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Solids: Proton-Iodine Cross Relaxation in Antiferroelectric Ag,H;1O0, and (NH,,H;1O,

R. Blinc, J. Pir§, and S. Zumer
University of Ljubljana, *J. Stefan’ Institute, Ljubljana, Yugoslavia
(Received 11 July 1972; revised manuscript received 11 November 1972)

The application of rotating- and dipolar-frame proton-relaxation measurements for the determination of
fast quadrupolar relaxation rates of nonresonant spins S, the signals of which are too weak to be
measured by the conventional NMR technique, is discussed. Both the case where the proton-S
cross-relaxation rate is fast as compared to the S-spin-lattice relaxation rate and the case where it is
slow are treated. The method is applied to Ag,H,IO, and (NH,),H;IO,. The T dependence of the '*’I
quadrupolar spin-lattice relaxation rates is extracted from the T dependence of the proton dipolar- and
rotating-frame spin-lattice relaxation times. The iodine-spin-lattice relaxation times are found to be very
short and seem to be controlled by electric-field-gradient (EFG) fluctuations due to the motion of
protons between the two equilibrium sites in the O-H—O bonds. Using the known values of the static
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1 EFG tensor, the O-H—O proton intrabond jump time 7 was found to be of the order of 10 ' sec

at room temperature, i.e., of the same order as in KH,PO,-type ferroelectrics.

I. INTRODUCTION

The determination of the spin-lattice relaxation
rates of nuclei with large quadrupole moments
which are strongly coupled to the lattice via fluctu-
ating electric-field-gradient (EFG) tensors is often
nearly impossible because the resonance lines are
very wide and hard to detect. In such a case the
best way is the double-resonance detection—that
is, cross relaxation to another spin species which
has a strong signal and is weakly coupled to the
lattice. "2 Since crossovers in the laboratory
frame®® are limited to certain directions and mag-
nitudes of the external field, cross relaxation in
the dipolar or rotating frame is a much simpler
and better method.

The sensitivity of this double-resonance way of
measuring short quadrupolar spin-lattice relaxa-
tion times can be shown to exceed the sensitivity
of the direct nuclear-quadrupole-resonance (NQR)
or quadrupole-pertrubed NMR measurements by
several orders of magnitude.

In order to throw additional light on the dynamics
of the phase changes in Ag,H;IOg and (NH,),H;IO
we decided to study the temperature dependences
of the '¥"I-spin—lattice relaxation times in both of
these solids by measuring the proton-iodine cross-
relaxation rates in the proton rotating and dipolar
frame. Whereas in the laboratory frame the cou-
pling to the iodines represents an effective relaxa-
tion mechanism for the protons only at the cross-
over crystal orientations—where w(H)=w(*¥'1)—
this is not the case in the rotating and dipolar
frame. Inview of the fact that the separations be-
tween proton energy levels in the rotating or di-
polar frame are comparable to that of the iodine
dipolar system, the proton-iodine cross relaxa-
tion is expected to be fast and iodine-spin-lattice
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relaxation may dominate the rotating- and dipolar-
frame proton-spin~lattice processes at all crys-
tal orientations.

1t is well known® that Ag,H;I0, and (NH,),H;IO¢ be-
come antiferroelectric below 227 and 254 °K, re-
spectively. The high-temperature structures of
the two crystals are isomorphous®—space group
R3 with one formula unit per unit cell—and con-
sist of almost regular I0g octahedra each of which
is linked to its six nearest neighbors by O-H—-O
hydrogen bonds. The length of the O-H—O bonds
is about the same (Ry_o=2.5-2.6 A) as in the
KH,PO, family.” The rise of the Curie points on
deuteration® demonstrates the role of the hydrogen
atoms in the transition. By analogy with KH,PO,
one thus assumes® that each proton has two equilib-
rium positions in the O-H~—O bonds and that the
phase change is connected with an ordering of hy-
drogens. The low-temperature structures are not
known but the appearance of a different superstruc-
ture-in (NH,),H3IOg the unit-cell dimensions are
doubled along the a axis whereas in Ag,H3IO4 they
are doubled both along the ¢ and the a axes-seems
to show that the hydrogen-ordering schemes are
different in these two compounds. ®

Early proton-magnetic-resonance studies® using
the continuous-wave technique detected only mar-
ginal changes in the proton linewidth on going
through T.. This can be easily understood as the
distance between the two minima in the O-H—O
bonds is small as compared to the interprotonic
distances.® Accordingly a more sensitive way to
study the dynamics of the proton motion is to ob-
serve the effect of this motion on the electric-
field-gradient (EFG) tensor at the iodine sites.
However, all attempts to observe spin-resonance
signals of ¥ (F=3) in (NH,),H,IO¢ directly were un-
successful in view of the large '2'I linewidths. Only
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recently Grinicher and Kind*® succeeded in deter-
mining the time average values of the EFG tensor
at the iodine sites in (NH,),H3IOg both above and be-
low T using the iodine-proton crossover relaxa-
tion technique in the laboratory frame. They found
that the spin-lattice relaxation time T, of the pro-
tons is appreciably shortened at certain crystal
orientations where the iodine spin system has the
same resonance frequency as the proton Zeeman
system. From the angular dependence of these
cross-relaxation frequencies they determined the
127y quadrupole coupling constant e%;Q/k and asym-
metry parameter (e%;Q/h=25.4 MHz, 1=0 at room
temperature, while e%Q/%=93.2 MHz, =0 for
one-quarter of the sites and e%Q/n=123. 4 MHz,
n=0.33 for the rest of the sites in the antiferro-
electric phase). The drop in the proton 7', at the
cross-relaxation orientations has however not yet
been related to the quadrupolar relaxation rates of
the iodine spins.

A study is underway'® to determine the *'I EFG
tensor in Ag,H;IO¢ using the same technique as in
(NH,),H,3IOq .

In the following we shall (i) relate the iodine EFG
tensor fluctuations—which determine the iodine-
spin-lattice relaxation rate—to the dynamics of
the protons in O-H—O bonds, (ii) study the effect
of the proton-iodine spin coupling on the proton ro-
tating- and dipolar-frame spin-lattice relaxation
time in the limits of (a) fast cross relaxation when
the proton-iodine coupling is of the same order or
stronger than the iodine-spin-lattice coupling, and
(b) slow cross relaxation when the iodine spin can
be treated as a part of the lattice, and (iii) apply
the theory to the Ag and NH, periodates.

II. EXPERIMENTAL PROCEDURE

The measurements of the rotating- and dipolar-
frame spin-lattice relaxation times T;, and T, of
protons in both single-crystal and polycrystalline
samples of (NH,),H3IOg and in Ag,H;10; were made
using a 37-MHz coherent-pulsed spectrometer de-
veloped in this laboratory. A 17 pulse was fol-
lowed immediately by a “spin-locking” pulse of
variable length which was phase shifted by 90° with
respect to the 37 pulse. The free-induction-decay
signal following a “spin-locking pulse” of length 7
is proportional to e”™/T1e, The dipolar spin-lattice
relaxation time was measured both by Jeener 90°-
45°-45° method and by the adiabatic demagnetiza-
tion in the rotating frame (ADRF) method. Here
the height of the spin-locking pulse is first adiabati-
cally decreased to zero so that the proton system
is allowed to relax in the local field for a time 7
after which the system is remagnetized and the
free-induction decay measured as a function of time
7. The pulse programs used for T,, and T;, mea-
surements are shown schematically in Fig. 1.

AND ZUMER 8

The single crystals of Ag,H3lOg and (NH,),H3IO,
were kindly provided by Professor Grianicher and
were grown in his laboratory at the ETH, Zirich.
The polycrystalline samples were prepared in this
laboratory.

III. EXPERIMENTAL RESULTS

The temperature dependence of the laboratory
(Ho=8900 G) and dipolar-frame proton-spin-lattice
relaxation times T, and T,y in Ag,H;10¢ powder
is presented in Fig. 2. The results agree with the
ones obtained on the single-crystal sample.

In AgpH3I0g, T,y depends on the purity of the sam-
ple and was in our case of the order of 10 sec. Ex-
cept for a possible very small anomaly near T in
pure samples it does not depend on temperature.
The dominant relaxation mechanism for T, thus
seems to be spin diffusion to paramagnetic impuri-
ties. The dipolar-frame proton relaxation time
Tipx, on the other hand, is strongly temperature
dependent and is moreover nearly three orders of
magnitude shorter than T,,. In the paraelectric
phase T,y first increases with decreasing tem-
perature, reaches a maximum, and then sharply
decreases as T is approached from above. On
going through T into the antiferroelectric phase
Typy sharply increases. Proton-iodine cross re-
laxation seems to be the only possible explanation
for this behavior around and below 7., whereas at
higher temperatures a slow interbond proton motion
seems to dominate the relaxation rate. The activa-
tion energy for this interbond motion is of the order
of E,~0.3 eV. To get the cross-relaxation contri-
bution to the proton-spin-lattice relaxation rate in

90° phase shift

w/2 | w/k T /k
0° phase shift ‘
LT P
a) t
T/2_90° phase shift
signal
t>T, t>T1, ﬂ\
b) t
T/2 _90°phase shift
signal

c) t
FIG. 1. Pulse programs used for measuring Ty, and

Ty,: (a) Jeener-sequence (b) ADRF, and (c) rotating-
frame method.
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FIG. 2. Temperature dependence of the proton labo~

ratory- and dipolar~-frame spin-lattice relaxation time
in AgyH3lIO;.

the dipolar frame, the interbond contribution has
to be subtracted.

The temperature dependence of T, and T, of
(NH,),H3IOq is shown in Fig. 3. T, is here evident-
ly determined by the modulation of the dipolar cou-
pling due to hindered rotation of the NH, ions. The
rotating-frame spin-lattice relaxation time Ty, 4
shows a different temperature behavior than T,j.
Whereas T,y decreases on approaching T, from
above, T,y incveases. On going to the antiferro-
electric phase. T,,, very strongly decreases with
decreasing temperature. The temperature be-
havior of T,,, in (NH,),H3IOq is thus just inverse to
that found in Ag,H3I0g.

Qualitatively, the same T dependence of T, is
obtained in single crystal as in powdered samples
of (NH,),H3IOs. Whereas T,y in (NH,),H3IO; is
anisotropic, the angular dependence is relatively
weak and no sharp dips—analogous to the ones seen
in the laboratory frame T,y at proton-iodine cross-
over orientations*'°~are observed.
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There are two kinds of protons in (NH,),H;I0s—
the “ammonia” ones whose relaxation is mainly de-
termined by hindered rotation of the NH, groups and
the “hydrogen bond” ones whose relaxation is main-
ly determined by the proton-iodine coupling—the
signals of which overlap. From the observed mini-
mum in T4 the T dependence of the rotational con-
tributional to the relaxation rate of the ammonium
protons in the rotating frame can be determined
(Fig. 3). Using this result and assuming the ex-
istence of a common proton-spin temperature in the
rotating frame, we can determine the proton-iodine
cross-relaxation contribution T3, , (I) (Fig. 4) to
Tion+

IV. THEORY

The two basic problems to solve inthis study are:

(i) How to relate the temperature dependences of
the protonic spin-lattice relaxation rate in the di-
polar and rotating frame to the temperature de-
pendence of the iodine-spin-lattice relaxation rate.

(ii) How to relate the temperature dependence of
the iodine relaxation rate to the proton dynamics,
which governs the dynamics of the antiferroelectric
transition.
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FIG. 4. Temperature dependence of the proton-iodine
cross-relaxation contribution to the rotating-frame pro-
ton-spin~lattice relaxation rate in (NHy),H3IOq.

These two problems can be easily solved on the
basis of the following model: The fast motion of
the protons between the two minima in the O-H—O
pbonds—which can be described as an overdamped
“soft” quasispin wave or as critical-order-param-
eter fluctuations—modulates the electronic struc-
ture of the I0g octahedra. In view of the covalent
nature of the iodine-oxygen bond, this modulation
results in large and fast reorientations of the EFG
tensor at the iodine sites, thus providing a strong
relaxation mechanism for the iodine spins. Due
to their fast relaxation rate, the "I spins are in
good thermal contact with the lattice while the cou-
pling to the proton system is significant only in the
dipolar and rotating frame, or in the laboratory
frame at certain orientations and magnitudes of the
magnetic field at which proton and iodine levels
cross. Thus in these three cases the proton-spin—-
lattice relaxation is mainly governed by the cross-
relaxation to the iodine system.

A. EFG-Tensor Fluctuations at Iodine Sites

To solve the problem (ii) we suppose that the
fluctuating EFG tensor T,(t) at the ith iodine site
can be expanded in terms of quasispin variables
p;(¢) (j=1;-+-6,) which describe the position of
six protons surrounding a given IOg group in their
H bonds®:

8; 64
Ty®)=Toi+ 2 py(0) V(i) + 2 PO POV m) 4
Jj=13 1,m=13
4.1)
Since the fluctuations in p,(¢) are generally much

faster than the I nuclear Larmor frequencies,
the #"I spectra are determined by the time-aver-
aged EFG tensor (T,(¢)).

Replacing the time average by an ensemble aver-
age and using the molecular-field approximation for
the sublattice polarization

(51(8))ar=D;(E))ar =1, 4.2)
we get
(T;tay=To; +p V; +p? U,
+ 2 Ui, m) (Ap; BpmYay++++, (4.3)
I,m
where
8
V=2 vi(3), (4. 4a)
j=1
8
U= 2o UL, m), (4. 4b)
1,m=14
and
Ap,=p,-Dp. (4. 4c)

Above T, the sublattice polarization is zero,
p=0, so that the temperature dependence of (T;(¢)),,
is determined by the fluctuation term Z, , U;(, m)
(Ap; Appm)ey. Below T, on the other hand, the term
linear in p, V;p, is expected to dominate the tem-
perature dependence of the *'I NQR frequencies.
The '?"I-spin-lattice relaxation, on the other
hand, is determined by the fluctuating part of the
EFG tensor

8;
AT,'(t)= Ti(t) - <Ti(t))"% ;ZE Vi(j)APj(t)- (4- 5)
=1lg

The autocorrelation function of its component
AT 44(t) is

(ATam(o) ATaBI (t»av

8;

= E VuBi(j) Vuﬂi(k) <AP,,(0) Apj(t»av .

(4. 6)
kyj=14

Introducing Ap;(t)—the Fourier transform of the
Ap,(¢)—and taking the RPA yields

1
(AT 35;(0) AT gp4(£) Yoy = N,

XD | Vas@]? (4ps(0) Ap5())ay ,  (4.7)

q

where Ny is the number of protons in the sample
and

%ﬁ‘ - . -
Vagi(@)= j_lz‘e“‘“'r‘f’ Vag(5)-

(4.8)

The iodine relaxation rates will be later expressed
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as linear combinations of the following spectral
densities:

7E(p) = i_ | Vas@]23(0), 4.9)
with
Jalw)= [ ¢** (Bpg(0) Ap 5(t))uvlt, (4.10)

whose form depends on the model of the proton
dynamics. In our case we shall use the Ising mod-
el® which gives in the RPA approximation

o (=-pAT 273
i) = T @ -pD T+ lr

with

(4.11)

TI=T T
e m———
¢ T-T@Q-p)

(4.12)
where 7 is the proton intrabond jump time and 7 o(q)
depends on the proton—proton interactions. ° As

w7 will be always much less than 1 all spectral
densities can be taken at zero frequency.

In the above treatment we assume the existence
of two sublattices, where all hydrogen bonds are
ordered below T and disordered above T.. This
model can be easily extended to the case of more
than two sublattices.

B. Proton-Spin—Lattice Relaxation in the Dipolar and Rotating
Frames

The Hamiltonian of the proton-iodine system and
the lattice is

3=3zy+3py+3Czs+3Cps +3pur +¥qr +3Cre +3Cr
(4.13)

where 3Cz, is the H Zeeman, 3Cpy is the H dipolar,
3Cz; is the I Zeeman, 3Cp, is the I dipolar, 3Cp,y is
the HI dipolar, 3Cy; is the I quadrupolar, JC,. is the
rf, and 3C; is the lattice-part of the Hamiltonian.
In the frame rotating with the proton resonance
frequency we have in a very good a.pproximationma
an effective Hamiltonian (omitting weakly coupled
and rotating parts)

Core =¥+ ¥y g +3Cpr +3Cppy + AJC,(t) +3Cy,

(4.14)
where
3an=2ﬁwxlxu (4-15)
i
Shu= L fPA, (4. 16)
i<
with
[ =751 = 3080 ;) /7 (4.17)
and
A:g)':le Ixj"%(lu L, +I-iI+j)y (4.18)

5Cpr=24 hij Biy, (4.19)
(3¢
with
1= % (1= 3cos®,,,)/ 7%, (4. 20)
and
B{D=5,5, -4(5.;5.;+5.;S.;), 4. 21)
3C;JHI=EF§?)C§?)’ (4. 22)
with
FiQ=ny v, (1 =3cos®0,4;,)/73mi; (4. 23)
and
C:.‘f))=slilﬂ —%(Se‘il-j +S-{I+j)y (4- 24)
and at last
2
Ao ()=E 23 0 AT (@)D etert, (4. 25)
i n=0
with
D§O)= 351 - S? ’ D:*”= Szi Sti +S$i Sz{ ’
4, 26)
D, =82, (
and
AT ()= AT y#), AT{(t)= AT (1) £ AT, 0),
(4.27)

AT 2(t) =L [AT 1y () = AT, (O] 230 T, &)

where AT,(t) is the fluctuating part of the EFG ten-
sor at iodine site [expression (4. 5)] and

E=¢%Q/45(2S -1). (4. 28)

In all these expressions conventional symbols are
used.

From the structure of the Hamiltonian one can
see that there are three commuting parts

3Cy=3Cxn +3pu » (4.29a)

3, =3Co;, (4. 29b)
and

X, (4. 29¢)

which are in pairs coupled by the interaction

V(E) =3 gy + Ao (t). (4. 30)

To solve the problem (i) we will study the energy
transfer between three energy reservoirs corre-
sponding to 3C4, 3C;, and 3¢, caused by the coupling
V(). To simplify the treatment we will discuss
only two limiting cases: (a) fast cross relaxation—
the coupling of the iodine spin system to the proton
spin system is of the same order or stronger than
that to the lattice, and (b) slow cross relaxation—
the iodine-lattice coupling is much stronger than
the iodine-proton one (Table I).



20 BLINC, PIRS,

TABLE 1. Various limiting cases of proton-iodine
cross relaxation in the dipolar or rotating frame treated
in this paper. Here w;=YH, is a measure of the strength
of the rf field, wp measures the strength of the dipolar
field, and W, stands for the iodine proton cross-relaxation

rate. T,piis the iodine-spin—lattice relaxation time.
WigTipgz 1 WigTipr<1
wy<wp fast cross-relaxation slow cross-relaxation
strong mixing strong mixing
wy>»> wp fast cross-relaxation slow cross-relaxation

weak mixing weak mixing

1. Fast-Cross-Relaxation Limit

In this case the proton-iodine coupling is of the
same order or stronger than the iodine coupling to
the lattice. Consequently, we must treat each en-
ergy reservoir ¥, 3C,;, and 3¢, separately. While
the lattice and proton (for (3Cxx)< (¥Cpy)) energy
reservoirs can be well described by temperatures,
that is not true for the iodine energy reservoir. Its
elements are more strongly coupled to the lattice
and to the protons than among themselves. This
fact prevents us from treating the whole relaxation
process with the help of the Provotorov'! spin-
temperature formalism.

Instead of using the spin-temperature description,
the energy reservoirs must be now characterized by
the energy which they contain, i.e., by the expecta-
tion values of 3¢;. The time dependence of these
quantities will be obtained from the corresponding
kinetic equations. As the operators 3¢; are orthogo-
nal in the following sense:

Tr {3¢,3¢,}=0 for i+j, (4.31)

the formalism developed by Shimizu'? can be applied
to obtain the rate equations for our system (see
Appendix A). Assuming that (3¢;)> (3¢;) (i=1, H)
and using

l3c;, 3¢,]=0, (4.32)
we get
& G- T Ryl Go0)- o), (4.33)
where

(3¢,(t))="Tr [ p(t)3c;], (4. 34)

p(¢) is the density matrix of the system and R, is
given in (A7). Defining an inverse quasispin tem-
perature as

a, ()= (3e,(t))/C,, (4. 35)
where
C,=Tr(33), (4. 36)

AND ZUMER 8
the system (4. 33) reduces to

L ()= = Wl aylt) - 0,(0)], (4.37)

dt

djf a )= Wiyl aglt) - o,@)] - ‘1%' [at)-aL],

where (4.370)

Cy 1 ° '
W = W = '|' Jc
IH C, HI h’zTr_?( I')‘J; r ([ Is xnm]

xet®ot/ Mo 50, e %ot /) dt (4. 38)

and
1 1
Tipr 7 Tr(5G)

xf"" (Tr{ [5(’1’ MCQ(O)] [MCQ(t)! JCI] })"dt, (4- 39)
0

with

3o =30y +3C; | (4. 40)

and where the symbol ( ),, means the ensemble
average.

The above system is formally analogous to the
Provotorov equations though the meaning of the co-
efficients is different. Accordingly, the spin-
temperature formalism is justified even in this case
where the inverse temperature is just a formal
quantity.

Let us first examine the relaxation in the dipolar
frame (3Cx,;=0). Solving the equations (4. 37) with
the assumption

CI<<cHa

we find that the energy of the proton dipolar energy
reservoir changes with the following characteristic
rates:

(A +Typy Wy ) Tibs

and

c - -
-C-f:(WI;i +T o),
so that we have for the proton system two charac-
teristic relaxation times. As the first relaxation
rate is much faster, the relaxation process of the
protons in the dipolar frame is in the present limit
well described with the following single relaxation
time
-1 Cu
T1pu=(Wig+T1p1) c, (4.41)
Expression (4. 38) for the cross—-relaxation rate
be evaluated only approximately, assuming a Gaus-
sian line shape. As shown in Appendix A we get
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c 3n\l/2  MJ@HI) C
[ = — et : |
Win=g,~ W <2> R R
where (4.42)
S(S+1) & (02 2
* - S 0% £ (0y
i ures
Mz WHD= 352 3w o E\j Z?F” T
(4. 43)
and
ny
maem) = 3K 55 55 g, (4. 44)

4r°ny g1 4w

where ny is the number of the nonequivalent pro-
tons. The iodine-dipolar-frame spin-lattice re-
laxation time (4.39) can be, using (4.25), expressed

as
2 w©
1 E E Ef elvut
0

Tipr  KHoTr(360) 7 .o

X(AT{#H0) AT (t))gy Tr( [ 5y, DE*]

x [D{, 560, ) dt. (4. 45)
Evaluating the traces, (4.45) reduces to
1 3 e'9* 25+3
T,py 160 S°m* 2S-1
x[J9(0)+4J(w)+8JP(2w)], (4.46)

where

ny ©
T, = 5 [T aT#0) AT ) e ntar

nr i=1 J-=
(4. 47)

and #n; is the number of the nonequivalent iodine
sites.

In the rotating frame where w; is not much bigger
than wp the two-proton spin energy reservoirs have
a common spin temperature (strong mixing case)
and the relaxation time is approximately given (see
Appendix A) by

TlpHETIDH[1+3(w1/(UD)Z]: (4. 48)
where
wp=[Ma(HH)]'/? . (4. 49)

For higher w,, W,, decreases as exp|- 2 (w,/wp)’]
and the condition for the validity of the fast cross-
relaxation limit could be broken. The second dif-
ficulty for w,> wp is that the two proton energy re-
servoirs corresponding to Cp, and 3y, must be
treated separately (weak mixing case). The whole
derivation of the kinetic equations must be slightly
changed as SC;,,, and ¥y, do not commute.

2. Slow Cross-Relaxation Limit

In this case the iodine coupling to the lattice is
assumed to be much stronger than to the protons.
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The iodine spin reservoir is thus always in thermal
equilibrium with the lattice and can be treated as a
part of it [see Fig. 5(b)]. This means that the charac-
teristic flipping time of the iodine spin fluctuations
which modulate the HI coupling is just the iodine-
spin-lattice relaxation time itself. The relaxation
of the proton energy reservoir can be treated sim-
ilarly to the relaxation due to the paramagnetic im-
purities. ®® The corresponding effective Hamiltonian
in the rotating frame is

ote = Hx 1 +3Chn +3Cppr[ SE)] - (4. 50)

In the rotating frame the proton system can be de-
scribed by a single spin temperature only if its
rotating-frame spin-lattice relaxation time is much
longer than the “mixing time!%”

(wlle)alz (4. 51)
between rf and dipolar reservoirs. I this condition
is not fulfilled there are two different spin tempera-
tures corresponding to the proton dipolar and rf
part of the Hamiltonian. So we must treat two dif-
ferent cases of (a) strong and (b) weak mixing.

a. Strong mixing. Following Goldman, % the
rotating-frame spin-lattice relaxation of the pro-
ton system is in the case of the exact resonance
given by

T,xe

1 _(Tr(3ky) , Tr(sed) 1
Tion < Tixn T1pu Tr(JCi,ﬁJCDZH) ’
with (4. 52)
1 1
Tixu nt Tr(JCi,,)

x f " (T {] Sexw, 0 (0)] [V* (), Koxn] Paydt  (4.53)
0

and
H I L
a)
e ————— —— 1
| |
| |
H [+ [ L |
| |
g .
bl
FIG. 5. Schematic representation of the proton, iodine,

and lattice energy reservoirs and their connections in the
periodates for (a) fast cross relaxation and (b) slow cross
relaxation.
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J " (T {[ 5, O] [0(E), 5o ] Pt
0

where (4.54)
V()= (S@?)) (4. 55)
and the asterisk means
V(E)* = exp i(3Cxy +3Cpu) /7] V(E)
x exp| = i(JCxy +3Cpy) t/R].  (4.56)

In the case that the average quadrupole part
(3Co1(t))ay Of the Hamiltonian of the S spins is com-
parable or greater than their Zeeman part 3Cy; the
axis of quantization of the S spins is no longer
parallel to H,. In the limit that (3Cq;())s, > 3Cz;,
the S spins are quantized along the largest principal
axis of the S-site EFG tensor. In this new frame
marked with a prime we have

S,(t)=S.(t) cosf +S.(t) sind, (4.57a)

S,(t)=-S.(t)sinf +S,(t) cos¥, (4.5b)

where 6 is the angle between Hj and the quantization
axis. It should be mentioned that in the fast cross-
relaxation limit this transformation is not neces-
sary as the traces are invariant under the coordi-
nate transformation.

The relaxation of the proton system is caused by
the iodine~-spin fluctuations which can be described
by

(S20) Sy(t))ay=5S(S + 1) g, (8),

<Si(0) S:(t)>av= %—S( S+ l)gs*(t) ei(wrms )t,

where gs‘(t) and g¢,(t) in general need not be ex-
ponential (see Appendix B). As w;-ws>w; the
terms with S, or S/ do not contribute to the re-
laxation rate in the rotating frame and will be omit-
ted. Thus, vp(¢) is reduced to

(4.58a)

(4.58b)

V(t)=2 F{P(1,;cos0 +1 1, sin0)SL;(¢). (4. 59)
]

Using the fact that the transverse spin-spin re-

laxation time of the proton system is much longer

than the characteristic flipping time of the iodines

T,; we may take

I5(t)=1I,cosw,t -1, sinw,t, (4. 60a)
IL®)=1,;. (4. 60b)

Thus, expressions (4.53) and (4.54) can be written
1/T x =% My(HI)cos®0 K(w,) (4.61)
and
1/Tipy=4%{%sin®0( § M3 (HI) + M3*(HI)] K(0)

AND ZUMER 8

+c0s®0 [ M3 (HI) - M¥*(HD] K(w,)}, (4.62)

where according to Eq. (B12),

- b iwgt = si‘ ZT
K(wl) f e gsz(t)dt ;;a,, _‘&—z'1+(w17_k) y
- (4.63)

ny
M, (HI)= $(s+1) 53 55 pyoa (4. 64)

2 ij
3n Ny i=1 4
and
"y
(0)2 12(0) 1~ (0)
5.31 T;Efu Fy Fyp'.
i=1 j#H 1

SES+1)
Me*(HI) = 372 yMy(HH)
(4. 65)
b. Weak mixing. In this case the rf part 3Cyp
and the dipolar part 3¢p, of the Hamiltonian (4. 50)
are nearly uncoupled so that each system can be
described by a separate spin temperature. The
corresponding relaxation rates are again given by
(4. 53) and (4. 54) where now in (4. 53),

V* () = ' FxHt M (f) @ Fxut /M (4. 66)
and in (4. 54),
V*()=0(). (4.67)

So the rotating-frame spin-lattice rate in the weak-
mixing limit is

3
= My(HI) cos?6 23

k=1

a,T
— k| 4,68
T 1+(w;7y) ( )

V. APPLICATION TO Ag,H,10, AND (NH, ),H, IO,

In both Ag,H3I0g and (NH,),H;IOs the quadrupole
coupling of iodines was in our case of the same or-
der (or weaker) as the Zeeman coupling above T
and much stronger than the Zeeman coupling be-
low T;. Above T the iodine spins are thus ap-
proximately quantized along the external magnetic
field and below T along the largest principal axis
of the EFG tensor.

In the case of Ag,H3IO; the fast cross-relaxation
limit seems to be a good approximation for the
dipolar and low-rf-field rotating-frame relaxation
measurements below T, while above T, the con-
ditions for the validity of this limit are not quite
fulfilled. The iodine-dipolar-frame relaxation
time (Fig. 6) has been extracted from the mea-
sured T,y of the powdered sample (Fig. 2) on the
basis of the approximate powder average of the ex-
pression (4. 41)

Tyipy= (ﬁ/;}i""TlDI) %li‘ ’ (5.1)
where for sake of simplicity each element (as Cy,
C,, etc.) is averaged separately instead of taking
the average of the expression as a whole. The bar
here means the powder average.

A rough calculation gives for C,/C,;=190 and for
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FIG. 6. Temperature dependence of the iodine dipolar-
frame spin-lattice relaxation time in Ag,H;3IO; as obtained
from proton-relaxation measurements.

W7y=0.4 usec. The T dependence of the ?"I-spin—
lattice relaxation time in Ag,H3IO¢ (Fig. 6) as ob-
tained from Eq. (5.1) shows a similar anomalous
behavior on approaching T, as the deuteron, S Cs, b
and As '° relaxation times measured in KH,PO,-
type hydrogen-bonded ferroelectrics. The anomaly
seems to be of a logarithmic type, Ty In(T - T)
+const as expected in an Ising model with aniso-
tropic interactions. *'%

The increase in T,y by a factor of 100 on cool-
ing through T, demonstrates that all hydrogen bonds
are ordered in the low-temperature phase of
Ag,H;10¢. If for instance half of the H bonds would
be still disordered as this was suggested® for
(NH,),HIOq one would expect [see Eq. (4.46)] an
increase in T, by only a factor of 4 and not a fac-
tor of 100. It is our opinion that both the static and
the dynamic '2'I resonance and relaxation results
can be explained by a model, in which all hydrogen
bonds are ordered below T . but the different de-
formations of the IQ; octahedra result in different
2] EFG tensors below T .

To get a rough idea about the proton-intrabond
dynamics we should know the proportionality fac-
tor relating T;p, to the proton intrabond correla-
tion time 7. As already mentioned, the static EFG
tensors in the ordered and disordered phases of
(NH,),H;3105 have been measured by Kind and Grini-

cher* and the tensors in Ag,H;I0; are being deter-
mined by the same group. 18 Though these results
show different behavior of different nonequivalent
IOg groups in the unit cell and in addition some
important differences between silver and ammonium
salts, we shall, for an order-of-magnitude esti-
mate of the proton-intrabond correlation time 7,
use the same EFG-tensor-fluctuation values in both
crystals. We further assume that the magnitude
of the EFG-tensor fluctuations are given by the dif-
ference in the static EFG tensor above and below
T which allows us to substitute the expression
(4. 8) by an approximate one,
83
VaBi(a)zé Vaﬂi E e-ﬁ.(;i-;‘f);
i1y

(5.2)

where 2V, is the difference between the ordered-
and disordered-phase EFG tensor at the iodine
site. So according to (4.7), (4.10), (4.27), and the
assumption wr <1, the spectral densities (4. 47)
can be written

FRw)= FR0) =2 D v 1) 1 -,
I i=1
where (5.3)
1 - .
IT)=——5 5 % ¥ Gripjs(0). 5.4
@ 7(1 - p°) El z,?ixie 30 (6.4)

Using the data of Ref. 4 to determine the tensors
V() according to (5. 2) and inserting the compo-
nents transformed to the magnetic field fixed frame
in (5.3) we get, after performing the powder aver-
age,

Tipr = 4.8%x10%(sec™?) 7 I(T) (1 - p?) (5.5)

for the effective iodine quadrupolar-dipolar-frame
spin-lattice relaxation rate as seen by the protons.
From this expression a value of 7=0.5x107! sec

is obtained at T =290 K in the paraelectric phase.
This is of the same order of magnitude as the val-
ue of the deuteron- and proton-intrabond jump times
in KH,PO,-type ferroelectrics, ®+4:15:17:18

The T dependence of T;p; below T, is mainly de-
termined by the temperature variations of the sub-
lattice polarization p. Assuming that I(T) is nearly
constant when p is near 1 we get from T,,, (Fig. 6)
the temperature dependence of the sublattice po-
larization presented in Fig. 8.

As, above T, T,p,is quite short, the transition
from the fast to the slow cross-relaxation limit
occurs already when w;=~wp. This is reflected in
the sharp change of the slope in the T, H-vs-wﬁ
plot [Fig. 7(b)]. At low fields we have for T, ex-
pression (4. 48) which, at higher fields when the
weak-mixing slow-~cross-relaxation limit is valid,
transforms to (4.68). As this last expression con-
tains three characteristic relaxation times we ap-
proximate it for practical purposes with
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T = 1 1 + ((JJ]_ Tll)z
YH™ Mu(HI) aTy;

(5.6)

which is characterized by only one effective iodine-
spin-lattice relaxation time T',; and a constant a
(see Appendix B). This effective relaxation time
is of the same order of magnitude as T;,; and will
be now explicitly related to it.

Using similar approximations as when deriving
the expression for T,,; we get the effective iodine
relaxation time T,; (Appendix B) as

T17=0.94x10"%(sec™?) 7I(T)~0.20Ti5,, T>T.

(5.17)
1120.85%10%(sec?) 7I(T) (1 - p¥)~ 0.18 T~} ,,,
T< TC . (5. 8)

T, obtained from the frequency dependence of
T,y at 250 K agrees with the one obtained from the
T,py measurements.

As, below T, T,; becomes much longer, the
transition from the fast to the slow cross-relaxa-

00T T '/'—
w0 -
2
£ . AgoH; 105
= powder
- . vy = 3TMHz
100 /;/o A, _
/
d
ol 1 1 1 1
0 10 w0, 30 L0
(a)  Hy[6?)
T T I P T
5+ i
_ L 4
]
13
E 3t A .
g / 9,H3105
=L ° powder
2 / vy = 37 MHz
et T = 250K
[} T
8
0L 1 1 1
0 100 200 300

) w6l

FIG. 7. Frequency dependence of the proton rotating-
frame spin-lattice relaxation in Ag,H,IO; (a) at 170 and
(b) 250 K. In (a) the dashed line indicates the theoretical
predictions of the fast cross-relaxation limit, whereas
in (b) the vertical dashed line indicates the predictions of
the fast and the tilted of the slow-cross-relaxation limit.

tion limit occurs at higher rf fields (see Fig. 7(a)],
but nevertheless the T, ,,-vs—wf plot is well de-
scribed by (4. 48) only for low-rf fields because at
higher ones (w; >wp) the rf energy reservoir sepa-
rates from the dipolar one.

In the case of the (NH,),HIOq crystal, the proton
relaxation rate is a combination of the relaxation
rate due to the rotations of the NH, groups and the
cross-relaxation rate to the iodines. The relaxa-
tion rate in the laboratory frame is completely de-
termined by the first process (see Fig. 3) and can
be written according to the spin-temperature ap-
proximation, as a superposition of the “ammonium”
and “hydrogen-bond” proton-spin-lattice relaxation
rates

1 8 1 3 1
1 1%,

(5.9)

As the distances between the “hydrogen-bond” pro-
tons are much larger than between the “ammonium”
ones only the first part of (5.9) is important and
can be described by a well-known formula

1 9 vt T, 47,
TS, 10 7 ( 1+wr)? 1 +(2m,)2> ’

(5. 10)
where w is the proton Larmor frequency in the ap-
plied external magnetic field, »=1.58 A is the dis-
tance between protons in the ammonium group, and
7, is the correlation time for the hindered rotations.
The measured values can be well described in the
high-temperature region by r,=T,exp(E, /kT), with
E,~0.17 eV and 7,=2.6x103 sec. At T there is
a discontinuous change in 7, by a factor of 2.

In the rotating frame the dominant process is the
relaxation via iodines especially at higher tem-

peratures. The relaxation rate is given by the fol-
lowing sum:
1 8 1 1
=== H-H)+ I-H
TlpH 1 <T‘11.0H ( ) ‘ipH ( )>
3 1 1
v H-H)+ (I—H)). (5.11)
(7, -0,

The “rotational” contribution of the “hydrogen-
bond” protons due to NH,-H coupling is negligible
while that of the “ammonium” ones is well described
by (see Fig. 3, dashed line)

1 9 y‘%ﬁz 3 T
Ty W-M=15 5 (2 1+ (20, 7,)"
5 T

T'
. (5.12
+ 1+ (20) T1)2> ( )
Subtracting the rotational contribution from T3}y,
we obtain the cross-relaxation contribution
T4 (-H) (see Fig. 4) which can be in the slow-
cross-relaxation limit for high w, (weak mixing)

*2 1+ (wt,)?
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FIG. 8. Temperature dependence of the iodine dipolar-
frame spin-lattice relaxation time in (NH,),H3IO; as ob-
tained from proton-relaxation measurements.

written
1
7o U-H)= [ Ma(H*-I) +§ Mo(H"1)]
1pH

x—2Tu___ (5.19)

1+(w, Tyy)

where T,; is an effective iodine-spin-lattice re-
laxation time, M,(H®-I) is the second moment of the
“ammonium” proton-iodine dipolar interactions,
and M,(H"-I) of “hydrogen-bond” proton-iodine di-
polar interactions. The T,; obtained in this way is
now —according to the relations (5.7) and (5. 8)—
transformed into T,,; and shown in Fig. 8. Its
temperature dependence is very similar to that of
T,p; of Ag periodate but its value is a factor of
about 20 smaller. This explains why the proton re-
laxation process in the rotating frame of the NH,
periodate can be described by the slow cross-re-

1

CROSS-RELAXATION DETERMINATION OF SHORT... 25

laxation limit, while that in the Ag periodate can
be better described by the fast-cross-relaxation
limit especially for low- or zero-rf fields.

The proton-intrabond jump time 7 of (NH,),H;IO,
is found to be a factor 20 shorter than for Ag,H;IO;.
On the other hand the sublattice polarization p has
similar temperature dependences in both crystals
(see Fig. 9).

It should be pointed out that due to the presence
of the NH, contribution the iodine-spin-lattice re-
laxation rate in (NH,),H3IOg is obtained in a more
indirect way than in Ag,HgIOg and the results are
therefore much less reliable.

V1. CONCLUSION

The above results seem to show that the cross
relaxation in the rotating and dipolar frames is a
powerful method for the determination of short
NQR relaxation times of nuclei which because of
their low natural abundance or large NMR linewidth
cannot be measured directly.

Though the iodine-spin-lattice relaxation results
for Ag,H3I0s and (NH,),HIOg are relatively crude,
they seem to show that the dynamics of the protons
in the O-H—O bonds in the periodates is not very
different from the dynamics in KDP-type ferroelec-
trics.

APPENDIX A: EVALUATION OF KINETIC EQUATIONS
AND PROTON-IODINE RELAXATION RATES

Let us take a Hamiltonian of the form

%)= 33 3, +V(t),
i=1

(A1)

where the parts 3C; are orthogonal in the sense that
the trace of the product is zero [Eq. (4.31)] and are
coupled in pairs by the interaction V() which need
not be small. Our task is to get the time depen-
dence of the expectation values (3C;(¢)) defined by

(4. 34). The set of n exact equations for such a
Hamiltonian has been developed by Shimizu. 2 When
the various 3¢; commute (which is true in our case
for low-rf fields), the Shimizu equations reduce to

t
2 o)== 73 fo ar’ (@@r {[36,, 0@ ', 0 [0, (1~ P)pO]S*(, 0

j=1

where p(0) is the initial density matrix of the sys-
tem,

n
I
P=7 —_G.L}_ Tr(3C,. - -
:1 Tr(3Cy) (8 =)
is the projector on the spcae of the operators iC,,
and

(A3)

+ "E (Tr{[3c,, V)] SE, ") [V ('), 3¢, ]5*¢, ")} ) ay %c,;_z%z), (A2)

(3¢9)

S, t')=exp(/n) [ 1 - P)3e(r)dr, (Ad)

S*(t,1") exp(i/m) [ }50(r) (1 - P)dr. (A5)

The symbol ( ),, means an ensemble average. As-
suming that the initial density matrix has a high-
temperature canonical form,
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FIG. 9. Temperature dependence of the sublattice
polarizations in Ag,H3IO¢ and (NHy),H3IOq as obtained
from the temperature dependences of the iodine-spin—
lattice relaxation rates.

p(0)=1- 55 a;(0)3¢;, (A6)

the first term of (A2) vanishes. As we are inter-
ested only in the time development of (3¢;(¢)) for

AND ZUMER 8
to ¢/, so that (A2) becomes
ad 1 & © o, ’
7y 3e, )=~ 7z Ef at' (Tr{[c,,v(0)]SE#',0)
j=1J0
7 ! <:;c (t))
X{'U(t ) ch] S*(@t', 0)} Dav 'I_r(jﬁ , (A7)
or in matrix form
d n
o (Tae)=- 20 Ry, (50;0)) . (A8)
j=1
Since for ¢ -« the set (A8) reduces to
(A9)

0= —j:‘{ Ry; (3¢,(=)),
it can be rewritten
ﬁ" CAE -jZ‘; Ry [ (3¢,(t)) - (3¢;(«))] .  (A10)

Taking into account that the heat capacity of the lat-
tice is much larger than the heat capacities of other
terms, we have

(3CL(#)) = (3C(=))=const (A11)

and the set of equations (A10) is reduced. Introduc-
ing formally a subsystem spin temperature with
(4. 35), the reduced set (4. 33) becomes

d
times much larger than the characteristic correla- 7 a,t)=-W,la;t)-a;(=)], (A12)
tion times of S(¢,¢') and V(¢), we extend the limit of
integration to infinity and change the variable t—t' where
1
_ 1 o, }_ ’ t’ ’ ’"
o= 5T T }J; dt <Tr[{[sc,, V()] exp = (1= P) (e’ + [, 0@ )dt")
X[V ()56 exply (3ot~ [0 )at) A=P)) (A1)
av
-
and cross-relaxation rates Wy; and W;;. The rate
n 1 © ,
3o =02 3¢, . (A14) Wun= srmrm [ 4t Tr([ 5Con, Kpas)
i=1 7% Tr(3Cpy) 0
If we limit ourselves to the case
L xe /M 5ehp, Hpp) /M 0)  (A16)
= 17 1
o> t j; viEat”, becomes, using
expression (A13) reduces to e“/"”co'[{}CQ,HHC,',,,,]e'“/"m"t
= 1 ® !
W= T Tr (%) k)jt; dt’ {Tr {{ 3¢,,0(0)] - ﬁ (eU/ M%gtger (4%t (A7)
Xe(i/h)ﬂcot'l‘.o(t')’ scj]e-(i/n)xot'}>“_ (A15) equal to
WHH=—WHI’ (A18)

In our case where U(t) is given by (4.30) and 3¢
by (4.40), the matrix (A15) is characterized with

where Wy, is given by (4.38). W;; can similarly be
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written

C
W= Ef Wyr+

Toor’ (A19)
where Cy and C; are given by (4. 36) and T, by
(4. 39). The correlation time of AJCy(¢) has been
assumed to be much shorter than the transverse
relaxation time of the protons.

Assuming a Gaussian line shape.

Tr ({ﬁcbﬂ,ffcbm]e(”"m"’[ﬁ%m,ﬁcpﬂ] e~/ 1%ty
ETI‘([SC;)H, JC,DHI] [Jc;)H],JCQ)H])

x exp {- 4 [M(HH) + M ()] #}, (A20)

we get expression (4. 42).

When the rf field is not zero but still small
enough that 3¢,y and 3Cy, represent a common pro-
ton energy reservoir, Wy is again given by (A16),
but 3¢y is now

3y =3 oy +¥xs - (A21)
After a similar approximation as before,
Tr ([GC”, mlbm] e(i/n)acot[}c;m“ JCH] e-(d/ h):!cot)
=Tr ([ 3¢y, %pur]! Kpar, ¥ ])
xexp {- 3 [M(HH) + M, (D) 2} e“1t, (A22)

we obtain

2 2 ‘ 2
Wy alw,) =W yyu(0) %—:g—%‘%%% exp (— —g— %—) ,

"OD

where (A23)

u=49 My(HI)/M¥HI). (A24)

As u is in our case not far from 3, expression
(A24) reduces to

Wynlw,) =Wyu(0)[1+3 (wf /w%)]'l- (A25)
Using this relation and
Cilw;)=Cy0)[1+3 (W} /wh)], (A26)

we get for the proton-spin~lattice relaxation time
in the rotating frame expression (4. 48).

APPENDIX B: EVALUATION OF CORRELATION FUNCTION
(8,(0)S,(r),, AND ITS SPECTRAL DENSITY FOR S =3

We wish to evaluate the spectral density of
(S¢(0) S,(t)),, for iodine (S=32) in the presence of
Zeeman as well as quadrupole interactions. We
neglect the dipolar interactions and divide the total
Hamiltonian

5C=GCZ +JCQ(t)+SCD (Bl)
into a time-independent average part
¥Co=3Cz + <3C0(t)>av ’ (BZ)

which determines the eigenstates of the system,
and into a time-dependent fluctuating part

AJCC?I(t)::}CQ(t) - (Z}CQ(t))av’ (B3)

which is responsible for the transitions between the
eigenstates |+1), 1+2), and [+3) of 3G. In view
of the fact that in the presence of quadrupole in-
teractions adjacent energy levels are nonequidistant,
the system can not be described by a spin tempera-
ture and the approach of the magnetization towards
equilibrium is nonexponential, sothat a single spin-
lattice relaxation time T; cannot be defined for the
general case.

Introducing the departures »n - n® of the populations
of the various energy levels from their thermal
equilibrium values »° and

ny=y5-n92) = g2 —1272), (B4)
np=(ng s —n3,2) = (.32 —n2s/2), (B5)
ny= s,z —n3,2) = (572 —n"2), (B6)

as well as using the relation W,,=W,_, for the tran-
sition probabilities, we can write the kinetic equa-
tions as

dngy

2 Wss2,1/2m1+ Ws2,3/2m2 = Wsy2,3/2+ Ws/2,1/2)n3,

N (B7)

n

Tta_ =(Wy/2,172= Ws/2,-1/2) 11

= (Ws/2,372+ Wayz, 172+ Wasa, 172)M2

+Ws;z,1/2n3. (B8)

dny _ !

P (Ws2,172+ Wsy2,172+ Wayz,.172 +2Wyyz, 1) M1

+(Wsy2,172= Wasz,-172)n2+ Ws /3, 1/2m3.  (B9)
We arelooking for solutions of the form

ni=a;Aexp(- t/71)+B; Bexp(—1t/7,)

+'Y£ C exp(— t/Ts), (BIO)

where 77, 73!, and 73' are eigenvalues of the secu-
lar determinant which corresponds to the above
system [(B3), (B10)], a,, B;, ¥; (=1, 2, 3)areknown
functions of the transition probabilities W,,, and
A, B, C are constants which have to be determined
from the initial conditions.

Expressing S,(¢) in terms of n;,

Se(t)= &S, |5yni@)+ E|S.| Dnst) + (3| S.] 2 ns),
(B11)

and averaging over all possible initial states, we
obtain

(S,(0) S,(£))ay=3S(S+1) i a;et’, (B12)
i=1

where a,, a,, and a; are determined from the six
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conditions: {((n;)?)=3%, (nin;)=0.

The transition probabilities W,, can be obtained
by standard first-order perturbation theory as
long as W,, 7<<1, where 7 is the correlation time
for the fluctuations in AJCqy,(t). We have

W= 11 €1 (n| 8360 00| ) | 5o ) ety

(B13)
where AJCq,(¢) is given by (4. 25) and

Bw = (m|3co| m) — (m +k|3co|m +F). (B14)

For the case
<3C0)u > JCZ ’

which seems to be realized both in Ag,H3lOg and in
(NH,),H3IOg in the ordered phase, the evaluation of
(8,(0) S, ()., is particularly simple as spins are
quantized along the Z principal axis of the EFG ten-
sor. From the nature of the EFG-tensor fluctua-
tions in (NH,),HgIOg in the first approximation, as
the eigenframe of the EFG tensor for three-quarters
of the iodine sites is only slightly rotated towards
the crystal frame, it follows that the only non-
vanishing transition probabilities are

Ws 2, 172=2 V10 (/7% J® (w,) (B15)
and
Ws/z,.172=6V2 (E*/1?) JP(wy), (B16)

where J¥(w) is given by (5. 3).
For this case we obtain for the quantities occur-
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ing in expression (B12) the following values:
a1=1. 91, a2=—0.91, a3=0; (B17)
-1 2 /2y (2)
1=1.2(E*/n% J2(0

75t =22.5 (B%/r%) J®(0), 73'=0,

so that to a very good approximation the spectral
density of (S,(0)S,(¢))., can be described by an ef-
fective iodine-spin-lattice relaxation time T,

< S(S+1 T
. u
where for w Ty; 51, (B19)
a=1.5, (B20)
Ty=1.077,. (B21)

For the case
<3C0>nv < JCZ ’

which for both crystals seems to be a rough ap-
proximation to the true situation above T,

the tensor V(¢) has to be transformed to the mag-
netic field fixed frame of reference as the spins
are quantized along H,. All transition probabilities
thus depend on the angle between H, and the princi-
pal-axes system of the EFG tensor. For a poly-
crystalline sample one can nevertheless approxi-
mate the spectral density of the autocorrelation
function of S, by expression (B19) where a=~1.2 and
Ty, [given by (5. 7)] have been determined using a
computer.
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