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Hexagonal NiS undergoes a first-order metal-to-nonmetal transition as the temperature is lowered
below 264 K. NiS appears to be a "normal Pauli-paramagnetic d -band metal" above the transition
temperature T„while below T, it is antiferromagnetic (moment - 1.7p,~) and either metallic or
semimetallic. By use of a simplified (linear-combination-of-muffin-tin-orbitals) method that no longer
requires a secular equation to be calculated as a function of energy, the band structure for NiS is
calculated. These results indicate that the S p bands overlap the bottom of the d bands as
hypothesized by White and Mott. It appears that this overlap increases with temperature, as a result of
lattice vibrations which are included in the calculation through a Debye-Wailer factor. We suggest a
Mott-Hubbard transition occurs for a critical electron-phonon coupling which may be associated with a
critical temperature.

I. INTRODUCTION

NiS is one of the many transition-metal corn-
pounds that undergoes a first-order metal-to-non-
metal (M-NM) phase transition as the temperature
is lowered. ' Mott has ascribed this transition in
NiS to a Hubbard gap since neutron-diffraction3
results indicate the moment is 1.55', ~ below the
transition temperature T, of 264 K but is less than
0. 5p, ~ above T,. Mott further supports the Hub-

bard-gap model by the fact that the high-tempera-
ture phase appears to be a normal d-band metal,
p-10 4 0 cm and the magnetic susceptibility is
temperature independent (- 2. 25 x10~ emu/gm).
More recently, White and Mott concluded that NiS
undergoes a metal-metal transition (low-tempera-
ture resistivity ~r-10 0 cm). Koehler' arrives
at the same conclusion on the bases of his low-tem-
perature resistivity and susceptibility measure-
ments.

White and Mott4 hypothesize that the moments
and the Hubbard gap form as a result of the dis-
continuous lattice expansion that occurs as T is
lowered below T,. (Hexagonal lattice parameters
c and a increase by 1% and 0. 3%%uo, respectively,
without a change in structure. ' ) Our present
work implies an alternative explanation since the
energy bands of NiS, calculated with the linear-
combination-of-muffin-tin-orbitals (LCMTO) meth-
od, ' are more sensitive to an average electron-
phonon coupling or Debye-Wilier correction' to

the potential than to a discontinuous change in lat-
tice parameters. Consequently, the discontinuous
lattice expansion that occurs as the temperature
is lowered below T, appears to result from the
spontaneous appearance of local moments as a
critical electron-phonon coupling is reached.

There are few theoretical studies such as ours
of the M-NM transition in transition-metal com-
pounds based on complete energy-band calculations.
Energy bands are difficult to calculate since these
transition-metal compounds usually form in struc-
tures with more than one molecule per unit cell
and the potentials contain large non-muffin-tin
contributions. As a result, commonly used first-
principles calculational techniques are difficult to
apply. " The orthogonalized-plane-wave (OPW)
method cannot easily treat the d bands, and the
Korringa-Kohn-Rostoker (KKR) method cannot
treat the non-muffin-tin part of the potential.
Augmented-plane-wave (APW) and linear-combi-
nation-of-atomic-orbitals (LCAO) methods can
treat the non-muffin-tin potential but require a
large basis set when there are several atoms per
unit cell. The LCMTQ method, ' however, has
the advantage of being able to treat the non-muffin-
tin potential with a small basis set, thus making it
convenient for complex systems such as NiS.

In addition, the LCMTQ has the added advan-
tage, not found with KKR and APW, that the secu-
lar equation need not be calculated as a function of
the energy E, which serves as a nonlinear varia-
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tional parameter to obtain the lowest-energy states.
In the present paper, we show that the nonlinear
variational parameters in LCMTO are only weakly
sensitive to the band symmetries, and a single set
of parameters is valid for the entire calculation.
Consequently, the same basis set is used for all
k points and the secular equation is now in conve-
nient LCAO form, (}H El)-, which is diagonalized
only once at each k point. This simplified LCMTO
approach is discussed in Sec. II.

Section III is concerned with the effects of ther-
mal expansion and thermal lattice vibrations on the
potential. The energy bands and the effects of
temperature are presented in Sec. IV. Section V
discusses how the M-NM transition might occur
based- on these band calculations.

II. SIMPLIFIED LCMTO

Before describing the simplification involved in
computing bands for complex crystals such as NiS,
we briefly review the general theoretical frame-
work underlying the LCMTO method. The poten-
tial, formed by overlapping atomic charge densi-
ties, is expanded in spherical harmonics within
nonoverlapping atomic Wigner- Seitz (AWS) cells.
Solutions P, (E,r) of the Schrodinger equation for
the muffin-tin pa,rt of the potential are then used
to construct muffin-tin orbitals (MTO's):

P, (E, r)+C, (E, z)g, (e, r), r» $

C) and s, are determined by continuity of the
logarithmic derivative at the muffin-tin sphere
radius S. J, (g, r) is that solution J, (z, r) of the
wave equation which is orthogonalized to the core
states of the potential at the origin, while K, (z, r)
is a solution which is orthogonalized to the core
states on all other sites. J, and X, are defined
as products of spherical harmonics and spherical
Bessel and Newmann functions such that they are
regular at the origin and at infinity, respectively,
and both are regular at z = 0.

We form a multicentered basis set of MTO's,
i. e. , the set of Bloch functions X', (E, 2) for fixed
parameters E and z~, and apply the linear varia-
tional equation

(X, (E, z )~ H E~ X, (E, z ))=0,- (1)

which is Eq. (15) in Ref. 8. All multicentered
integrals are eliminated by using summation
theorems for spherical Bessel and Neumann
functions.

The low-energy valence bands as well as core
states require a muffin-tin-orbital basis set with
2 & 0 (exponentially decaying states), whereas
states near the Fermi surface (FS) require s &0
(oscillating-plane-wave states). A very signifi-
cant simplification in the LCMTQ method is

achieved by enlarging the basis set to include both
types of states. The secular equation is now in
the LCAO form

(Xl, ,(Ei, ~i'0)+X) (E2, ~2 &0)IH-EI Xf, (Et, ~&)

+ Xr (E2 ~g)) =0, (2)

where E& is set equal to some average of the low-
energy states and E2 is set equal to some average
of the states near the FS. Equation (2) is compu-
tationally simpler than Eq. (1) even with the larger
basis set because the secular equation need not be
calculated as a function of the energy E. This
LCAO form is essential for complex crystals with
many closely spaced energy bands.

Optimal values of the parameters are readily
determined because the eigenvalues form broad
minima as a function of E„K„E2,Kz. These opti-
mal values of the parameters are found to be inde-
pendent of the particular k-point symmetry if one
desires 0. 015 Ry or better agreement with the
eigenvalues as calculated with Eq. (1).

The size of the basis set depends on the particu-
lar atoms involved but will not involve more than
18 MTO's per atom in the unit cell (l = s,P, d MTO's
for ~ »0).

In the specific case of NiS an even smaller basis
set is required. The sulfur 1 =3d MTO's can be
omitted because the d states on a S atom are highly
excited. The l =4p MTO's on the Ni were omitted
after it was found that they were not necessary for
convergence of the ¹i3dor 4s bands. However,
we found that the Ni 3s core state must be included
explicitly since the ¹icore overlaps neighboring
cores to an extent that makes orthogonalization to
the Ni 3s impossible. The result is a 30x30 sec-
ular equation for NiS since there are four atoms
per unit cell. The parameters are given in Table I
for these 30 MTO's.

From experience with LCAO-type calculations,
it would not appear necessary to include the
l=0, 1 2 &0 MTO's on the S atom. 'These states
have no atomic analogy except being excited un-
bound states. However, these states contribute
0. 03 Ry or more to some of the 3d bands and there-
fore must be included for accuracy of band
energies.

III. POTENTIAL

Potentials are ordinarily constructed under the
assumption that the atoms are at rest and at their
equilibrium positions. However, for finite tem-
peratures thermal lattice vibrations are excited
and the nuclei undergo displacements from their
equilibrium positions. A practical means of in-
cluding an average electron-phonon coupling is to
screen the T= 0 K potential by a Debye-Wailer
factor' e v'o'r'. The Debye-Wailer (DW) effect
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TABLE I. Muffin-tin orbitals for ¹iS.

E)Qy)

S MTO's

-0.4 —0.4 -0.5 0. 5

—1.8 —1.1 —0. 7 —0. 7

Ni MTO'8

0 0 2

—2.455 0. 5 0. 5

—8.00 —0. 7 —0.7

has not previously been incorporated into first-
principles band calculations because at least sev-
eral-thousand reciprocal-lattice vectors are nec-
essary to define the potential.

However, DW effects have been included in
empirical pseudopotentials since only a few form
factors V(G) are necessary. For example, a DW
factor was incorporated into the Cd pseudopoten-
tial to account for the anomalous temperature de-
pendence of the Knight shift in Cd. '~ The DW effect
also gives the correct temperature dependence of
the optical-ref lectivity peaks in Zn, '3 PbTe, '4 and
GaAs. "

The crystal potential for ¹iSis constructed by
overlapping atomic charge densitiesg~ of ¹

(Sd94sg)
and S (Sp Ss ). The potential is expanded in spheri-
cal harmonics [gV, '(r)Fg (r)] within the atomic
Wigner-Seitz cell. In oxder to reduce all integrals
to radial integrals, the Wigner-Seitz cell potential
[g l; (r)V, ' (g )] is again expanded in spherical
harmonics [XVg(r)Y, (r)] so that the potential is
defined by spherical harmonics out to the farthest
corner radius of the atomic WS cell. A particular
Vg (g ) Xg tfg ~ g Vg ~ (Y)~ where fgtg J~gFgt~t Fg~gf A~g

~
The expansion in angular momentum was truncated
at I = 8 and l'= 8. Potentials were constructed for
lattice parameters corresponding to the low-tem-
perature and high-temperature phases.

To include the DW screening e"~~ ~'6', we
Fourier analyze the high-temperature potential

EV (gg) Fg(r)=I.V(G)e"'

and then reconstruct the DW potential

Q V(G)e '"""&g-~'=X,V, (r)F (r)

8=0.20 Aa was taken from an x-ray structure
determination on NiS by McWhan et a/. The core
part of the potential was replaced by the smooth
function (sinPr)/Pr so that 10000 G's were ade-
quate to expand the potential.

IV. ENERGY BANDS

The energy bands of ¹iSin its "normal d-band
metal" t state are shown in Fig. 1 and the corre-
sponding Brillouin zone in Fig. 2. The Ni48 level
lies well above the top of the d band at -0.25 Hy
and is not shown. The 8 3s bands are at about
—I.7 Ry. The S p shell extends from —1.15 to
—0. 74 Ry so that it overlays the d bands of Ni at
the I' point.
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FIQ. 1. Band structure of NiS in high-temperature
metal state. For each symmetry line in the Brillouin
zone, energy bands belonging to the same group sym-
metry are represented by lines of characters (dots,
dashes ).
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FIG. 2. Brillouin zone for the hexagonal space group
Dsa.

An understanding of the d bands requires exami-
nation of the NiAs structure. The most important
aspect is that octahedra of sulfurs surrounding the
metal atom are stacked to form metal-atom chains
along the e axis. Consequently, the Z orbital of
the metal atom overlaps the Z orbital of the ad-
jacent metal on the chain. Since there are two
Ni's per cell, bonding and antibonding combinations
of the Z2 orbitals occur at the F point. On the
Brillouin-zone face AI.H, the bonding and anti-
bonding Z states are degenerate. Thus, the Z
orbitals form a band, the width of which indicates
the overlap or interaction strength between metal
atoms. In ¹1Sthese Za orbitals form a 0. 16-Ry-
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wide band since I"~(Z, +Z ~&) =-0.761 Ry and
I"~(Z~- Zl) = —0. 621 Ry. This treatment shows
that the antibonding portion of the Z~band is near
the Fermi surface (E~ approximately placed at
-0.62 Ry) and will play a key role in conduction.
Consideration of only the octahedral point sym-
metry of the Ni as in White aad Motts and Koehler4
leads to the erroneous conclusion tnat the Z orbital
is narrow, nonbonding, and below the Fermi
surface.

The remaining d-orbital bands are more com-
plex. Certain bonding and antibonding combinations
of d orbitals overlap strongly with sulfur p orbitals
to form wide bands, whereas other combinations
interact only weakly with S P states and form nar-
row bands. The wide or P-d bands are near the
Fermi surface and partially filled. The narrow
bands are about 0.05 Ry wide and centered at
about —0. 7 Ry. In Fig. 1 one can identify which
bands hybridize with p bands since each symmetry
is identified by a character such as dots, dashes,
etc.

A comparison is made in Table II of the effects
of the discontinuous lattice expansion and thermal
vibrations on the bands at the I' point. The lattice
expansion makes little difference as the bands are
practically the same for the low-temperature and

high-temperature lattice parameters. The bands
which have the DW factor incorporated are differ-
ent in that the overlap of the S P bands with the
Ni d bands is increased. The width of the narrow
bands is about 0.05 Ry in all three cases, but
examination of the wave functions indicates that
hybridization with the p states increases for the
DW case.

V. MOTT-HUBBARD STATE

Formation of a Mott-Hubbard state depends on
the relative sizes of the intra-atomic Coulomb in-
teraction v with the bandwidth 6-0.08 Ry and
+-0.15 Ry. They predict ~ to be about one-half
the value in NiO, a result of their hypothesis that
the S p bands overlap the bottom of the d bands.
They also expect co and b, to be sensitive to the lat-
tice parameters so that "the lattice distortion in
conjunction with a fortuitous position of the ¹id

bands relative to the P bands" drives the Mott-
Hubbard transition.

Our energy-band calculations support White and
Mott's4 hypothesis that the S p bands partially over-
lap the d bands and that the narrow bands are
fortuitously close to the Fermi surface. Our
energy-band calculations do not support their con-
clusion that ~ and 6 are sensitive to the lattice
distortion and drive the transition. We find that
the overlap of the d and P bands is at least an or-
der of magnitude more sensitive to thermal lattice
vibrations than to the discontinuous lattice expan-
sion.

We suggest that direct overlap of the d and P
bands and also hybridization of the narrow d bands
with p states both increase with T causing co and b,

to be sensitive to T. At some critical T or aver-
age electron-phonon coupling, the Mott- Hubbard
transition can occur because of the fortuitous
position and width of the d bands in NiS. The dis-
continuous lattice distortion is likely a result of
the transition in that there is charge redistribution
to form the 1.66p.~ moments.

The sensitivity of the wide bands to the DW
factor might indicate that self-consistency could
shift the relative positions of the P and d bands.
The simplified LCMTO technique is economical
enough to go to self-consistency if in the future
data such as photoemission are collected.

Our bands cannot be quantitatively compared
with other experimental data such as resistivity,
Seebeck, susceptibility, and Hall because of the
complicated Fermi surface. Qualitative interpre-
tation would be similar to that of White and Mott
and will not be repeated here. The theoretical
model of Koehler is similar to that of White and
Mott except that Koehler suggests that the P bands
extend to the Fermi surface. The wide P-d bands
we calculate eliminate the necessity of p bands at
the FS to explain resistivity, Hall, and Seebeck
data.

Finally, we relate the NiS band picture to the
neighboring transition-metal sulfides, FeS and CoS.
The a and c parameters in A are FeS (3.45, 5. 67),
CoS (3.37, 5. 16), and NiS (3.42, 5.30). FeS has
a moment of -4@~ and CoS has a moment of - 1p~.

TABLE II. Temperature effects at I' point.

Ref.

a —0.790 —0. 260 —1.138 —0.622

b —0. 776 —0.268 —1.142 —0. 632

c —0. 782 —0.299 —1.029 —0.625

—0.745 —0.744 —0. 947 —0. 513 —0. 735 —0.686

—0. 727 —0.747 —0. 884 —0. 521 —0. 732 —0.688

—0. 748 —0.743 —0. 936 —0. 515 —0.733 —0.688

r-
6

—0.803

—0.765

—0.799

~High-temperature lattice parameters
High-temperature lattice parameters
Low-temperature lattice parameters

&~=5. SiSS A„
with DW.
(c=5.3822 A,

a=3. 4431 A).

a=3.4535 A).
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The metal atoms should have similar sizes but the
metal-metal distances —,'c are quite different. FeS
shouM have the narrowest bands because the metal-
metal and metal-sulfur overlap is the smaQest.
Thus, FeS can have a 4p, & moment if the naxrom
d and P-d bands split with the Z bands providing
the metal states. Co8 has the shortest metal-met-
al and metal-sulfur distances and therefore the
midest bands. It is not surpxising that CoS has a

smaller moment than ¹iS.
A similar calculation incorporating a D%' factor

is planned for VQ~ which undergoes a metal-insu-
lator transition.
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The first part of a program to investigate the nuclear electric quadrupole interaction at Ta
in the group-IVB transition metals is reported. We have found, for Ta in hcp O.-zirconium at
room temperature, an interaction frequency v~(482-keV state in Ta) = 312+3 MHz using the
time-differential perturbed-angular-correlation technique. This corresponds to an electx'ic
field gradient at Ta in &-Zr of ( eq ) = (5.1+0.2) &&10 V/cm . The results indicate a substan-
tial electronic contribution to the magnitude and temperature dependence of the field gradient.

I. INTRODUCTION

The electric field gradient eq at a nucleus in a
noncubic metallic environment arises from several
sources. The so-eaQed lattice contribution eqy
from the lattice of positively charged ion cores can
be calculated by straightforward summation tech-
niques, given the symmetry and lattice constants
of the metal. The lattice contribution is enhanced
at the nuclear site by the familiar Sternheimer
antishielding factor (1 —y„), which is associated
with the quadrupolar distortion of the closed elec-
tronic shells of the ion containing the nucleus in
question. Fairly reliable values of y„ for many of
the elements can be found in the literature. l 3 In
most instances experi. mental values for eq differ
markedly from (1 —y )eq„«because of the contri-

bution to the field gradient from conduction and
valence electrons outside closed shells. 4 The elec-
tronic contribution eq„can be subdivided into two
terms corresponding to electrons inside, eq g and
outside, eqd"t, of the signer-Seitz cell of the ion
containing the nucleus of interest. I 6 The net effect
of the distant electrons is to renormalize the effec-
tive ionic charges centered on lattice sites and can
therefore be accounted for in the lattice sum men-
tioned above. In the cases studied, 5 6 the renor-
malization has been shown to amount to only a few
percent.

The effect of the local electronic structure, on
the other hand, appears to dominate all other con-
tributions to the field gradient and is crucial in
determining the sign as mell as magnitude of the
net gradient at the nucleus. Tmo approaches to


