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Elastic-Surface-Wave Scattering from Point-Mass Defects in a Solid Surface
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Scattering of elastic surface waves from static mass defects in a solid surface is investigated
by means of field-theoretical scattering theory. A11 modes of elastic surface waves construct-
ing an orthonormal complete set are involved to calculate the scattering cross sections as
functions of frequency for incident Rayleigh-mode waves. It is shown that those cross sections
except c~ ss reveal the characteristic resonance structure in the frequency region u& ~ (0.5-
4.0) x 10 3 sec+. The author also firids that the rescattering effects significantly enhance the
scattering into other Rayleigh-mode waves.

I. INTRODUCTION

Recently, the quantum of el.astic surface waves
has become the subject of considerable interest in
understanding the tx ansport properties of electrons
in the semiconductor inversion layer. Quantiza-
tion of elastic surface waves was completed by
Ezawa, mho constructed an orthogonal complete
set of the eigenmodes of elastic waves in a half-
space mith a stress-free plane boundary. The
real surface of the solids, however, is rather
rough, so that elastic surface waves will be scat-
tered by the surface irregularities considerably.
Therefore, it wouM be of interest to investigate
hom the elastic surface maves are scattered by
mass defects localized in the solid surface. Scat-
tering of Hayleigh waves by surface-mass defects
has already been discussed by Steg and Kl.emens,
who shomed, using the perturbative approximation,
that the scattering varies as the fifth power of in-
cident frequency.

It is mell known that there exists typical resonant
scattering of lattice waves by point defects in crys-
tals and that no perturbative approach could re-
produce such characteristic behavior of scattering.
Many authors4 have investigated these resonances
essentially in terms of the lattice-Green's-function
method and it has been claxified that it is impor-
tant to take into account the higher-order effect of
phonon scattering with the point defects. In the
presence of the surface boundary, me may also an-
ticipate the resonance seatteriag of elastic surface
waves by point defects localized in the solid sur-
face and we therefore have to take into account the
higher-order rescattering effects in calculating
the elastie-surface-mave scattering amplitudes.
The presence of the surface boundary, however,
seems to make it somewhat difficult to obtain the
scattering amplitude by means of tQe lattice-
Green's-function method.

In'this connection, the present authore'7 recently
proposed an alternative approach to the calculation
of the elastic-surface-wave scattering amplitude

from the static mass defect, which mas originally
developed by Chew and Low for meson scattering
by a static source. In a px'evious paper, where
we took into account only two modes (the Hayleigh
mode and the mode with total reflection) among
five modes forming an orthogonal complete set of
the eigenmodes, it has been shown that the char-
acteristic resonant structure appears in the scat-
tex ing cross sections as expected.

In this paper, me generalize this approach to in-
clude all of the five modes mhich form an orthog-
onal complete set of the eigenmodes of elastic
surface waves. Representations for the quantum
of elastic surface waves are explicitly given inSec.
II by following Ezama's mork, while in Sec. III the
integral equations for the scattering amplitudes
are constructed by means of field-theoretical scat-
tering theory. In Sec. IV, me calculate the scat-
tering cross sections by introducing the approxi-
mations needed to linearize the integral equations
for scattering amplitudes. Results and discussions
are given in Sec. V. Throughout this paper, a
system of units in which @=I is used.

We assume that the crystal can be approximated
by an isotropic elastic continuum and that it oc-
cupies the half-space z ~ 0, with a stress-free plane
boundary at z=0. We can expand, as in the bulk-
phonon case, the displacement vector u(r, f) at a
point r= (p, s) and a time f in terms of eigenmodes,

u(r, t)=P 1/(stt p(o )' [a u' '(s)e'"' '"&'

tnt'&g(&) s &~4~t~~t]-(2.l)

where 8 represents a set of three quantum numbers,
fT being the wave vector in the x-y plane, e the
propagation velocity in the x-y plane (c = eq/1 xl),
and m labeling the five eigenmodes of elastic waves
in a half-space; that is Z= (ic, c, m}. p is the den-
sity of crystal and a& and g~~ are the annihilation
and creation operators of the J-mode quantum of

1433



TE TSURO SAKUMA

elastic surface maves obeying the ordinary com-
mutation relation of the Bose type:

(2. 2)

p is the coordinate vector in the x-y plane.
The five eigenmodes of elastic maves in a half-

space, which are denoted by the symbol m, will
be shown below .

A. Rayleigh Mode (m =R)

The Bayleigh mode is a representative surface
mode whose amplitude decreases exponentially mith
the distance from the surface. In this mode, ve-
locity c takes only one value c„which is given as
the solution of the folloming equation:

4[{1—(c„/c,)']0 —(cz/c, )')1'"= [2 —(ca/ci)']',
(2. 2)

mhere c, and c, are, respectively, the transverse
and longitudinal sound velocities in bulk crystals:
E(I. (2. 3) is known to have a single positive root
which is slightly smaller than c,. The dispersion
relation gives ~~ =c„K. Then me have the follow-
ing mave functions for the Hayleigh mode;

e(e'(e) e~
)

e""' e "). K K |~/2 2y
If') 1+ rr'

2yg~(s)(z) i ~ ewe p ())(+
~

(2 4)K 1+ i}

~i/8 2u(z ) (z) X) 1+ /r'

=tl- {../~)'1'", n=tl - (../. ,)'1'", {2.5)

ui')(z) = ~ (e-i5)(I @&id')4' P /8

+i(/ "(e-'"'+ i e"-))
1/R

(&-ines @&i()se)
4~C

(pl /2(e-ee i ele
))

1 /8
(a)( ) I

+ g /8(&-l()ac+ g &lo)(s)(4'
(e-ee i ele

))pl /I (2. 9)

mhere

(I= [(c/c, )' - ll'/', L, =D +i&,

~ (P-I)'-4{}P
(Pz-I) +45P

(2. 10)

4P(P'- 1)
(pz —1) +4iap

C. Mixed Pressure-Shear-Wave Modes (m = +)

These modes consist of pressure wave (P mode)
and shear wave with vertical polarization (SV
mode), which interact with each other through the
surface. A proper combination of these modes
mill give two orthogonal eigenmodes; that is,
m= +. In these modes, c takes the continuous
values greater than c&, and me have for the mixed
P-SV modes,

ff = (y- n)(y- n-2~')/»n'. {2.6)
and

8. Mode mth Total Reflection (m = T)

This is the mode with longitudinal and transverse
waves. The longitudinal part is localized in the
surface as in the Hayleigh mode. In this mode, c
takes the continuous values between ct and c„and
me have for the mode with total reflection,

. K K [fe Z-eleg + P(Z-il))es+ g Zil)se)]
K 2' P

uz(r'{z) = i ~ [g Z-ear+ P(&-il)eec+g &i())(a)]2' P (2. 7)
f/t,

u,'r'(z) =: [ —ac e + i{ '~see" )1, -
2wcP

where

o =[1—(c/ci)']'/z, P=t{clc,F -11'",
(2 8)

(P'- I)' —4iaP
(P —I) +4io.p

4&&P (P' I)-
(P'- I)'+4&P '

D. Shear Vfave mth Horizontal Polarization Mode (m =SH)

yg K 2CK
u,""'(z)= -~, cosP)iz,

K 'ITCH P

2cKuz(zz'(z) =~, cosP)(z,
K

%CLAP

u' '{z)= 0

(2. 11)

It has been shown by Ezama that the above-men-
tioned five modes construct an orthonormal and
complete set of eigenmodes and that the definition
of the summation over 8 in (2. 1) should be

This mode is the shear wave with horizontal
polarization; that is, m= SH. In this mode, c takes
the continuous values greater than c&, and we have
for the SH mode,
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Q f(i, c, m)= fdic Q J dc f(Tr, e, m)
J' m

If we assume the crystals to be an isotropic
elastic continuum, the elastic energy of the crystal
is given by

H= p(r} ——
~

dr+ V~, (3 1)

where p{r) is the mass density and V„the harmonic
potential. We consider the point-mass defect lo-
cal, ized in the solid surface and then the mass den-
sity p(r) can be written in the following form:

p{r)= p+ p(r) —p = p+ aM5{r), (S.2)

where p is the average mass density of crystal.
Then the Hamiltonian (3.1) is split into two parts-
free Hamiltonian Ho and interaction Hamiltonian
H —of the elastic surface mave, with the point-
mass defect localized at the origin,

H=HO+H (3.3)

(S.4)

&MH'=
2 8t (3.8)

It mill be easily seen that the free Hamiltonian
Ho ean be diagonalized by inserting the eigenmode
expansion (2. 1) into (3.4):

Hp=g 54)g(ag ay+ n) . (3.8)

Similarly, we obtain the interaction Hamiltonian of
the elastic surface mave with point-mass defect
statically localized in the solid surface in terms of
annihilation and creation operators:

H'= — 5 ((o~&o~ )'"[a~a~ (u'~)(0)'u~ '(0))
8WP J Js

-~a~~. (u'~)(0) ~ u'~ '*(0))+H.c.]. (3.7)

where F indicates the region in which the integra-
tion over c must be done. The symbolic expres-
sion 5z ~. in (2. 2) should also be understood to be

5~ ~. = 5 ~ 5{x—Tc )5{c—c ) (2. 13)

when c and c belong to the continuous spectrum,
and

b ,~ = 8m m 8(& & }-8n.n (2. 14)

when either c or c belong to the discrete spectrum.

IH. FORMULATION

The total Hamiltonian has a complete set of
eigenstates {l l}„)).Among these states, we are
particularly interested in the one J-mode quantum
state produced by elastic surface waves + single-
mass defects with outgoing or incoming waves
}g~"). Thus, in complete analogy to the work by
Chem and Lom, 8 we can readily obtain the formal
solution for I )}z"}in the following form:

}e,'"}=",i e.&-ll/(H-~, +'e)l p', } C.}, (3.8)

where

(S.S)

Writing Eq. (3.8), the single-mass-defect state
} $0) has been chosen to have zero energy:

Hl )}0)=0,
Hl )}~ ') = &o~ 1 )})~ '}, etc. (3.10)

Furthermore, it mould be worthy to note that me
can obtain the following equation similarly:

a, ~ 00) = - l I /(H+ ~& )1 I)~ ~ 00) . (S.11)

We start with the following scattering matrix in
which the Z-mode quantum is scattered into the
J'-mode quantum by point-mass defect:

~z'z = ()})z' ~ 4 z (3.12}

Inserting (S. 8) into (3.12) and proceeding in the
manner of Chew and Low, we find

(3.13}

where

T~ q = (Q~ } Pg ( $0) ~ (3.14)

TnzH. z~ Tnz'H. z
QP~ + COJ~ QP~ —QPJ s —g &

(3. 17)

In the energy shell this is the conventional seattex-
ing amplitude Here one might notice that VJ is
equal to neither VJ nor —VJ and, consequently,
another independent transition amplitude RJ .J must
be defined:

(S. iS)

Diagrams for the amplitudes TJ.J and RJ.J are
shown in Fig. 1.

We now insert (S.8) into (S.14) and (3.15) and,
using the completeness condition, introduce the
complete set of eigenstates } )}„''). The index n
indicates the quantum state of elastic surface waves
as well as the number present. Then the equations
for the two independent amplitudes TJ.J and RJ.J
are given by

Zr ZB p H.*EH z' Tnt'1"nd"

QP~+ 40Js QP~ —COJi —g&

(3.16)
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where

H~ ~ =(ga~ta~, Fg J~gp)

,J
/

/

/
/

If we assume that the emission probabilities of
more than one quantum of elastic surface waves
from static-mass defects are small compared with
that of one quantum, then the contributions of
multiquantum states to the integral equations (3.16)
and (3.17) may be neglected. It is possible, in
principle, to estimate the contributions of more
than one quantum-intermediate state by solving the
similar integral equations for amplitude-amplifying
the elastic surface waves simultaneously. This
will, however, be reserved as a future problem:

(PLg r gBg g ~ g g//~t g g //g
rn

+
g I ~ ( Q)g/ ~ + Q)g/ QPg // QPg/ —g~ )

(3. 19a)

I
I
I /I /

/
//

/

/

/ /

iP

J/

/

/
/

FIG. 2. Graphical schemes for the simultaneous inte-
gral equations (3.19a) and (3.19b). The open and shaded
circles refer to the transition amplitudes R~/~ and Tz.q,
respectively. The solid circle stands for the amplitude
in the Born approximation.

R~.~, it is difficult to find an exact solution. There-
fore we introduce some approximations which
maintain the essential features of the amplitudes
in order to simplify the equations and see whether
or not the solution has the resonance structure.
First, we may safely neglect the first term in the
large parentheses of the right-hand side, because
the energy denominator of that term does not have
zero. Consequently, we need not solve the integral
equation for R~.~ and need only consider the follow-
ing integral equation relevant to the scattering
amplitude T~.~:

i(3. 19b)

Equations (3.19a) and (3. 19b) are the so-called
multichannel self-consistent bootstrap equations
used to determine the scattering amplitudes and
are illustrated graphically in Fig. 2.

IV. SCATTERING AMPLITUDES AND CROSS SECTIONS

Since Eqs. (3.19a) and (3.19b) are the simul-
taneous nonlinear integral equations for T~.~ and

Ty Il g i Tg 0 0g.
Qpg / / —(dg / —g ~ (4. 1)

~i"gR gs&z& TJ R, )-~Rz'z = ~i'z +
QPg» + COg/ (Og» —CO ~ —g&

II
I

I
I

I
I

I ~lg

Second, as mentioned in Sec. I, it is essential to
take into account the higher-order rescattering ef-
fect in calculating the scattering amplitude. We
therefore introduce the second approximation,
which replaces one of the scattering amplitudes in
the integral with the amplitude in the Born approxi-
mation:

Tz 9 J~ Tg»z
sT J' Z'J'

(gg // 4g)~ / —gE
(4. 2)

(a) (b)
FIG. 1. Diagrams (a) and (b) illustrating Tz.z and

Rq ~, respectively. The solid line refers to mass defect
and the dashed line to surfon. The shaded circle repre-
sents the complete physical interaction.

This approximation allows the amplitude to include
all orders of rescattering effects, as illustrated
in Fig. 3. Furthermore, it has already been ascer-
tained that this approximation gives a qualitatively
correct scattering amplitude in the case of meson
scattering by a static source.

Then, the solution of multichannel integral equa-
tions (4. 2) can easily be obtained by the standard
method and we have the fol, lowing expressions for
the scattering amplitudes of the Rayleigh-mode
incident wave:
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II
II

I
I

( +g

I
I

I

N &~ ~& =2(1 —b ) .

For the process

R+ 4M SH+ LM,

we have

(4. 10)

(4. 11)

IIIIII
&[ +

\

\

;++

rrrr
Ig

I

if'
I

~ ~ ~ ~ ~+

FIG. 3. Graphical schemes for the approximated equa-
tion (4.2). The shaded circle refers to the physical
scattering amplitude T~ q. The solid circle stands for
the amplitude in the Born approximation.

N'~ ~& =2(1 —b)(1 —c),
N't~'~)

(4. 12)

(4. ia}

d = FLf(x),

where

a, b, c, and d are functions of incident frequency
and are given in the following:

a=FD, f(x}, a =FDzf(x),

b=FC, f(x), b =FCgf{x),

c=FG,f(x), c =FG~f(x),

2
~

J'J&
)1/2 P &Z&(0} &Z'&q(p)

(27lP (Cg )

+ &&&&&(p)~(z& g(p& (4. 3)

g $ /1 xi
f(x) = -'+ —'x+ x + x in

I& )+i«x3,

D = (1 —a )(1 —b )(1 —c )+ 4c (1 —a )(1 —b )

+ 2a (1 —b )(1 —c )+ 2b (1 —a )(1 —c ) .
For the scattering process

R+ 4M R+ 4M,
we have

(4. 5)

N'~ ~&=1 —$(b+d) —5(c —bd)+7c(b+d) —9bcd,

(4. 6)

N '~ ~' = 1 —Sb —5c + vb c

For the process

R+ hM T+ hM,

we have

N' ~ ~'= 2(1 —c)(1—d),
N'&"'= 2(i —c') .

(4. 7)

(4. 8)

where D, D, N ~ ~&, and N &~ ~& will be given be-
low:

D = (1 —a)(1 —b)(l —c)(1+d)+ 4c(1 —a)(1 —b)(l —d)

+ 2a(1 —b)(l —c)(1—d)+ 2b(1 —a)(1 —c)(1—d),
(4 4)

x= (d/(d~

w is the incident wave frequency of the Rayleigh
mode and cu the maximum frequency correspond-
ing to the Debye frequency in the bulk-phonon case.
C&, C» D» D„G„G„andL are some dimen-
sionless constants which depend upon c&,ct, and

Cg:

P(P' 1}'-
2 .~ c [(P~-1)4+16&PP 1

t
&&&'P(P'+1)*

8 c&&
~

c
c4[(PR 1)4+ 16aIPl]

Dj.= 4K
1 —

1

2
(4. 14)

c "dc 1 (P l'~'R
G, = ~ I, ~ —(1-A}+p{1+A)+2)-

I«~]
e gg

C dC 1 g ).1/2
Ga= ~ '~ ~ 5(1+A}+—{1—A)+2 —

~

B
p&

c&&
~

dc

For the process

R+bM (+)+»M, (4. 9)
The scattering cross section for the J-mode to

that of the J -mode wave is given by

we have

N ~ ~ ' = 2(1 —b) (1 —d),
27/ I

g = p (Kg Kg)l Tg gl
V

(4. 15)
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where the prime over g means that summation over
mode index m is not to be taken. Inserting the
explicit expression for amplitude (4. 3) into (4. 15),
we obtain the following expressions for various
cross sections:

OR ~R 2D) F X2 2 5 CR

~m

[QRR&~s (D /D ) [N' I&

(4. 16)

5 CRt
m &

IN' "'
I

—'(CsD /C, D, ) IN ' "'I
JD'I2 t (4. 17)

5 cR
os &, D&H&F -—x

M

2' DqHg )N ) 4 18
fDt2 lD'l2 t

H, = ~
t(

dc —
4 5 ~ (1+A)+

g&&
B

~ cl

Frequency-dependent parts in the large paren-.
theses on the right-hand side of Eqs. (4. 16)-(4.20)
represent the higher-order rescattering effect of
elastic surface waves with static-mass defect and
thus it is seen that scattering in lowest-order per-
turbation theory is proportional to (&M)s~s, as pre-
dicted by Steg and Klemens. 3

V. RESULTS AND DISCUSSIONS

Now, in order to see an actual frequency depen-
dence of the cross sections (4. 16)-(4.20), we take,
for example, the following values of parameters
for silicon:

p = 2. 5 g cm s, c„=4. 9x10' cm sec ',
c, = 5. 3 x10' cm sec ', c, = 9. 5&10' cm sec ' .

In this case, the dimensionless constants defined
in (4. 14) and (4. 21) give the following numerical

5 CR
gR g~

——D(H2F
m

I N '
I
s

(DsH&/D&Hs) I
N' '"

I

(QHB& [so„,„=2D, I,F'x' ", , (4. 20)
+m

where H„H2, and H, are also dimensionless con-
stants depending on c&, cl, and cR.

H, = ~
~

dc ~ 5&gs (1 —A)+ P'~ B
~ cl

c P 1 2

Hs —— dc —
4 ~(s B+P (1+A ), (4. 21)

cl

values:

Ct = 0.0361, C2= 0.1981,
Dq = 0. 1048, D2 = 0.4639,

Gy = 0, 0796 G2 = 0.0618

L = 0, 3235 Hy = 0, 0401

K2 = Q, 3751
& Hg =0, 0865

As for the value of maximum frequency ~, we as-
sume two different values:

= 0.75x10 sec

~ =1.pxlp'4 sec ' .
(5. 2a)

(5. 2b)

R1 os-2'/oR-R

fts= &s-sv/os-s, H4 = os-ss/os-s

The partition ratios A& through R4 are illustrated
in Figs. 5(a) and 5(b) together with ratios in the
Born approximation as functions of incident fre-
quency.

It is readily seen in Eqs. (4. 16)-(4.20) that the
partition ratios in the Born approximation are fre-

Using the above numerical values, we show in
Figs. 4(a) and 4(b) the scattering cross sections
as functions of incident wave frequency together
with the cross sections in the Born approximation.

In Fig. 4(a), in which &o is assumed to be 0. 75
X10' sec ', the cross sections are illustrated for
the value of mass difference hM= —12m, where m
is the neutron mass. We have typical resonance
scattering for all the cross sections at resonance
frequency &u„—0. 2x10'4 sec ', except for the cross
section OR ~~. The numerical value of OR„~~is
too small to write in the figure. In case (5. 2a)
there appears typical resonance structure in the
cross sections except in OR» for the range of mass
difference 9m & - 4M & 17m and resonance frequency
co„is in the region Q. 06' lp sec ' co„-0.3
xl0'4 sec '. In Fig. 4(b), where &u is assumed to
be 10" sec ', the cross sections behave in quite a
similar way. The cross sections for the value of
mass difference 4M = —6m are illustrated and we
find similar resonance structure in the cross sec-
tions at ~„=Q. 16&&10"sec ', except in the cross
section cd». For this value of maximum fre-
quency, we have a resonance structure for the range
of mass difference 4m & —4M &7m and co„is in the
region 0.09x10' sec ' co„p.35&10' sec '.

In both cases (5. 2a) and (5.2b), it should be noted
that the cross section OR„„is predominantly en-
hanced and this result is quite plausible because
the mass defect has been assumed to be localized
in the solid surface. To clarify this situation of
enhancement, it would be convenient to define the
partition ratio as follows:
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FIG. 4. Scattering cross sections as a function of fre-

quency in the unit u~. (a) ~~=0.75x10' sec ~ (~=
—12m); (b)(v~=1. 0X 10 sec ' Qglf= —6m). m is the neu-
tron mass. The dashed lines refer to cross sections
in the Born approximation.

FIG. 5. Partition ratio as a function of frequency in
the unit +@. (a) m~=0. 75X 10 sec ' Q3f=-&2m); (b) ~
=1.0x 10 sec ' QDf= —6m).
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quency independent and take followirg values:

Rg = 1.66, Ra = 0.75,

R3 = 0. 96, R4 = 1.14,

where superscript B refers to the Born approxima-
tion. If, on the other hand, we take into account
the higher-order rescattering effects, the partition
ratios decrease considerably and give the values
rather smaller than unity, as is seen in Figs. 5(a)
and 5(b). These characteristic results are com-
pletely consistent with the results obtained in Ref.
7, in which only two modes, R and T, were in-
volved. Moreover, it is noteworthy that there ap-
pears no resonance in the scattering process

R+ hM SH+ 4M.
In conclusion, we have investigated the scatter-

ing of elastic surface waves from static point-mass
defect localized in the solid surface by solving ap-
proximately the so-called Chew-Low equation.
We would like to emphasize the following two points.
First, resonance structure appears in all the cross
sections but 0„„~~for a static surface defect of
lighter mass than that of the host atoms. Second,
the inclusion of the rescattering effects of elastic
surface waves with mass defect appreciably en-
hances the scattering into other Rayleigh-mode
waves.

The numerical calculations were performed using
a FACOM 230-60 computer at the Computer Center
of Hokkaido University.
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The basis hybrid orbitals of As,S, and As,Se, for the molecular-orbital calculation of the layer molecules
have been investigated. One feature distinct from and one similar to amorphous Se is observed. The former
is the inequivalence of the nearest-neighbor cr bonds, which can be interpreted as a reason for low carrier
mobilities in these solids. The similar feature is the locations of the bonding and the lone-pair states. As in

Se, these are intermixed; thus band-gap photons can break o. bonds, which accounts for the
photodissociation and photocrystallization of chalcogenide glasses.

I. INTRODUCTION

In a recent paper' the electronic states of a mo-
lecular solid —amorphous selenium —has been suc-
cessfully interpreted by molecular-orbital (MO)
theory. In that paper, the calculation of the elec-
tronic states of the solid is carried out in three
steps. The first step is the identification of the
building block, or the basis orbitals for the molec-
ular states. The second step is the calculation of
the molecular orbitals by a semiempirical (extend-

ed Hueckel) method, ~ including as many units as
the convergence requires. Finally, the electronic
density of states in the solid is calculated by as-
suming a Gaussian distribution of states centered
at the molecular states. It is found that the first
step has a determinate effect on the density of
states in the solids, e.g. , only when the bonding
and antibonding orbitals between two neighboring
atoms, and the lone-pair hybrid orbitals are chosen
as bases for the MO calculations, the calculated
density of states agrees with that obtained from


