loo

o __1 (8 2
o (i 7 BTGt

+%?n,h‘c, (-1, 7 hf)). (A8)

The T'(n, x) are the incomplete I functions, the
sum over A\, is on a direct-space planar hexago-
nal lattice, and 0y, ; are magnitudes of vectors from
the origin to the points of that lattice. Note that in
Eq. (A7) the Ay =1;=0 term is excluded from the
sum whereas it is included in Eq. (A8). Both Eq.
(A7) and Eq. (A8) are independent of the axial ra-
tio a and are therefore simply numbers whose val-
ue need be calculated only once. Since Eq. (A7)
also occurs for hcp lattices, de Wette® has calcu-
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lated this number. We have chosen to recalculate
it as a check. Terms in the direct lattice sum
were included up to |o); | =10, and the number of
terms in the sum were reduced by taking advantage
of the threefold symmetry in the hexagonal lattice.
The value obtained was a3S%,= - 11, 034176, which
is to be compared with de Wette’s value® of
-11.0341754. Similarly, the value obtained for
Eq. (A8) wasa s? 1o=-23.150541. The remain-
ing sums, S; 1g Soao’ and Sx 11 were computed for
a range of values in @ and mserted in Eqs. (A2a)
and (A2b) to yield the curves described in the text.
Table II lists some of the results of the calcula-
tions. In all cases where possible, comparison of
these results with those of Ref. 6 was excellent.
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Analysis of the Lattice Specific Heat of Mo:Re Alloy

M. D. Tiwari and Bal K. Agrawal
Department of Physics, University of Allahabad, Allahabad 211002, India

The low-temperature lattice specific heat of a Mo-

5-at.%-Re alldy has been successfully explained on

the basis of a Green’s-function theory. We take into account the effects due to change in mass at the
substitutional impurity site and also the changes in the nearest-neighbor central and noncentral force
constants for the impurity-host-crystal interaction. The enhanced specific heat is dominated by
force-constant changes and very much sensitive to these changes. It is observed that the contribution of
the even parity 4, E,, F,,, and F,, modes are very significant and, in fact, dominate over that of
F,, symmetry modes in the low-temperature side of the specific-heat curve. However, at higher
temperatures more resonance modes appearing in F,, irreducible representation are excited and their
contribution dominates over all others. The present values of the defect parameters are found to be
quite similar to those obtained earlier by elastic-constant data. '

I. INTRODUCTION

The effects of impurities on the vibrational prop-
erties of solids has been studied by performing
different types of experiments,! e.g., measure-
ment of lattice specific heat,?™* elastic constants,®
infrared absorption,® inelastic neutron scattering,”
etc. Usually a localized perturbation model for the

.defect is assumed to explain these experiments. It
is therefore of much interest to determine the de-
fect parameters for a particular host-impurity sys-

tem which should be able to explain two or more of
such experiments. In an earlier work, the elastic
constants of Mo: Re alloys measured by Davidson
and Brotzen® were analyzed by Kesharwani and
Agrawal® to determine the parameters of a nearest-
neighbor-defect model for a rhenium impurity _
atom in a molybdenum matrix. In thepresent pa-
per we discuss the lattice-specific-heat measure-
ments made by Morin and Maital® on the same
system, i.e., Mo: Re (5-at % Re) alloy.

In the specific-heat measurements it is difficult
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to detect the occurrence of localized modes be-
cause they are not excited at low temperatures.
But the low-frequency resonance mode gives rise
to an appreciable contribution to the specific heat
at low enough temperatures. In an earlier com-
munication!! the present authors have theoretically
studied the appearance of the resonance mode due
to heavy silver impurity atoms in aluminum crys-
tals and have shown the importance of force-con-
stant changes in understanding the experimental
data.

A brief account of the theory of the lattice spe-
cific heat in an imperfect crystal is given in Sec.
I A. The localized perturbation model is described
in Sec. IB. The Green’s functions and the en-
hanced specific heat are computed in Secs. IITA
and III B, respectively. The results are sum-
marized in Sec. IV.

II. THEORY
A. Lattice Specific Heat

The lattice specific heat of a solid at tempera-
ture T containing N atoms per gram mole is given

byll

_ n® ® 2 2 hw
CL(T)—EB—TZJ; w®N(w)esch’ 2k T do, (1)

where 7 is Planck’s constant, %, is Boltzmann’s
constant, w is the phonon frequency, and N(w)dw
is the number of phonon states lying in the inter-
val w to w+dw in the limit dw- 0.

The phonon density of states is changed by the
introduction of defects. For a symmetric pertur-
bation this change in density of states can be ex-
pressed as the sum of contributions from the vari-
ous irreducible representations occurring in the
problem in hand. We may, therefore, write for
the change at specific heat

AC(T)=23 AcCy(D), (2)

where ACY%(7) is the contribution from the irre-
ducible representation v.

The problem is much simplified if we introduce
phase shifts 5, which are defined by

ImD,( 2)

“ReD,(z) ’ ®)

tang, =
where D,(2)= |1+g,(2)P,(w?)! is the resonance de-
nominator in the irreducible representation v. I
is the unit matrix, P,(w?) and g,(Z) are the per-
turbation and Green’s-function matrices projected
onto the subspace of the irreducible representation
v, and z is the complex squared frequency given
as z=w?+2iwt in the limit £~ 0. For a crystal
containing a low concentration of randomly dis-
tributed impurities one may determine the change
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in specific heat due to a single defect and multiply
it by the number of defects present in the solid.

After integrating Eq. (1) once by parts and in-
troducing the phase shifts we obtain

z L3
AC(T=-2 z—kﬂf—lﬂi I 5,w csch?Bw
v 0

X (2 = Bw cothBw) dw , (4)

where B=7/2kyT and c is the fractional impurity
concentration.

B. Perturbation Model

The crystal structures of molybdenum and its
alloys with rhenium atoms are body-centered cubic
containing one atom per unit cell. The point-group
symmetry of a substitutional impurity is 0,. We
assume a nearest-neighbor perturbation model in
which we take into account the changes in the cen-
tral and noncentral interactions along with the
mass change at the impurity site. The matrix
P(w?) is of dimension 27x27. The resonance de-
nominator has been analyzed in an earlier paper?
for a more general lattice, i.e., CsCl structure.
The irreducible representations in the present
problem are Fy,, F,,, Fy, Fy,, E,, E,, Ay, and
Az,. For a monatomic bcc lattice the resonance
denominators for the various irreducible represen-
tations are given by

Dy, (2) = Dy(DsDy — DgDsg) = Dy(DyDy — DgDy)
+Dy(DyDg—-DsD;) ,  (5)

with

Dy=1-€w’gy+8A'(gy - g,) - 16B'gy

Dp=(V8)[- €w’g, + A'(8gz — 1) - (V2)13B']

Dy=4[- €w’gr+A'(8gy—x3/V2) - B'x,) ,

Dy=~(V8)[A'(g1-g2) ~2B'gy],

Ds=1+A"(x; - 8g;) + (V2)B'xs

Dg=A[%3-8(V2)gs]+2B x5 ,

Dy=4[B'(g;~-g1)+C'gs],

Dg=(V2)B'(x; —8g3) + C'xg ,

Dy=1+(V2)B' [x5 - 8(V2)gs]+ C'xz ,

where

N =81+284+ 85+ &1+ 8 +8&10 5
X2=81—85+88+81+&88 Lo »

%3=-(V2)(gg~g9) ,

A=30+2)), B'=3(-1)), C'=%2r+\);
Dy, (2)=1+)\"(g1- g5~ gs+ 87~ L8~ £0) » (8)
Dp, (2)=1+ N(g1-g5s-gs-g1+8a+8) ()
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Dpy(2)=1+[ gk, 30+ 2X) +2(/2) (L= X)gls,
+g 8, He )+ (g, 85, — (€5,)]

(8)
with

By, =81+ 284+ 85~ &1~ 80— 2800 »

gzzrzgﬁgl —85+t86~ 81— 88+ 8>

gty == (V2) (gs+g9) ;

Dg (2)=1+X"(g1 284+ 85~ 8s— &1+ &s — Lo+ 2810) »

(9)

Dy (2)=1+X\ (g1~ 284+ 85~ go+ 81~ Lo+ 8o — 2810) »
(10)
Dy (2) =1+ Mgy — 284+ g5 +285 — g1~ 285~ 89+ 2810) ,
(11)

and

Dy, (2)=1+X(g1 ~ 284+ g5+ 284+ g1+ 285+ 85 — 281?) -)
12

Here A (\') is the change in mass-reduced near-

est-neighbor central (noncentral) force constant and

€=(M'-M)/M is the change in mass at impurity
site, where M and M’ denote the masses of the
host and impurity atoms, respectively.

The various Green’s functions are given by

g,,(z)=Nl i 2z —‘g——J (/) ) (13)
s=1 & wi’, sT R

where p has values from 1 to 10, and w; ; is the
phonon frequency corresponding to the wave vector
K in the polarization branch s. The explicit ex-
pressions for J, (k/s) required for the ten Green’s
functions have been given in Ref. 9.

III. NUMERICAL COMPUTATIONS AND RESULTS
A. Green’s Functions

The lattice dynamics of molybdenum in-Krebs’s
model®® has been discussed by Kesharwani and
Agrawal.’ The eigenfrequencies and eigenvectors
were determined for a uniformly distributed 8000
points in the first Brillouin zone. The calculated
dispersion curves in the main symmetry direc-
tions were seen to be in good agreement with the
experimental results of Woods and Chen."* The
Green’s functions were calculated by a staggered
bin averaging procedure as described in Ref. 11.
The pertinent integrations were performed after
dividing the phonon frequency range into 60 equal
bins, each of width 0. 25 in the units of bin width.

B. Enhanced Specific Heat

At low temperatures (below 20 °K) the specific
heats of molybdenum and its alloy with rhenium
(5 at.%) have been measured by Morin and Maita.!®

o

ACL(mJ/mole °K) —=

T(°K) —=

FIG. 1. Enhanced lattice specific heat in Mo—5-at. %-
Re alloy. Experimental points (measured in 10% sec™):
==y A=0, A'=0; =—=e—, A==1,0, A/=0; —**—, A
=1.7, A’=—0.8; —, A=1.65, A'=—0.8, —-—, A=1,60
A'=-0,8; —X~—, A=1,65, A'=-1,0,

The reliability of their result is better than +5%."
They have observed that the total specific heat of
these systems may well be described by a 7-depen-
dent electronic contribution and a T’-dependent
lattice contribution. An enhancement of about 16%
in lattice specific heat due to a concentration of 5-
at.% Re of impurity atoms in molybdenum has been
observed throughout the studied temperature range.
The change in lattice specific heat has been cal-
culated by using Eq. (4), and the results are com-
pared with the experimental data in Fig. 1. The
contribution of mass defects to the change in mea-
sured specific heat is ~45% (see Fig. 1) and the
rest of the specific-heat change arises because of
the force-constant changes. Initially an attempt
was made to fit the experimental curve with a cen-
tral force-constant change A but was found to be
unsuccessful. The reason is that the mass change
plus the central force-constant change give rise
to essentially a T2-dependent specific heat. As
an example, we show the enhanced specific heat
with €=0.9406 and A= -1,0x10% sec? in Fig. 1.
The experimental curve was fitted by varying
both the central and the noncentral force-constant
changes X and A’. Some of the calculated curves
for different sets of the parameters (A, 1) have
been depicted in Fig. 1. The impurity-induced
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FIG. 2. Real part of the determinant appearing in the
Fy, irreducible representation for the parameters A=1. 65
x10% gec? and A’ =—0, 8x10% gec?, w,, is the maximum
frequency.

specific heat is quite sensitive to force-constant
changes. For example, a 10% variation in X\ in-
duces an average change of ~ 5% in the whole tem-
perature range of the enhanced specific heat,
whereas a 10% variation in )’ gives rise to a cor-
responding change of ~ 15%. In general, the spe-
cific heat is approximately three times more sen-
sitive to A’ than to X in the full temperature range.
The best fit has been obtained with a unique set
of parameters A=1.65%10% sec? and \'=-0.8
x10% sec"?, They produce resonances at wy,
=123 em™ and w,,=176 cm™. The real part of
the resonance denominator and the phase shifts in
the F,, irreducible representations have been plotted
in Figs. 2 and 3. The main contributions to the
specific heat come from F,,, Fy,, F,, E,, and
Ay, irreducible representations. This behavior is
quite different from that observed earlier!! in the
system Al: Ag, in which the changed specific heat
is mainly determined by F,, irreducible representa-
tions. At very low temperatures (~2 °K) the con-
tributions of the Fy,, F,, E,, and A,, symmetry
motions dominate over that of Fy, symmetry mo-

241
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FIG. 3. Phase shifts in Fy, irreducible representation
for A=1.65x10% gec™ and N’ == 0, 8x10% sec?. w,, is
the maximum frequency.
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FIG. 4. Contribution to enhanced lattice specific
heat due to Fy,, Fy,, and E, symmetry modes for A=1.65
x10% sec? and A’ =—0. 8x10%6 sec2,

tions. The contribution of F,, symmetry modes in-
creases with an increase in temperature because

of the excitation of the resonance modes and, in
fact, dominates over all the other symmetry modes
at comparatively higher temperatures. The contri-
butions of these irreducible representations are
depicted in Figs. 4 and 5.

The present values of A and A’ are very near to
A=1.648x10% sec-? and A'= — 0. 661 X 10?® sec-2 ob-
tained earlier by Kesharwani and Agrawal using
elastic-constant data. The values of the nearest-
neighbor central and noncentral force constants
and the next-nearest-neighbor central force con-
stant for pure molybdenum are 3.77, —-0.261, and
3.53%x10% sec?, respectively.

It may therefore appear that appreciable changes
in the next-nearest-neighbor force constants could
occur because of rhenium impurity atoms. How-
ever, a recent analysis!® of the elastic-constant
data of this host-impurity system based on a next-
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FIG. 5. Contribution to enhanced lattice specific heat
due to Fy, and Ay, symmetry modes for A=1. 65 x10%¢
sec™? and A’ =—0. 8 x10%¢ gec™2,



8 ANALYSIS OF THE LATTICE SPECIFIC HEAT OF Mo: Re ALLOY

nearest-neighbor (nnn) perturbation model has re-
vealed that there occur only insignificant changes
in the nnn force constants. Thus, the inclusion of
two more unknown parameters (nnn force-constant
changes) in the present theory which would further
complicate the situation does not seem to be worth-
while.

IV. CONCLUSIONS

The lattice specific heat of Mo with 5-at. %-Re
alloy in the temperature range 1-14 °K can be well
understood on the basis of a nearest-neighbor per-
turbation model, after considering changes in the
central and noncentral force constants for the im-
purity~host-crystal interaction. Above 14 °K, the
calculated specific heat does not show a 7-depen-
dent behavior. The contribution of force-constant
changes to the specific heat is seen to be quite
large, i.e., ~55% of the total enhanced specific

1401

heat. The specific heat is very sensitive to force-
constant changes, especially to the noncentral
part. The contribution of all the even-parity
modes, i.e., Ay, E,, Fy, and Fy,, are quite
large and dominate over the contribution of the odd-
parity F,, modes in the low temperature of the spe-
cific-heat curve. However, at higher tempera-
tures more resonance modes are excited and the
contribution of F;, symmetry modes dominates.
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The d bands of Zn and Cd have been unambiguously located by photoelectron spectroscopy using
40.81-eV radiation. In Zn a single peak due to the 3d ;,,5;, band of half-width 1.1 eV is found 9.5 eV
below Fermi level, while for Cd, the 4d ;,,5,, doublet is resolved at 10.2 and 11.1 eV below the Fermi
level. The relevance of these results for band-structure calculations and for the interpretation of related
optical and characteristic energy-loss experiments is discussed.

INTRODUCTION

The suitability of the helium-11 resonance line
at 40.81 eV as a probe for band-structure studies
has recently been recognized.! Evidence available
to date®?® suggests that the energy distributions of

photoelectron spectra generated by Al Ka radiation
and by 40.81-eV helium resonance radiation are
closely similar, and it is reasonable to assume
that the spectra so generated are representative of
the density of occupied states of the irradiated ma-
terials.* Without use of predispersion, the resolu-



