the true wave function will be more
sensitive to the distance between the holes than to
the distance between electrons. Therefore we
choose a trial function of the form

i) = 2e "i"p' cosh-, p(t, —tp),

with the def initions

si = k(ri + ri&), sg = k(pp+ 'rpy),

ti = k(ri, —r„), tp = k(r2, —rz, ) .

(2.8)

The parameters g and k are to be determined
variationally. In this function g controls the de-
gree to which a given electron is shared between
the two holes. The value /=1 corresponds to two
separate excitons with each electron associated
with one hole, while at P = 0 each electron is equally
shared by the two holes:

U, (R) = — —
q (vi+ vi) gdT,S

A. Hole-Hole Interaction

The function U, (R) is the effective hole-hole po-
tential energy. To evaluate it we follow Hylleraas
and Ore' and choose for g the function

g = ty(r)/S(R))F(R),

with

(2. 3)

(2. 4)

,

—(v, + Vi,) —dT, + V ~ d T„.
m)g

(2. 8)

Here R refers to the hole-hole separation and g is
a function of the electron-hole distances only.
These distances are denoted by the single index

The energy of the ground state E „is found by
minimizing the ratio

E= d RdT„F(R) H F(R)|)(r) i)(r)

4

d'RF (R) . (2. 8)

Now

v', s
—

s v,'i) -
s (v, i)') (v,s)
2

+ —,y(v.s) ——,v'.s,2 - 2

but from (2. 4) we know that

f i)iV, gdT„=sv, S.
Upon integration the two middle terms of (2. 10)
cancel and we obtain the result

—(2ti/mi)V-F(R)+ U, (R)F(R) =EF(R), (2. 8)

where the effective hole-hole potential function
U, (R) is given by

U, (R) = f (i)/S)H(y/S) dT, .
By choosing the function g/S to be normalized for
all values of R, we have eliminated all terms in-
volving products of the gradient operator.

(2. 7)

Taking the functional derivative with respect to F
gives a wave equation of the form

(2. 11)V —dT„= —
g V ifidT„—S V S .

In their original calculation Hylleraas and Ore'
used the form of Eil. (2. 8) as their trial function,
i. e. , treating both electrons and holes identically.
This means that, for the positronium limit, the
kinetic energy contributions from the electrons
and holes are equal. " In our case we distinguish
between electrons and holes and the form of the
kinetic energy terms changes. In Appendix A we
show that, for the form of g used,

(V, + Vi,)g= (Vi+ Vi,)i)t- g k (r„—r») (rii r«)(l —P )i)i =(Vi+ Va)4+ Ti(r),
A,

where rf, is a unit vector.
Finally we have

(2. 12)

i(r) „ ti (v + v, )S Vi)
S' '+ ' T"

~

SI +m SmQ
(2. 13)
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FIG. 1. Effective interaction between two excitons as
a function of the separation of the two holes. The Heitler-
London approximation corresponds to k =P = 1, while for
the solid curve k = 1.18 and P2 = 0. 5.

The evaluation of the first and last terms in (2. 13)
has been carried out by Nordsieck and Inui. '~ All
contributions are straightforward except for the
Coulomb repulsion between the electrons. This
has been evaluated by Nordsieck using an expansion
in spherical harmonics. This expansion is valid
for small and intermediate hole separations but
breaks down at large R. In the large-R limit it is
possible to evaluate the integrals explicitly as a
power series in R . This is carried out in Ap-
pendix B. We have interpolated between these
two regions by adding a roundoff term to the
Nordsieck expansion. ' This procedure was checked
by requiring that the choice F(R) = S(R) reproduce
the Hylleraas-Ore result. We wish to point out
that in our variational calculations F(R) is shorter
range than S(R} and the results are not sensitive
to the detailed form of the interpolation. The third
term in (2. 13) can be evaluated in a straightfor-
ward manner. In Appendix A we give the evalua-
tion of the second term which is the difference be-
tween the electron and hole kinetic energies.

This completes the evaluation of U, (R). The re-
sult for the case f8 =0. 5 and k= 1.18 is shown in
Fig. 1. For comparison we show also the cor-
responding Heitler-London potential which is
given by the choice p= k=1. There is a significant
difference between the two forms and indeed we
have found it impossible to obtain binding at 0 = 1
with the Heitler-London form.

TABLE I. Parameters used in the calculations with
&=1 for various values of 0. The definitions of the vari-
ous parameters are contained in Eqs. (2. 8) and (2. 14)
and the discussion thereafter.

1.0
0.5
0.3
0, 2

-0. 1
0..05

1.18 0.655
1.18 0.68
1.18 0.70
1.18 0.71
1.18 0. 74
1.14 0.76

B C

1.14 0.36 0.39
1.11 0.38 0.16
0. 72 0.32 0.52
0. 67 0.33 0.29
0.47 0.29 0.54
0.35 0.29 0.98

F(R}= R",e "& + Ce (2. 14)

where Rq =—R/A and A, B, and C are variational
parameters. The index n was varied also but its
variation was restricted to integer values. The
first term is identical to that used by Akimoto and
Hanamura. ' In carrying out the variational cal-
culation with respect to the six parameters in our
wave function, viz. , k, g, A, B, C, and n, we
have found it relatively simple to obtain a minimum
value with an accuracy of 0.001R, but difficult to
go beyond this limit. All values we quote have an
uncertainty of this magnitude associated with
them. Since the wave function [Eq. (2. 14)] is the
sum of two terms the optimum value of the mncing
coefficient C was determined for each value of the
other parameters by solving a 2&2 determinant.
In Table I we list for six values of a the optimum
values of our parameters.

In the equal mass or positronium limit, we find
the binding energy to be 0.029R„, which is signif-
icantly larger than the values 0. 017R„and 0.018R„
obtained in Refs. 1 and 16, respectively. Recently
Akimoto and Hanamura~o have obtained a value of
0. 027R„very close to that reported here. It is
interesting to consider why (2. 14) should produce
more binding than the calculation of Hylleraas and
Ore. ' A comparison of the envelope functions is
given in Fig. 2. It is seen that (2. 14} is more
localized about the potential minimum than the nor-
malization function S(R). The presence of the dip
at R= 0 does not lower the energy significantly.
In the hydrogen molecule the incorporation of the
electron-electron correlation in the wave function
gives an important contribution to the binding.

B. Isotropic Valence Bands

To find the energy we must solve (2. 5) by a suit-
able choice of the envelope function F(R). If we
put F(R) = S(R) we will recover the results of
Hylleraas and Ore in the equal-mass limit. This
provides a check on the routines used to calculate
the energy. In the present calculation we used
the function
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FIG. 2. Comparison of the wave function E(R) used in
the present calculation with the normalization integral
S(R) of the Hylleraas-Ore trial function. Their calcula-
tion is obtained from ours by setting E(R) =S(R). The
functions are normalized so that fo F (R)R dR= 1.

However, in the three-body problem of two elec-
trons and a positron, Hylleraas found that includ-
ing the electron-electron correlation gave only a
very small improvement in the binding. The large
extent of the wave functions in the positron limit
undoubtedly is the reason for the insensitivity to
short-range repulsion between the particles of like
charge. Finally, we wish to comment that our
wave function is not symmetric in electrons and
holes and incorporation of this symmetry will low-
er the energy further in the equal-mass limit.

The energy of the excitonic molecule as a func-
tion of the mass ratio o = m, /m„ is plotted in Fig.
3, where it is compared with the results of
Akimoto and Hanamura. The results can be
summarized as follows: (i) The binding energy
in the interval 0. 2 &0 &1 is appreciably larger than
that of Ref. 16. (ii) The slope at o =1 is approxi-
mately zero, as it should be from symmetry con-
siderations (see Ref. 14). (iii) As o-0 the asymp-
totic form is

E(o) = —2. 30+ 0. 94o' ~

This is to be compared with the exact expression
of the hydrogen molecule quoted in Ref. 14:

E(o') = —2. 34+0. 76o' i

III. ANISOTROPIC VALENCE BANDS

In this section we will consider the effects of the
anisotropy of the valence bands upon the energy
of the molecule. For the materials of interest the
conduction band is essentially isotropic and the
electron mass is light compared to that of the hole.

+ U, (R)F(R) =EF(R), (3.2)

where the subscripts refer to the direction of R
relative to the c axis. Note U, (R) is independent
of p. We have again used a variational technique
to solve the anisotropic wave equation (3.2). The
functional form F(R) can be simply generalized to
the anisotropic case by the replacement in (2. 14)

(3.3)

where A& and A~ are variational parameters which
replace the single parameter A in the isotropic

-2.0
AKIMOTO AND HANAMUJQ

-2.08

-2. I2

o -2.I6
E

UJ

-2.20

-2.24-

-2.28-

-2.32 0.2 0.4 0.6 O.S I.O

cr *me/mh
FIG. 3. Molecular binding energies as a function of fy.

The energy is in units of the exciton binding energy. The
dashed line is the result of Akimoto and Hanamura
(Ref. 16).

Thus the reduced mass of the exciton is almost
isotropic. In our variational form (2. 3) we will
take g to be a function only of the isotropic vari-
ables r. This greatly simplifies the problem.
The hole-hole potential is now also isotropic. We
will consider only the case where the hole bands
are ellipsoidal, the hole mass parallel to the c
axis, m„, being heavier than the mass in the per-
pendicular plane, m~.

In the hole-hole potential U, (R) the characteristic
hole mass which enters is the optical-mass aver-
age

(3.1)

and the electron-hole mass ratio o(= m, /tnt). De-
fining an anisotropy parameter y= m~/~, we can
write the wave equation (2. 6) in terms of o and y
as

6o
R 6m

(2+ F)(1+o) ' (2+ y)(1+ o)



THE EXCITONIC MOLE CU LE 1575

TABLE II. Variational parameters used for the &=0.1
calculations as a function of o; The parameters n, k,
and P are the same as those listed in Table I for the dif-
ferent values of 0. The parameters Ai and A2 are defined
in Eq. (3.3).

1.0
0. 5
0.3
0. 2
0.1
0. 05

Ag

1.38
1.28
0. 80
0. 75
0.51
0.37

A2

0.70
0.71
0.49
0.46
0.34
0.28

0.47
0.46
0.35
0.36
0.30
0.27

C

0.26
0. 09
0.39
0.21
0.39
0. 62

case. Such a replacement has been employed in
the past to treat anisotropic wave equations, viz. ,
Kohn and Luttinger's treatment 5 of the anisotropic
wave equation in a Coulomb field. The variation
with respect to the seven parameters was carried
out as follows. For each value of 0 the optimum
values at y= 1 were determined previously. As y
varied away from 1 we held the parameters k, P,
and n fixed at their optimum values at y= 1 and
varied the four parameters A&, A~, B, and C. The
following trends were noted: The parameter A&

increased as y decreased while A~ decreased. The
parameter B was approximately constant. In
Table II we list the optimum values obtained at
y= 0. 1 for each value of 0.

As y-0 the forms (2.14) and (3.3) for the
envelope function F(%) become inaccurate. The
two hol.es become a fixed distance apart along the
c direction while the function (2. 14) gives them a
distribution with a maximum value at the origin.

In the limit y-0 we may employ an adiabatic
approximation to solve Eq. (3.2), taking the form

F(R) =f(Ri, R, )X (R)) (3.4)

The resulting equation for f is

-0.05 0.5

0;2

-O.IO O. I

-0.15

0.05

limit y-0:
E „(o,y)= x, o+[3o/(I+a)] x y ~ +0(y)

In order to obtain the binding energy we must
subtract off the energy of two separate excitons.
In the isotropic limit or y=1, this energy is simply
2, since our unit of energy is the binding energy
of the isotropic exciton with mass ratio o. How-
ever, if y41, the exciton binding energy E„will
vary as a function of y. The values of E,(o, y)
may be readily calculated from the results of Kohn
and Luttinger 5 and Faulkner. [Note that their
notation differs from ours. Their parameter
y = (3o y+ 2+ y)/(3o+ 2+ y) and their energy unit is
equal to (2+ y+ 3o)/(1+ o)(2+ y) in our units. ]

In Fig. 4 we plot the binding energy E&, defined
as

Z, =Z ., (o, y)-2E„(o,y),
which we obtain in this way. These values are
also listed in Table III. There are several. com-
ments to be made. First, for a=1, the curve
shows no binding in the ra&pe 0.002 &y&0. 3. This
is undoubtedly due to a failure of our approxima-
tion in this limit. In our calculations lE,&

l in-
creases as y decreases but this increase is more

60
(2 )( )

V~f(R&&R)))+ U, (R)f(R&, &R))

= x (R)l)f(RJ. R)l) ~ (3 3)

This equation is now solved for a fixed value of R„
by a variational technique using the forms (2. 14)
and (3.3) for f. In this way an energy function
A, (R„) is determined. This function has a mini-
mum at a finite value of R„=R„. Near this value
we may write i

0,4

-0.20— I

I

I

I

NOTE SCALE CHANGE
-0.2S—

I

I

I

I

I

I

I

0 O,OI O. I 0.2

cr= 0

I

0.6
I

0.8 I.O

x.(R, ) = x„,+x.,, (R„—R'„)' . (3.6)

The minimum value A.„ogives the molecular bind-
ing energy as y-0, while the curvature determines
the leading correction in y. The effective equation
in the c direction is simply a one-dimensional
harmonic oscillator. We obtain the result, in the

y ~ m~ /m))
FIG. 4. Plot of the excitonic molecule binding ener-

gies as a function of 0 and &. The approximation scheme
used here clearly breaks down in the region of small &
and a 1. Note that the binding energies are almost con-
stant until && 0.1. Energies are in units of the isotropic
(p= 1) exciton binding energy.
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TABLE IG. Molecular binding energies for various
values of o =mneme and y=m„/m&. Here mz =e(amer
+m„) and the unit of energy is the exciton rydberg = pe /
2&pS where p~ =m~ +m& . The additional binding of the
excitons due to the anisotropy of the hole mass has been
subtracted from the calculated energies as discussed in
the text.

0. 05 0. 1 0. 2 0.3 0, 5 1.0

0. 0
0.01
0. 1
0. 2
0.4
0. 6
0. 8
1.0

0. 195
0. 152
0. 148
0.148
0. 146
0, 145
0. 145
0. 145

0. 160
0. 115
0. 112
0. 109
0. 106
0. 105
0. 106
0. 106

0.130
0.083
0. 076
0.072
0.068
0. 068
0. 069
0. 070

0. 110
0. 066
0. 058
0. 054
0. 050
0. 049
0. 052
0. 052

0. 078
0. 031
0. 027
0. 026
0. 030
0. 033
0. 034
0. 038

0. 015
—0. 028
—0. 029
—0. 007

0. 010
0. 018

. 0. 023
0. 029

The calculations presented in Sec. II can be ap-
plied to the cubic materials CuBr, s'6 CuC1, 3 5 and
Cu&O. "' ' ' Themassratios, the excitonbinding
energies, and the predicted binding energy of the
molecule are listed in Table IV. The experimental
results are listed in the last column. For CuCl
and CuBr the binding energies can be estimated
from Eq. (2. 15) and are seen to be in excellent
agreement with experiment as has been noted by
others. ' In Cu~O the electron mass and dielec-
tric constant have been determined to be m,*
=0.61m and &0=7.1. Using the exciton binding
energy of the green series we estimate an effec-
tive hole mass from the usual hydrogenic formula
to be m„=6.0m, leading to the value o=0. 1.
listed in Table IV. The calculated molecular bind-
ing energy is 16 meV. Gross and Kreingold"" iden-
tified a series of lines with the decay of the ex-

than canceled by the increase in E„. In the varia-
tional wave function the excitons in g are taken as
isotropic and the anisotropy only enters in via the
overlap function F(K). In this region, however,
individual excitons are far from isotropic and our
approximate wave function is not accurate. The
region of experimental interest, however, is
o ™0.1 for which our approximations are substan-
tially better. The excitons are very nearly iso-
tropic for all values of y when o=0. 1 and the cor-
rection to the exciton binding energy never exceeds
0.4%, whereas the molecular binding energy is
=10%. The major result of our calculations is
that E~ is independent of y over most of the range
of y. While the limiting value Es(o, 0) can be in-
creased by as much as 0. 05R„, this increase is
very rapidly reduced by the zero-point motion in
the e direction. From Fig. 4 we conclude that we
do not expect major shifts in the binding energy of
excitonic molecules from anisotropic effects. This
conclusion is contrary to some recent speculation
by Shionoya et al.

IV. COMPARISON WITH EXPERIMENT

TABLE IV. Mass ratio, exciton binding energy, cal-
culated molecular binding energies, and observed molec-
ular binding energies for three copper compounds. All
energies are in meV. References to the experimental
papers are contained in the text. In Cu20 the observa-
tion is uncertain [Ref. 7(b)].

S„S~(cale) Z, (expt)

CuBr
CUC1
Cu20 (green series)
Cu2O (yellow series)

0. 01 110
0. 02 190
0. 10 150
0.73 97

29
44
16
3.3

29
44
18.5

citonic molecule and determined a binding energy
of 18.5 meV. However, recent work by Petroff
et al. '"' appears to indicate that this assignment
is incorrect. In the yellow series the hole mass
is knownto be m„=0. 84m, a giving o=0. 73 and a
molecular binding energy of 3.3 meV. This state
has not been observed.

The calculations including anisotropy of the
heavy mass are most relevant to the question of
excitonic molecules in the hexagonal group-II-VI
compounds. In these materials the electron mass
is light and essentially isotropic while the hole
mass is approximately a factor of 5 heavier, with
the mass parallel to the c axis much larger than
the transverse masses (in the discussion presented
here we will ignore the difference in the trans-
verse and longitudinal dielectric constants since
it is relatively small). ee There is a difficulty in
directly applying the results of the present paper
to these compounds because of the rather strong
exchange interaction between the electron and the
hole, '3' When the I'9 valence band is highest the
excitons form two doublets of I; and I"6 symmetry
with the I'6 level lowest. The splitting between
these levels is directly proportional to the elec-
tron-hole exchange interaction in the limit that this
interaction is small compared to the axial crystal
field. In CdS the splitting is 1.3 meV and becomes
smaller as the excitonic wave function becomes
more extended. In order to crudely estimate the
effect of the electron-hole exchange interaction
on the molecular binding energy, we argue as fol-
lows. In the molecule we pair the two-electron
spins together to form a singlet. Similarly the
hole spine are paired to form a singlet state. (For
the holes the spin referred to here is a pseudo-
spin-variable used to label the two states of the
Fe doublet. e) Regarding the molecule as two es-
sentially separate excitons, each exciton in the
above state finds itself 50% of the time in a I;
state and 50% in a I'e state. Therefore, such a
configuration would be raised in energy by an
amount equal to the exchange splitting between r,
and I'6. This is undoubtedly an overestimate of
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the effect of the electron-hole exchange since, in
fact, it is expected to be a short-range interac-
tion, 32 important only when the electx on and hole
are near each other, and should not tend to depair
the electrons in the region where they exchange
places. In Table V we have listed the masses.
exciton binding energies, and the molecular bind-
ing energies for CdS, x CdSe s and ZnS 2 3 We
also list there the l,-l', splitting" as it is not
taken into account in the listed molecular binding
energies. The binding energies are quite small. It
appears that CdSe presents the best possibility for
observing excitonic molecules in this series of
compounds. Another effect not included here is
possible virtual admixture of other exciton states
arising from the 8 and C series. Admixtures of
these states would enhance the binding energy.
They may be important in ZnO, where the upper
two valence bands are quite close in energy.

Finally, there has been considerable speculation
regarding excitonic molecules in Si and Ge. ' Al-
though it is clear that the original observations
ascribed to molecules are actually associated with
electron-hole drops, it is of interest to ask
whether some molecular state could compete with
the metallic state and whether molecules could
form at low temperatures and densities. In Ge
the masses of the electrons and holes appropriate
for calculating the exciton binding energies are
almost equal. Even though the electron mass is
quite anisotropic with m~, /m~=0. 052, this anisot-
ropy is not sufficient to enhance the molecular
binding energy appreciably, as can be seen from
the results in Fig. 4. Therefore, we expect mole-
cules to have a binding energy of no more than a
few percent of the exciton energy -0. 1 meV and
that the molecular-type state cannot compete

favorably with the metallic state. '0 '2 In Si the
bands are more isotropic"' and consequently the
binding energy will be approximately -0.03E„
(=0.24 mev), again a very small energy. Re-
cently Wang and Kittel" have suggested that larger
complexes of excitons than the simple biexciton
molecule are stable in Ge and Si. These authors
took the hole mass to be infinite and, therefore,
not only have much larger binding energies but
also have no effects from the orthogonality condi-
tions on the holes. Since the typical masses of the
electrons and holes in Ge and Si are approximately
equal, the most important exclusion principle ef-
fect is that for the holes. Except in the singlet
state of the molecule, the exclusion principle leads
to strongly repulsive interactions'2 and inhibits
binding. Therefore, we question the conclusions
of Wang and Kittel35 that such higher complexes
are more stable than the biexciton in Ge and Si,
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APPENDIX A: HOLE KINETIC ENERGY

tt=- |((&,T),
+1a+ +1y + +2e + +2y y

T= X&, —X&&
—t2 + r2a ~

(Ai)

We will calculate the contribution of the hole
kinetic energy to the effective potential U, (R). Con-
sider a wave function of the form

TABLE V, Various mass parameters, exciton binding
energies, and predicted molecular binding energy. Ener-
gies are in meV. Ers-Er6 splitting is also listed since
some fraction of this energy must be subtracted from
the energies as discussed in text. References for the
experimental numbers are given in the text. + & (i.T}'+ v', T .

CdSe

0.13

ZnS

0.28

Therefore,

&r -&r
6

0.7

0.21

0. 14

1.3

0. 13

0. 18

0. 2

0.49

0. 175

0.35

+ [(v.P) ~ (v,T)+ (w', P) ~ (v,T)]

+ ~ [(v.T)'+ (~,T)']+—~ [+T+v', T] .
(A2)

But from (Al),

VaP= Volte+ Vaja
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+fa +2a

Va T= Va/fa Vaja

+ X2

A

where rf, are unit vectors in the rf, direction,
and

and

2r„~ r„)j) d r d r,
S'(R)

2 RR

=
3 „) [(&+1)Y2--'&(ys-ys}'],

V P=2(ri +rs,'), V, T=2(ri -rsa) ~

Therefore we have

(ri, P}2+ (V,P)'= 4+ 2(r„~ r„+r„~ rsb)

(V, T) + (VbT} =4 —2(rl, ~ rs, + rib ~ rsb),

V P+ VbP= 2(rl + rsa+ rib+ rsb)

+T+ V'T= 2(ri! —r~l —ril+ r~l).

(A3a)

(A3b)

(A3c}

(A3d)

where we have used Nordsieck's notation on the
right-hand side of the equations

8" sinhB B=pB.

As a check it was found that j d'RQR)(I, -Is) =0
which shows that this term is zero in the Hylleraas-
Ore' calculation. '9

(V T) ~ (tr,P)+ (V T) ~ (v P)
= (V,rl, ) —(V,rs ) —(%br») +(Vbrsb) =0

Note that (A3c} and (A3d) are invariant with re-
spect to interchange of the holes and electrons
while (A3a) and(A3b) are not. We use this fact
to write

(v'. + vb)g =(vl+ vs)4+2, ~ —s~, l

(~la ' r2a+ rib rsb rl ' rib rsa ~gb)

i. e. , for the form of )})used,

(V'. + V',)|}= (V', + V', )t~- —.'u'(1 —S')

( 1o 2b} (rib 2

Using the definitions of sf, s2, tf, and t2 given in

Eq. (2. 8) in the text, we can write

Sl + fl —2R
&f ' &15= 2sf- f

sf tf smtm elf 1 + Ssfs
2(S1+ f1)(S2+ fs) (Sl+ f1)(S2+ fs)

(A4)

where R= kR. The integrals are then tedious but
straightforward; we will just quote the results

I, -=f r„~ rs, 1}) d r,d rs/S (R)

=[(2+1}228(ys-y,)'e ~

—4(a+1)'y', +22 R'(Z+ 1)'][1/s'(R)]

APPENDIX B' LARGE-R EXPANSION OF INTERACTION
TERM

1 "
2 2 e 2I(R) =

y(R) ) d rl d rs —tt (rl, rs, R),
rf2

where

)})= 2 exp[ —2 k(r„+ rs, + r»+ rsb) ]

(B1)

x cosh'2 pfb(r„—rl, —rp + rsb),

S(R) is the normalization integral, and R is the
hole separation. In this appendix we set k= 1,
since the k variable simply sets the scale of
length. For large R the dominant terms are r»,
r2aR, and rf„x»«R or rf„x+ +R and x»,
rz, «R. Both cases give identical contributions
and it is sufficient to examine the former when

we have

rfb ~ah fa y r2a = —Ray+ 2g

r12 = ~~+ rf, —r2

Then,

) .— ) a ) .— -)')'"

Expanding the square root we get

In this appendix we wish to evaluate the electron-
electron interaction energy in the limit of large
hole separations. In particular we have to evaluate
the integral

e e
"

2 ~ )() (r r ).R
1 2 S (R)

ds ds 0 (rl, —rsb) 3[(rl, —rsb) ~ R,bl"' Ss(R) 2R2 + 2R' YR

Since S =0. 5 we need only consider the dominant terms:
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, 2 e (1+8)(r1 ~ab e-(1 D)(rgb+ra

2 2

=e 1a 2b exp —p1 —
p~~ 2R+ +--(i48)(r +r ) I~ i ~ r1a rab '

ab +la+ +ab

R 2 R
(r,.~ R.,)'+ (r ~ 5 )'

J ~

I, = —
s( )+ e " '"

~
d r&d rs exp[ —(1+8)(r„+rs,)]

p[ —(1 —8)(,— ) ~ R /R] (,— ) R, 1 —(1- P)
' " — '

~

We will measure r& from c, ra from b, and use polar coordinates, the z axis being given by R~. Thus,

1 8-2(1-t )R r1
r & r d~ dp, dp, e "& "a e "~"~ a"aP S'(R)

0

pl 2 + g 2 $52 2 + Q 2 2

xR(r r ) 1 (1 p)

After rearranging, this can be written The evaluation of the integrals I,-I~ is straight-
forward and we wiH only quote the results:

where

~ 2(1 8)B
RS (R)

(1 —p)IiIs (1 —p)IsIs" 2IiIs —
R

' ' — '', a2

(1+ p) .
1 4 ps

(1 —p') .
s 4ps 1

3 1+p
Is= 4 (1 —P ); Is=

Is= f dr, r e'"s~s f' dg, e "s~i'ixl,

Is= f dr, r, e '"s"&f dp&e ' s+s"cxr, ls, ,

I, = f "dr, r', e "+'"s f' dp, e-"-'~s~ixr', (1 —p', ) p, ,
0 a]

(I)
I4= f dr, r e-"+s'"1 f dp, e &'- &"i"1xr (1 —gs)

0 af

I,=f"dr, r'e """~f '
dls, e-" '~i "ixr'(1 —2gs)

0 «j

I, is given a similar analysis. We get

&(1 —p')(1 - p)
5 4p4

We also need the large-R expansion of S (R)
which is again straightforward:

qa(R)=~r's)a (p
(z —B)z,r,

)R'

(, s)s„(1+p) (1+ p) (1 —p)
16p 8p R

Finally, collecting all the terms together we get
2(1-S)Be 2

2R S (R)
(a4)

e' 2(1 —6) 4(1 —p)'
I(R) = —1+ +
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