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Using the time-differential perturbed-angular-correlation technique, we have observed the
nuclear-electric-quadrupole interaction at Ta(482 keV) as an impurity in the (d-phase modi-
fication of Zr metal. The measured intex action frequencies for the two crystallographically
inequivalent sites are I~=280+2 MHz and vq =382+2 MHz, which correspond to electric
field gradients of I eq I =(4.58+0. 19) X10 V/cm and I eq ) =(6.24+0. 25) X10 V/cm, re-
spectively. %'e find that the ratio of field gradients is in remarkably good agreement with re-
sults of a point-ion lattice-sum calculation and the gradient magnitudes support a reduced-
valenee picture of the co structure.

INTRODUCTION

Measurements of the principal component of the
electric field gradient eq at Ta in a-phase zirco-
nium~ and titanium~ metals have been reported in
two companion papers (henceforth denoted I and II,
respectively). The a phase of these group-IVB
transition metals displays the hexagonal-close-
packed (hcp) crystal structure at normal temper-
atures and pressures. Under high hydrostatic
pressure, however, a transformation to the so-
called &-phase structure occurs in both metals. 3

As an extension of the previously reported work, *

we have undertaken the measurement of eq at Ta
ln ~-zirconium.

The w phase offers a variation in the approach
to the study of field gradients in metals which was
not available in the hcp structures. Two crystal-
lographically inequivalent atomic sites, occupied
in the ratio 2: 1, are present in the ~ structure.
It is therefore possible to determine two separate
field-gradient values in a single elemental environ-
ment and to specifically associate each value with
its corresponding lattice site by exploiting the
known 2: 1 occupancy ratio. The relative size of
eq at the two sites may be a more useful quantity
for comparison with lattice-sum calculations than
the absolute magnitude at a single site.

Crystal Structure of u Phase

The a&-phase lattice shows the C22-type hexag-
onal structure (typified by the compound AIBa)
with space group P6/mmm. s'4 This structure con-
tains three atoms yer unit cell. Referring to hex-
agonal axes (internal angle 120' in the basal plane),
one atom site (A) at the origin (0, 0, 0) has coor-
dination number 14 and two equivalent sites (B) at
(—,', —,', —,') have coordination number 11. The ideal
axial ratio (c/a) of the lattice is c/a = ~8 = 0. 612
for packing of hard spheres. Figure 1(a) gives a
view of the relative atomic positions in the unit
cell. Figures 1(b) and 1(c)present projections of
the lattice positions on the basal plane with site A
and site I3 regarded as the origin, respectively.

Previously measured lattice-constant values for
~-zirconiums are c=6.109 A and a=6. 026 A,
which yield a nearly ideal axial ratio of c/a = 0. 61V.
We emphasize here that sites of type A and B dis-
play different point symmetries (6/mmm and 6/m2,
respectively) and markedly different coordination
numbers. It might be reasonable to expect on
this basis a significant difference in the electronic
contribution to the electric field gradient at A and
B sites. Further consideration of this possibility
will be included with the discussion of the experi-
mental results.
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FIG. 1. (a) Unit cell of the ~ structure with A-type

sites at corners and B-type sites in the midplane. (b)
Projection of co-phase atom positions on the basal plane
with an A-type site at the origin of coordinates. Hexagons
and triangles refer to the hexagonal and trigonal point
symmetry at A- and B-type sites, respectively. Solid
symbols represent atoms in the plane of the origin and

open symbols represent atoms in the plane z = c/2. (c)
Same as (b) but with a B-type site at the origin.

EXPERIMENTAL TECHNIQUE

Samples of the same l-at. % Hf in Zr alloy foil
which was used in the study of n-zirconium de-
scribed in I were employed in the form of disks of
—,'- and —,'-in. diameter and 0.002-in. thickness.
These were irradiated with pile neutrons to form
the desired Hf radioactivity for the time-differ-
ential perturbed-angular-correlation (TDPAC)
measurements. A most convenient feature of the
transformation of zirconium to the ~ phase under
pressure is the metastable retention of that phase
at atmospheric pressure and room temperature.
It was thus feasible to produce the (d structure in a
separate procedure and to avoid the unfavorable
geometry and radiation scattering and absorption
introduced by mating a high-pressure device direct-
ly to the angular-correlation apparatus. Each ir-
radiated sample was placed in a pressure cell of
the Bridgman opposing-anvil type using an iso-
mica annular retention gasket and AgCl as the
pressure-transmitting medium. For all samples
save one, a pressure in excess of 100 kbar was
maintained for several hours to ensure complete
transformation and then released slowly. One
sample was brought to only 40 kbar (i.e. , below
the - 60-kbar transition pressure) in order to see

the effects of pressurization on the o. phase.
One of the transformed samples was accompanied

in the cell by an inactive sliver of the same foil
which was subsequently subjected to x-ray diffrac-
tion analysis. The x-ray results verified trans-
formation to the u phase and determined the lattice
parameters to be c=3.135+0.001 A, a= 5.042
+ 0.001 A and c/a= 0. 622. These values differ
somewhat from those of Jamieson, 3 perhaps be-
cause of the l-at. % Hf alloy used or the presence
of small amounts of other impurities (see note
added in proof).

For measurements at room temperature, sam-
ples prepared as described above were mounted on
a revolving shaft at the center of the angular-cor-
relation apparatus. The rotation of the sample
served to present an effectively cylindrically sym-
metric source to the radiation detectors. A vari-
able-temperature liquid-He-flow cryostat and a
glass helium Dewar were used at various times for
measurements below room temperature. In all
respects, the detectors, electronics and data ac-
quisition systems, and techniques were identical
to those previously described in Paper I.

The data analysis proceeded along similar lines
to that described in I; however, account had to be
taken of two distinct field gradients and therefore
two quadrupole precession frequencies correspond-
ing to sites A and B of the & phase. To accomplish
this, the function given by Eq. (4) of Paper I was
assumed to apply to each site separately. Two
such functions were added in the ratio 2: 1 to form
a function which would be fitted to the data. Only
the nuclear lifetime T„, the experimental time zero
to, and a total zero-frequency amplitude co were
common to both sites. The relative amplitudes of
the harmonic-frequency terms, the axial asym-
metry parameters, and the frequency distribution
widths were allowed to vary independently for each
site A and B.

RESULTS

A typical TDPAC spectrum is shown in Fig. 2
where it is immediately obvious that two frequen-
cies are present and that the higher frequency
makes the stronger contribution to the spectrum.
Thus we can associate the higher frequency with
site B and the lower with site A. The solid curve
in the figure is the result of least-squares fit to
the function presented in Paper I modified as de-
scribed in the preceding section. The nuclear de-
cay factor has been removed from both the data
and the fitted curve. The quadrupole frequencies
vo = e Qq/h, extracted from a weighted average of
results for three separate runs at room temperature
are vo[ 8 Ta(482 keV) in m Zr]=280+2 MHz and

vQ 382 + 2 MHz. Frequencies for sample temper-
atures other than room temperature are included
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TABLE I. Results for the quadrupole frequency v~
= e qQ/k at various temperatures.
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A failure in a thermocouple limited the accuracy of the
temperature measurement to + 20'K at 400'K.
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FIG. 2. Typical experimental time spectrum for the
TDPAC anisotropy with the nuclear decay factor removed.
The solid curve is the result of a least-squares fit as de-
scribed in the text.

400

in Fig. 3 and the tabulation of results in Table I.
In all instances for both sites A and 8 the fitted
values of the asymmetry parameter g= (V —V„„)/V„
satisfied g (0.15 and the relative frequency dis-

tribution width was 2o'/~ ~Q. 03.
The data obtained for the sample which was

raised only to 40-kbar pressure were fitted well by
a single frequency consistent with that found for
the e phase in Paper I, indicating that a transition
to the (d phase had not occurred. The only dis-
cernible effect of the applied pressure on this sam-
ple was an increase in the width of the frequency
distribution by about a factor of 2.

By inserting the value of the nuclear quadrupole
moment of the 4&2-keV state of ia~Ta (Q = 2. 53
+ 0. 10 b) into the expression for vo, we find the
values of the field gradients at Ta in (d Zr at room
temperature to be

i
eq"

i
= (4. 56+ O. 19)x 1O" V/cm'

590

P ~(MHz)

1eq 1
=(6.24+0. 25)xlo ~ V/cm

The ratio of quadrupole frequencies, which is un-
affected by the uncertainty in the nuclear quadru-
pole moment, gives Iq /q" 1=1.36+0.01. As is
evident from Fig. 3, v+ and v~ approach each
other as the temperature is raised and the gradient
ratio is therefore a weakly decreasing function of
temperature.

DISCUSSION

V (MHz)
4

270-

I

300 4000 200
T('K)

FIG. 3. Experimentally determined values of the quad-
rupole frequencies for sites A and B at various sample
temperatures. Corresponding numerical values may be
found in Table I.

Before trying to extract from the above results
information regarding the relative contributions
to I eqt of ions on lattice points and of electrons in
the metal, a calculation of the lattice contribution
is necessary. To our knowledge, no lattice-sum
calculations are available for the (d-phase struc-
ture, although such calculations have been done
for hcp lattices by de settee and general formulas
useful for lattices of arbitrary symmetry have been
presented by de bette and Sehacher. ~ Ne have
undertaken the computation of the appropriate lat-
tice sums for the ~ structure following the tech-
niques described in Befs. 6 and V. The details of
the computation are given in the Appendix. For
the axial ratio e/a = 0. 622 measured on our test
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FIG. 4. Values of the reduced fieM gradients for sites

A and B and their ratio vs the axial ratio c/a as calculated
in the Appendix for'a point-ion lattice under the assump-
tion of equal ionic charges (Z~=Z~). The dashed lines
show the precise correspondence of the measured gradi-
ent ratio to the measured axial ratio.

sample, the lattice-sum evaluation yields the re-
duced (dimensionless) gradients

a q"„,J'Z=+2. 484

(2)

a'q~s, t/Z 3 431

where a is the lattice constant in the basal plane
and Z is the ionic charge assumed to be centered
at all lattice sites. The magnitude of the ratio
qs, «/q"„« = —1.38 is in remarkably good agree-
ment with the experimental value.

To show that this agreement does not simply
arise from an insensitivity of the ratio to the
adopted value of c/a or to the assumption of equal
ionic charges at all lattice sites, the lattice sums
were evaluated for a wide range of axial ratios and
also for various values of the ratio of ionic charge
on B sites (Z~) to that on A sites (Z„). Figure 4
shows the dependence of the reduced lattice gra-
dients and their ratio on c/a under the assumption
that Z„=Z~. The figure demonstrates that the lat-
tice gradient ratio is a sensitive function of c/a
and that it is therefore unlikely that the precise

correspondence of the measured gradient ratio to
the experimentally determined value of c/a is ac-
cidental. Whereas only the magnitude of the gra-
dient ratio has been determined experimentally,
a negative sign is strongly suggested by the agree-
ment with the lattice-sum prediction.

To explore the effect of relaxing the assumption
that Z„=Zs, we plot in Fig. 5(a) the lattice-sum
results as a function of the site-8 to site-A ionic
charge ratio (Zs/Zs) for a few values of c/a around
Q. 622. As shown in this figure, the lattice gra-
dient ratio is extremely sensitive to Zs/Z„ in the
region of interest because of the vanishing of q"„«
near Zs/Z„= 1.25. The precise correspondence
of the measured gradient ratio to the charge ratio
Zs/Z„= 1.00 then lends additional support to the
notion that agreement with the lattice-sum calcula-
tion is not accidental.

It is however also evident that relaxing the as-
sumption of equal ionic charges on sites A and B
allows the possibility of agreement with a positive
gradient ratio for a charge ratio of Zs/Z„=1. 46.
The curves displayed in Fig. 5(b) show the relation
between Zs/Z„and c/a required by a given value
of q~s„gq"„«. These demonstrate that, even for
the unreasonably large uncertainty ln c/a of 1%,
knowledge of the lattice gradient ratio restricts
Zs/Z„ to two well-defined regions about l. 0 and

1.5 for negative and positive ratio values, respec-
tively. Thus, in addition to the reduced lattice
gradient values of Eq. (2) for the case q ~„J'q"„«
&0 and Z„=Zs, we should consider the following
set for the possibility q~s,«/q f«, & 0 and Zs/Z„
= 1.46:

a q"„„/Z„=—2.016

(3)

tt/Zx =

where we have chosen to normalize to the charge
at site A. It is of course quite clear from Fig.
5(a) that once the restriction Zs = Z„ is relaxed,
virtually any experimentally determined gradient
ratio could be reproduced by the lattice-sum re-
sult if an appropriate value of Zs/Z„ is assumed.
It is therefore necessary to invoke some knowledge
of the physical properties of the system to decide
which solution is most reasonable or in fact whether
it is even reasonable to expect a lattice-sum cal-
culation, which ignores local electronic effects,
to agree with experiment.

Past experience with field gradients at nuclei in
metallic environments has indicated that electron-
ic effects may cause large discrepancies between
measured and lattice-sum results even after. tak-
ing account of atomic antishielding factors. On
the other hand, since the field gradient does, in
the last analysis, arise from deviations of the lat-
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FIG. 5. (a) The ionic
charge ratio needed to yield
a given lattice gradient
ratio from the point-ion
calculation given in the
Appendix. A few choices
of the axial ratio parameter
near the measured value
are shown. (b) Using the
calculated lattice gradient
ratio as a parameter, the
dependence of assumed
ionic charge ratio on the
axial ratio is shown. The
shaded regions show the
uncertainty introduced in
Z&/Zz by arbitrarily as-
suming a 1% error in the
measured axial ratio.

tice structure from cubic symmetry, it may be
physically plausible to assume under some circum-
stances that all contributions to that gradient are
at least proportional to the lattice gradient. The
agreement of the calculated and measured gradient
ratio for the case Z„= Z~ would indicate that this
is the case for &u- Zr and that the proportionality
factors applicable to sites A and B are identical.
The choice Z„=Z~ is also supported by considering
the fact that ~- Zr is a metal with mobile conduc-
tion electrons which would redistribute themselves
in such a way as to counterbalance any tendency of
planes of A-type and 8-type ions to maintain dif-
ferent ionic charges. In fact, since the point-ion
lattice-sum calculation given in the Appendix as-
sumes a unifoyng background of electronic charge
in order to maintain over-all charge neutrality, a
spatial redistribution of the electrons lies outside
the scape of that calculation and relaxing the Z„
= Z~ condition is therefore a mathematical rather
than physical artifice. The acceptance of this ar-
gument and of the negative gradient ratio solution,
however, still rests on our belief that the agree-
ment of the gradient ratio with the lattice calcula-
tion, using the measured c/a value and the unique
condition Z„=Z~, is not due to a fortuitous com-
bination of local electronic effects unrelated to
ebs tt ~

Prior to the completion of the calculations it had
been expected, based on the recent work of Doherty
and Gibbons, that lattice-sum results would not
agree well with experiment. In Ref. 9 it was con-
cluded that in ~-Zr, fewer electrons are contrib-
uted to the conduction band by B-type sites than by
A-type sites and that the electrons retained at a
8-type site were involved in highly directional co-
valent bonding with the three near-neighbor atoms
in the same plane. They proposed that the elec-
tronic wave function describing these trigonal bonds

would be derived from the hybridization of s and d
orbitals. We had expected, therefore, that if the
Ta impurity, at which we measure the field gra-

. dients, participated in this bonding scheme through
its 5d electrons, then a large contribution to the
field gradient at a B-type site over that expected
from the lattice would be observed. This was not
borne out by our results.

The suggestion that fewer than four electrons per
atom are donated to the conduction band was sup-
ported by unpublished magnetic susceptibility mea-
surements. Jamieson, in fact, had pointed out
that if the distance of closest approach in the &
structure is inserted in a relation given by Paul-
ing between coordination number, atomic radius,
and "valence, " then a valence of Z = 3 is strongly
indicated for +-Zr. The formation of the ~ phase
in Zr-Nb alloys which would otherwise have too
great an electron-to-atom ratio is consistent with
this reduced-valence picture. By considering the
magnitudes of our measured field gradients, we
can hope to decide between Z=4 and Z =3.

In order to compare the results af Eq. (1) with
the lattice-sum calculation, we must assume a
value for the Sternheimer antishielding factor ap-
plicable to the Ta ion. Lacking precise knowledge
af the Ta charge state and the effect of the metallic
environment, we have used the value for (1 —y„)
of 62 for the Ta ' ion given by Feiock and Johnson.
Even for the free ion, this value may be 5-10%
in error and, as shown by Pelzl' for the rare
earths, may be significantly affected by metallic
surroundings. Nevertheless, the comparison of
entries in Table II, where the lattice-sum predic-
tion of Eq. (3) for Z = 3 and 4 are given along with
the values af Eq. (1), favors the valence Z=3 in
agreement with expectations. ' One might argue,
based on this evidence, that a Ta charge state
should have been assumed initially. This would



ELECTRIC FIELD GRADIENT AT Ta IN. . . III. . . 1395

I elect I

Z=3(1-y )~Ratta
Z=4

Site A

4.58+ 0.19

+5.21

+6. 94

Site B

6.24+0. 25

7.18

—9. 57

Lattice-sum results computed assuming Z~= Zz and a
Sternheimer antishielding factor of (1-& ) = 62.

imply an unpaired electron in the 5d3&z orbital of
the Ta ion. Although it has been shown" that d3&z
subshells contribute to (1 —y„) in such a way as to
reduce its value slightly, the electric field gradient
from a single 5d electron, which is of the order of
3x10'~ V/cm, would overshadow this effect. Our
measurements provide no evidence to support this
possibility.

Near perfect agreement with the measurement
could be obtained if the factor (1-y„)were reduced
by only -10%%uo for the Z =3 results of Table II. Al-
ternatively, the value of Z, the ionic charge per
atom, may be reduced to - 2. 65, since there is no
requirement that Z be integral. This value of Z
would imply a total eff ective ionic charge per unit
cell of Z&+2Z~= 8. The uncertainties in the values
of (1 -y„) and Z, however, leave their individual
determination in doubt and only the total enhance-
ment factor q, ,/(q„«/Z) = 163+ 5 can be quoted
with confidence.

To our knowledge no measurements of the lattice
constants of ~-Zr as a function of temperature are
available. The rather weak dependence of the field
gradients (cf. Fig. 3) on temperature, however,
supports the idea that contributions to eq from
electrons near the Fermi level are not significant.
The decrease of the gradient ratio with tempera-
ture when compared with Fig. 4 would indicate that
c/a increases with temperature.

SUMMARY

We have measured the electric field gradients
acting on Ta impurity nuclei at both sites in +-Zr
and have found that the ratio of the gradients is in
excellent agreement with the prediction of lattice-
sum calculations in which equal ionic charges are
assumed to reside at all Zr lattice sites. We have
rejected alternative lattice-sum results which, in
order to match experiment, require unequal
charges at the two inequivalent sites because
charge separation seemed physically unacceptable
for a metallic environment and because it seemed
highly likely that the excellent agreement with the
equal-charge assumption was not accidental. The
results imply that all electronic contributions to

TABLE II. Comparison of the experimental field gradi-
ent values with lattice-sum predictions for Z = 3 and 4.
All quantities are given in units of 10 V/cm .

the field gradient are proportional to the lattice
gradient with identical proportionality factors at
each site. Our measurements also support the re-
duced-valence scheme for the & phase proposed by
Jamieson and Doherty and Gibbons. The lack of
any dramatic dependence of the results on temper-
ature supports the notion that conduction electrons
near the Fermi surface do not contribute strongly
to the field gradient. A critical test of the validity
of our assumptions must await additional measure-
ments such as nuclear-quadrupole-resonance
studies on 'Zr in ~-Zr or M'ossbauer-effect mea-
surements on ' 'Ta in ~-Zr, the latter of which
would be sensitive to the sign of the quadrupole in-
teraction.

Note added in proof. A recent private communi-
cation from J. C. Jamieson has indicated a revised
value of the axial ratio c/a=0. 622, in agreement
with the result quoted here.
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APPENDIX

We follow below the planewise summation method
described by de Wettes and de Wette and Schacherv
and references therein. The notation used will be
identical to theirs and will not be exhaustively de-
scribed below. In order to duplicate the notation
for hexagonal lattices of Ref s. 6 and 7 exactly, we
will use hexagonal axes aq and az in the basal plane
with interior angle 60'. In this system (cf. Fig.
1), the &u structure has lattice points at (0, 0, 0)z,
(3 3 2 )e and (—',, —',, —,

' )e when referred to an A -type
site as origin of the unit cell. The subscripts on
the basis vectors denote the type of site (A or B).
Since the lattice sums to be evaluated will give the
contributions from each of the three hexagonal sub-
lattices to the field gradient at the origin, to find
the gradient at a B-type site we must also use the
basis coordinates with respect to a B-site origin,
i. e. , (0, 0, 0)e, (—'„—'„0)s, and (-', , —',, —,')„.

The expression appropriate to a metallic lattice,
with a uniform background of electronic charge to
ensure over-all charge neutrality, is

eq=(Sge/3V) g Z&+e+Z&S& & &
(Al)

j
for the zz component of the electric field gradient
at the origin with respect to which the basis in-
dices j, are referred. We have generalized de
Wette's formula to the extent that different charges
Z& are allowed for each sublattice j even though a
metal is under consideration. The unit cell volume
is V= —,'+3a n where we define a as the axial ratio
c/a. Writing out the explicit expressions for the
two &-phase sites results in
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16v (Z„+2Zs)e
&q =

3~3 o +eZ~Sooo

+eZs S. .. +eZsS. .. (A2a)
3$g 332

1%r (Z„+2Zo)e
s +~ & poo3/3 a a

+ eZsS1 1 o+eZ& S, , , (A2b)
3 3 33 2

Since it is easily demonstrated from the expression
for S»f fe in Ref. 6 that S2 2 i=- .. . we are left332
with only three sublattice sums to evaluate, name-
ly, Sooo, Sl 1 ~ andSi ~ a.

3.3 " 332
Considering the last sum first, de Wette~ gives

the formula for Sj ~1, since it is also applicable
3 32'

to hcp lattices, as the following sum aver a planar
hexagonal lattice in reciprocal-lattice space:

o ~ empt, -3«(&i+ &o)l
8'

2 ~

o 3o $3a

fgf2P fgf2P fff2 o
X3 p

where the second term requires special attention.
The first term may be written immediately as

(A4)

8o ~ n,h, exp(-vh, a)
sinh(n'h~ a )

which is also given by de Wette6 for hcp lattices,
and

(A5)

sponding to Eq. (A3b) rather than Eq. (A3a).
Because the remaining two sums to be evaluated

display a third index j3= 0, a special problem
arises. It turns out~ that the transformation to
reciprocal space (two-dimensional Fourier trans-
form), which is the basis of the well-conditioned
convergence of the summation technique, will be
undefined for that atomic plane of the direct-space
sublattice which contains the origin. In Ref. 7
it is shown haw the offending term can be evaluated
separately by a direct-lattice summation with the
aid of an auxiliary convergence function. The
sums are written in two parts as

h~&~2

sinh(vh„, „a) ~ (A3a) S1 z
8v g n, h,c, exp(- vh, a)

s inh(oh&a )
(A6)

n]h]c]2

3 s o $3e, sinh(vh, a)
' (A3b)

The shell populations n&, phase factors c&, and
vector lengths h, have been tabulated by de Wette
for the first twelve shells. Where appropriate be-
law we shall write sums only in the form corre-

As shown in Ref. 6, this can be rewritten as a sum
over shells, defined by lattice points having the
same magnitude of reciprocal-lattice vector

) hy gg2

which is peculiar to the ~ structure and differs
from Eq. (A5) only in the phase factors c,. The
reader is referred to Ref. 7 for the details of
evaluating the second terms of Eq. (A4). The re-
sults are

p 1 4g Sg 2
S =-~ ——+—+ —Z P.—vo )oooo s 3 qg q

2P

+
3 Z n)hgI'(- —,', oh')

~
(A7)

TABLE III. Tabulation of selected lattice sums for the (d phase.

c/a

0.20
0.30
0.40
0.50
0.55
0.60
0. 612
0. 617
0. 622
0. 65
0. 70
0. 80
0.90
1.00
1.10
1.20
l.5926

3o Sg yg55
16.7813

-34. 8281
-33.9012
—27.4957
—24.4068
—21.5563
-20. 9093
—20. 6440
-20.3811
—18.9545
—16.5949
—12.5608
—9.35936
—6. 87941
-4.99941
-3.59976
—0. 935175

a S)g,
—47. 3761
—25. 2081
—13.4748
—7. 09920
—5. 10645
—3.65176
—3.36674
—3.25438
—3.14561
—2.59809
—1.84037
—0. 914039
—0.449602
—0. 219794
—0. 107037
—0. 052002
—0. 003027

529.256
140.599
49. 8835
20.4699
13.5287
9.06291
8. 24517
7.92786
7. 62344
6. 13169
4. 17882
1.96956
0. 939441
0.451037
0. 217332
0. 104932
0. 006061

SPY a

696. 888
156.644
43. 5989
12.4859
6.44592
3.28407
2. 81195
2. 64108
2.48431
1.83595
1.41306
2. 08973
3.43186
4. 67884
5.56687
6. 05522
5.32381

a'q /z'
609.580
143.114
40. 8747
9.73187
2. 59578

—1.96191
—2. 79602
—3.11988
—3.43075
-4. 95821
—6. 98292
—9.41403

—10.8089
-11.8121
—12.6913
—13.5476
—16.8946

'Computed assuming equal charges at all sites.
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10 q3 P ~ 2t xJ

Qn, h, c,l'(- —,', vh, )
~

. (A8)
)

The I'(n, x) are the incomplete I' functions, the
sum over X&Xz is on a direct-space planar hexago-
nal lattice, and rr» are magnitudes of vectors from
the origin to the points of that lattice. Note that in
Eq. (AV) the X, = &~=0 term is excluded from the
sum whereas it is included in Eq. (A8). Both Eq.
(AV) and Eq. (AS) are independent of the axial ra-
tio a and are therefore simply numbers whose val-'
ue need be calculated only once. Since Eq. (AV)

also occurs for hcp lattices, de Wettee has calcu-

lated this number. We have chosen to recalculate
it as a check. Terms in the direct lattice sum
were included up to )o& )

= 10, and the number of
terms in the sum were reduced by taking advantage
of the threefold symmetry in the hexagonal lattice.
The value obtained was a S000= —11.034176, which
is to be compared with de Wette's value' of
—11.0341754. Similarly, the value obtained for
Eq. (A8) was a~St i o= —23.150541. The remain-33
ing sums, S», S"z& and S I i i were computed for33' 332
a range of values in o. and inserted in Eqs. (A2a)
and (A2b) to yield the curves described in the text.
Table III lists some of the results of the calcula-
tions. In all cases where possible, comparison of
these results with those of Ref. 6 was excellent.
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Analysis of the Lattice Specific Heat of Mo:Re Alloy

M. D. Tiwari and Bal K. Agrawal
Department of Physics, University of Allahabad, Allahabad 211002, India

The low-temperature lattice specific heat of a Mo- 5-at. %%uo-Rcallo yha sbee nsuccessfull yexplaine do n

the basis of a Green's-function thggry. We take into account the effects due to change in mass at the

substitutional impurity site and also the changes in the nearest-neighbor central and noncentral force

constants for the impurity-host-crystal interaction. The enhanced specific heat is dominated by
force-constant changes and very much sensitive to these changes. It is observed that the contribution of
the even parity A,g, E, F, , and F,g modes are very significant and, in fact, dominate over that of

F,„symmetry modes in the low-temperature side of the specific-heat curve. However, at higher

temperatures more resonance modes appearing in F,„ irreducible representation are excited and their

contribution dominates over all others. The present values of the defect parameters are found to be

quite similar to those obtained earlier by elastic-constant data.

I. INTRODUCTION

The effects of impurities on the vibrational prop-
erties of solids has been studied by performing
different types of experiments, e.g. , measure-
ment of lattice specific heat, 4 elastic constants,
infrared absorpt:on, ~ inelastic neutron scattering,
etc. Usually a localized perturbation model for the

.defect is assumed to explain these experiments. It
is therefore of much interest to determine the de-
fect parameters for a particular host-impurity sys-

tern which should be able to explain two or more of
such experiments. In an earlier work, the elastic
constants of Mo: Re alloys measured by Davidson
and Brotzen were analyzed by Kesharwani and
Agrawal9 to determine the parameters of a nearest-
neighbor-defect model for a rhenium impurity
atom in a molybdenum matrix. In the present pa-
per we discuss the lattice-specific-heat measure-
ments made by Morin and Maita on the same
system, i.e. , Mo: Re (5-at% Re) alloy.

In the specific-heat measurements it is difficult


