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The lattice dynamics of K at T = 9, 99, 215, and 299 K is studied employing an efFective pair
ion-ion potential and the self-consistent (SC) theory for aiiharmonic crystals. The efFective potential was
derived from first principles following the method that Geldart et aL developed successfully for Na.
The purpose of the present paper is (i) to test whether the potential derivation can be extended
successfully to K and (ii) to compare the SC anharinonic theory with experiment and the standard
anharmonic perturbation theory used by Buyers and Cowley. For all the syxnmetry directions except the
h, , branch, the phonon frequencies computed here at 9'K lie within 2%%uo of the observed frequencies
verifying the validity of the K ion-ion potential. The total anlmmnonic shifts in frequency
(quasHuumonic + anharmonic) with temperature are comparable but ~ 20% greater than those
computed by Buyers and Cowley. Given the scatter in the observed shifts, both calculations agree
equally well with experiment.

I. INTRODUCTION

In a recent paper Glyde and Taylor' presented
calculations of phonon frequenci. es and lifetimes
in Na over the temperature range T= 5-361 "K us-
ing the self-consistent theory of anharmonic lattice
dynamics. To describe Na an effective ion-ion
potential, derived from the calculations of Geldart
ef, al. , which employs the Geldart-Taylor' screen-
ing function, was used. The encouraging agreement
between theory and experiment both at liquid-nitro-
gen and room temperatures in Na has prompted
us to do a similar calculation for K, where there
are data available, ' to test extensions of this
method.

As in the case of Na there can be found in the
literature (e.g. , see the review article by Joshi
and Hajagopal ) large numbers of lattice dynamic
calculations for K using a wide variety of mogels
in the harmonic approximation. However, to our
knowledge only Buyers and Cowley~ have calculated
anharmonic contributions to the phonon frequencies
and lifetimes of K. In their calculations, Buyers
and Cowley employed a semiempirical pseudopo-
tential with parameters chosen by fitting the com-
puter harmonic phonon dispersion curves to those

observed at 9'K. This potential was then used to
compute the quasiharmonic and the cubic and
quartic anharmonic contributions to the phonon fre-
quencies and lifetimes at higher temperatures
via standard perturbation theory. Their calculated
frequency shifts and lifetimes gave reasonable
agreement with their experimental results at 99,
215, and 299'K.

As in the case of Na the present interatomic
potential is derived following the procedure of
Geldart ef; gl. ~ and Basinski eg gl. ~ This is more
fundamental in the sense that no fitting to solid
data is employed. The derivation is discussed
briefly in Sec. D. The resulting phononfrequencies
calculated using the self-consistent theory are then
presented and discussed in Sec. III.

II. THEORETICAL MODEL

A. Effective Ion-Ion Potential

To compute the effective ion-ion potential, a
knowledge of both the bare electron-ion interac-
tion and the conduction-electron dielectric func-
tion is necessary. In K, where nonlocal effects
are not important, the interionic potential may be
written in the form
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(Ze)~ 2(Ze)
"

F(q) sinqr

E(q)= ~M(q) ~ ( )

q'Q(q)

where Z is the valence. M(q) is the bare electron-
ion matrix element and Q(q) is the static electron-
gas screening function related to the dielectric
function by the equation

&(q) = 1+ Q(q)/q

To calculate M(q) we have used a single orthog-
onalized plane wave (OPW) to represent the con-
duction-electron wave function. This interacted
with the K ion via a potential which was constructed
to fit the spectroscopic terms of the free ion using
a procedure similar to that of Prokofjew. The
parameters defining this potential are given in the
Appendix. Following Geldart et al. the nonlocal
terms in the one-OPW matrix element were aver-
aged over the volume of the Fermi sphere and

added to the local term after verifying that no

significant error was introduced by this procedure.
Although the one-OPW approximation has been

shown to be a good one for Na, it does not neces-
sarily follow that the same is true for K. To
check this point we have repeated the calculations
of Taylor et al. using our K' potential instead of
the Prokofjew Na' potential. That is, for energy-
conserving transitions at the Fermi level we have
evaluated the so-called "Schrodinger" part of the
bare electron-ion matrix element defined by Eq.
(4. 4) of Vosko et al. ' as follows:

M, (k, k) = f dr B„"(r)[VU,.(r)]B ((r) . (1)

B„"(r) is a Bloch state of momentum k =k+(1 and

U, (r) is defined as the sum of the free-ion potential
and the Hartree term due to the conduction elec-
trons. For energy-conserving transitions, Eq.
(1) can be rewritten [Eqs. (3.12) and (3. 19) of
Ref. 9]

M, (k, k) = i(l y(q) .
We have evaluated y(q) using both the one-OPW ap-
proximation and the Kohn variational method '
(KVM) which has been summed to convergence and

is the exact solution for the one-electron problem
in a spherical cell. As is shown in Fig. 1, the
one-OPW version of y(q) agrees quite well with the
KVM version. A check of the form factors re-
sulting from the two procedures reveals that they
differ significantly only for 1.9k~ -q-2k~, where
the difference is still only 3% of the Fermi energy.
Hence the one-OPW approximation seems to be
very reasonable for K as well as Na.

For simple metals with small ion cores such as
K, electron-gas theory may be used for the con-
duction- electron dielectric function. However,
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FIG. 1. Function &(q) of Eq. (2) as computed using the
one-OPW approximation and the Kohn variational method
(rarM).

Qo(q) = fa(q),
4kj.
7T Qp

1 4k~ —q q+ 2k»Oq= —+ In
2 8k»q q —2k»

k„ is the Fermi wave number, ~ is the Bohr
radius, and C is determined by the condition that

the choice of electron-gas screening is quite crit-
ical, ' and we have used the Geldart-Taylors cal
culation of the dielectric function, since on com-
parison' with other functions it appears to be the
best one available. These authors evaluated a con-
sistent set of low-order corrections to the Lind-
hard or random-phase approximation (RPA) screen-
ing function and also constructed an approximate
sum of the higher-order terms. The resulting
Q(q) satisfies all the known analytic properties of
the exact function and takes the form

Q(f(= Qo(q(((+ (1 —Cpq &

where
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FIG. 2. Effective ion-ion potential U&&(r) in eV for K
at T= 9'K. a is the 9'K lattice constant.

Q(q) must satisfy the compressibility theorem.
The function g, (q) does not have a simple analytic
form and is interpolated from Table II of Geldart
and Taylor.

The resultant effective ion-ion potential at 9 'K
is displayed in Fig. 2. Although this potential is
relatively insensitive to small changes in density,
it was recalculated at the density corresponding
to each temperature considered.

B. Anharmonic Theory

Perturbative 'treatments of anharmonicity begin
by expanding the crystal potential in a power series
of the atomic displacements M, (l):

V= Vo+ V&+ V~+ V4+ ~ ~ ~ .
Here, all the derivatives are evaluated at the
equilibrium spacing R(0) of the static lattice of
T=o'K. The second term is

1 V=
2

+
(f) (f')

and the harmonic frequency (o(qj), for a phonon
with wave vector q and branch j, is obtained as a
diagonal element of this force-constant matrix.
Thermal expansion is then allowed for as a per-
turbation by finding the change in these harmonic
force constants with volume. This provides the
"quasiharmonic" frequencies. The quartic V4 and
cubic V~ terms are then included as first- and
second-order perturbations, respectively. We
denote here the total perturbative correction to

and the reader is referred to Buyers and Cowley~
for the explicit expressions for the thermal-ex-
pansion (~), quartic (+), and cubic (hs~) contri-
butions.

The one-phonon neutron scattering cross section
is proportional to the response function'

2(o (X)I'(X, (o)

[ —(o~+ (o(X) + 2(o (X)I'(X, (o)]'+[2(o(X)I'(X, (o)]'
5()

where X-=qj and I' '(X, (o) is the inverse phonon
lifetime due to the cubic term. The observed (and
hence calculated) phonon frequency 2vv(T) at tem-
perature T is associated with the center of the
peak in this function.

The self-consistent theory of lattice dynamics
has been derived by many authors, '5 and applied
chiefly to the rare-gas crystals, ~~ where the
reader is referred for full discussion. Here we
outline its content only for comparison with per-
turbation theory. In a metal such as K, it is con-
venient to introduce quasiharnionic {QH) (or refer-
ence) frequencies defined by

(oza (qj) = —Z' (e"' ""—I)M s~r

)e))~ (e)(.,„())., () ))
(6)

in which the second derivative is evaluated directly
at the observed spacing R(T). These correspond
to the frequencies (o (qj)+ 2(o(qj)hz(qj) of the per-
turbation case.

The self-consistent-harmonic (SCH) frequencies
can then be derived '

by including all the even an-
harmonic terms (V4+ V6+ Vs+ ~ ~ ~ ) in (2) as a first-
order correction to ~@„. The total may be written
in closed form giving the SCH frequencies as

(e(PT fi(((')
M

8 V"E .(e), (ss) 8 ())~ ()))
in which the second derivative is now averaged
over the vibrational (Gaussian) distribution of the
atoms in their unit cells implied by the fP&. The
difference between ~@H and 0 provides a measure
of the even anharmonic terms. Since odd deriva-
tive terms are known to be important, ' the cubic
term is added as a perturbation giving a shift to
Q~ of

~(~, ~)= „, p ~(v(~, ~„~,))~'
)tglp

(o{qj)by

»(qi)&(e, (o)

=2(o(qj)[~(qj)+ a, (qj)+ ~g(qj, (o)l, (4)
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and an inverse phonon lifetime,

I'{X,(d)= I), Z ~{V(x,Z„X,)) ~'{(n,+ac+I)
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FIG. 3. Phonon-frequency dispersion curves (in &0'

Hz) for K at T= 9 K, as computed in the SCH+ C approxi-
mation. The longitudinal experimental points are plotted
as closed circles and the transverse as open circles.

& [6(A, + Qg —(d) —5(Q+ Ag+ (())]

+ (n, -n, )[6(A, —& —(o) —&(& —&+ (d) ]] .
(9)

The SCH+ C frequencies (with the cubic term added)
are now identified with the center of a response
function (5); but one in which g& replaces (() (qj),
and h(X, &o) and F(X, (d) are given by (8) and (9),
respectively.

IH. NUMERICAL RESULTS AND DISCUSSION

A. T= O'K Harmonic Dispersion Curves

The phonon frequency dispersion curves com-
puted in the SCH+C approximation at T=9'K are
shown in Fig. 3. Since the QH frequencies differ
only very slightly from the SCH+ C at this temper-
ature, they are not plotted. The agreement with
the experimental results of Cowley et aE. is good
though not as good as that obtained for Na. ' The
computed 4j branch is a little low as are some
points on the A„F3, and 7& branches. These dis-
crepancies are quite small. With one exception
the calculated points for all but the 6& branch miss
the experimental error bars by less than . One
of the more obvious sources of error in the cal.-
culation is the neglect of el.eetron-electron um-
klapp scattering, which has been shown to have a

0.2 0.6 l.o 0.8 0.6 0.4 0.2
WAVE VECTOR q(2n/0)

FIG. 4. Phonon-frequency dispersion curves (in 10
Hz) for K at T= 299'K. The longitudinal experimental
points are plotted as closed circles and the transverse
as open circles.

.significant effect on phonon frequencies and which
could easily account for the discrepancies in the
Lf branch. Hence, we conclude that the agreement
between theory and experiment is satisfactory,
which demonstrates the validity of the effective
ion-'ion potential in K.

8. Anharmonic Contributions

In Fig. 4 are displayed the room-temperature
phonon dispersion curves calculated in both the QH
and SCH+ C approximations. The difference be-
tween these two curves gives the explicit anhar-
monic effects which are clearly significant at room
temperature. There are not enough experimental
data to decide whether or not the SCH+C curves
give better agreement than do the QH curves. 1t
is interesting to note that the [1101branches of the
phonon spectrum exhibit the same anharmonic ef-
fects as were noted for Na. ' That is, (i) for the
Zq branch the upward shift from the QH to the K!H
case is canceled by the cubic shift so that the QH
and SCH+C values are nearly the same; (ii) for
the Z~ branch the QH to SCH shift and the cubic
shift are both downward resulting in a large an-
harmonic shift; and {iii) for the Z4 branch the net
shift is upu)ard due to a very large QH to SCH shift
which is only partial. ly canceled by the downward
cubic shift. Another featuxe of the Na calculation
was the presence of a pronounced flattening of the
4& branch at room temperature' for q-0. 6(2v/a)
which seemed to be confirmed by experiment. This
flattening is not nearly so obvious in the SCH+ G
results in Fig. 4 and unfortunately no expeximental.
data are available for the hq branch.

To display the anharmonic effects more clearly
we plot the total shift in frequency 4 in going from
9'K to a given temperature T,
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FIG. 5. Total phonon frequency shift, b, (T) = v(T)
—v(9 ' K), compared with experimental points. Squares
and solid lines are for 299 K, circles and dashed lines
for 215'K, and triangles and dotted lines for 99 K.

a(T) v(T) - v(9 K-), (10)

in Fig. 5. This will include both the quasiharmonic
shift plus the explicit anharmonic shifts shown in
Fig. 4. This presentation allows direct compari-
son with the experiments and calculations of
Buyers and Cowley.

From Fig. 5 we see that the computed shifts
agree broadly with experiment. More accurate
data are really required for a more definite state-
ment. At T= 299'K the shifts computed here are
-20% greater than those computed by Buyers and

Cowley. Since the potentials used in both calcula-
tions fit the 9 'K data well, this difference is prob-
ably not due to the different potential forms used.
Rather, since the QH shift is the greatest and
since Buyers and Cowley used a perturbation QH

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
WAVE VECTOR q(2w/cj)

FIG. 6. Half-width I' of the computed phonon group at
half the peak height. The phonon lifetime &= I . For
notation see Fig. 5 caption.

treatment rather than a recalculation of the fre-
quencies at each volume, the difference is probably
due to a difference in QH shift. However, it is
fair to say that there is little difference between
the two computed results given the vast difference
in method and both agree reasonably with experi-
ment.

Although the calculated phonon frequencies and
shifts appear to be quite satisfactory, the same
can hardly be said for the widths as can be seen
in Fig. 6. Despite the fairly large scatter in the
experimental widths it is quite clear that the theo-
retical results are too low by at least a factor of 2.
This same deficiency was noted in the Na calcula-
tions and is clearly due to neglect of higher-order
terms, particularly when we observe that Buyers
and Cowley encountered similar difficulty. ' These
could be three-body potential. contributions to the
cubic term, electron-electron umklapp scattering,
or simply higher-order anharmonic terms. On the

TABLE I. Computed K anharmonic elastic constants as functions of temperature.
The units are 10 dyn cm 2. The experimental values are read from the graphs plotted
by Marquardt and Trivisonno (Ref. 25).

2'( K) Theory Expt.

9 4. 17 4.3
99 3.90 4.1

215 3 59 3 9
299 3.28 3.7

C&2

Theory Expt.

3.49 3.5
3.28 3.4
2. 95 3.3
2. 66 3.1

C44
Theory Expt.

2. 97 2. 9
2. 71 2. 6
2.30 2. 1
2. 10 1.9

C' = g(C$$ Cf2)
Theory Expt.

0.34 0.37
0.31 0.34
0.32 0.31
0.31 0.28
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TABLE II. Parameters defining the K' potential. The
potential is in rydbergs with r in a.u.

0 —y -0.1053
0. 1053 «r «0.4412
0.4412 «w «0.5111
0.5111—r —l.106
1.106 —r —1.90
1.90-r-4. 00
4. 00 «r «6. 31
6.31 «y«&

-122.96
—37. 85

40. 98
—2. 031
—0. 7800

0.6966
0. 0019

0-

19.00
15.19

—19.58
2. 399
1.015

—l. 791
0. 9882
l. 000

0
0.2198

15.56
4.329
5. 859

11.19
0. 0746

0

310.0

We conclude that an effective pair ion-ion poten-
tial derived following the method developed by
Geldart et al. for Na describes K well. This fol-
lows from the excellent agreement between the low-
temperature computed and observed phonon-f re-
quency dispersion curves and from the agreement
within the accuracy of the data between the com-

other hand, calculations of the phonon group width
in Al due to the cubic anharmonic term by
Sandstrom and Hogberg and Koehler et al. do
not seem quite so decidedly below the observed
widths —although they often differ by a factor of 2
at some points in the Brillouin zone.

Finally, the elastic constants as functions of
temperature are listed in Table I and compared
with the experimental results of Marquardt and
Trivisonno. The over-all agreement with experi-
ment is quite good. Because of its relatively
small size, C is very sensitive to small errors
in the potential and usually proves rather difficult
to calculate with any accuracy. Some of the error
in C» and C» may well be due to the neglect of
electron-electron umklapp scattering, but C is
independent of this approximation.

IV. CONCLUSION

puted and observed anharmonic frequency shifts
with temperature. The poor agreement between
the computed and observed phonon lifetimes al.-
ludes to some many-body contribution either in the
potential or in the ionic correlations.

The total frequency shifts computed here are
greater than those computed by Buyers and Cowley
using perturbation theory by -2()%. Since in Na
the explicit anharmonic shifts were essentially the
same when calculated in the SC and perturbation
methods, this difference is most probably due to
the difference in the QH theory employed in the two
cases.

APPENDIX

The K' potential used for the calculations in this
paper was constructed to fit the spectroscopic
terms of the free ion using a procedure similar to
that of Prokof jew. Prokof jew divided r space into
a number of regions and assumed that in each re-
gion the ionic potential could be written in the form

V(r) = —Q(r)/ra, Q(r) = ar +2gr+y .

Across each boundary, Q(r) and its derivative were
constrained to be continuous. Prokofjew then ad-
justed the remaining parameters to fit the spectro-
scopic-term values of Na'. Later attempts to use
the method on K' were not successful. 6 However,
it turns out that the difficulties can be overcome
by adding a term 5r~ to Q(r) in the innermost re-
gion. In Table II are listed the parameters defin-
ing the K' potential, which reproduces the spectro-
scopic term values listed by Moore 7 to better
than 1% accuracy. The same method has also been
used successfully to generate Mg", Al'", and
Ca" potentials. '
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Linear-Combination-of-Muffin-Tin-Orbitals Method
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Hexagonal NiS undergoes a first-order metal-to-nonmetal transition as the temperature is lowered
below 264 K. NiS appears to be a "normal Pauli-paramagnetic d -band metal" above the transition
temperature T„while below T, it is antiferromagnetic (moment - 1.7p,~) and either metallic or
semimetallic. By use of a simplified (linear-combination-of-muffin-tin-orbitals) method that no longer
requires a secular equation to be calculated as a function of energy, the band structure for NiS is
calculated. These results indicate that the S p bands overlap the bottom of the d bands as
hypothesized by White and Mott. It appears that this overlap increases with temperature, as a result of
lattice vibrations which are included in the calculation through a Debye-Wailer factor. We suggest a
Mott-Hubbard transition occurs for a critical electron-phonon coupling which may be associated with a
critical temperature.

I. INTRODUCTION

NiS is one of the many transition-metal corn-
pounds that undergoes a first-order metal-to-non-
metal (M-NM) phase transition as the temperature
is lowered. ' Mott has ascribed this transition in
NiS to a Hubbard gap since neutron-diffraction3
results indicate the moment is 1.55', ~ below the
transition temperature T, of 264 K but is less than
0. 5p, ~ above T,. Mott further supports the Hub-

bard-gap model by the fact that the high-tempera-
ture phase appears to be a normal d-band metal,
p-10 4 0 cm and the magnetic susceptibility is
temperature independent (- 2. 25 x10~ emu/gm).
More recently, White and Mott concluded that NiS
undergoes a metal-metal transition (low-tempera-
ture resistivity ~r-10 0 cm). Koehler' arrives
at the same conclusion on the bases of his low-tem-
perature resistivity and susceptibility measure-
ments.

White and Mott4 hypothesize that the moments
and the Hubbard gap form as a result of the dis-
continuous lattice expansion that occurs as T is
lowered below T,. (Hexagonal lattice parameters
c and a increase by 1% and 0. 3%%uo, respectively,
without a change in structure. ' ) Our present
work implies an alternative explanation since the
energy bands of NiS, calculated with the linear-
combination-of-muffin-tin-orbitals (LCMTO) meth-
od, ' are more sensitive to an average electron-
phonon coupling or Debye-Wilier correction' to

the potential than to a discontinuous change in lat-
tice parameters. Consequently, the discontinuous
lattice expansion that occurs as the temperature
is lowered below T, appears to result from the
spontaneous appearance of local moments as a
critical electron-phonon coupling is reached.

There are few theoretical studies such as ours
of the M-NM transition in transition-metal com-
pounds based on complete energy-band calculations.
Energy bands are difficult to calculate since these
transition-metal compounds usually form in struc-
tures with more than one molecule per unit cell
and the potentials contain large non-muffin-tin
contributions. As a result, commonly used first-
principles calculational techniques are difficult to
apply. " The orthogonalized-plane-wave (OPW)
method cannot easily treat the d bands, and the
Korringa-Kohn-Rostoker (KKR) method cannot
treat the non-muffin-tin part of the potential.
Augmented-plane-wave (APW) and linear-combi-
nation-of-atomic-orbitals (LCAO) methods can
treat the non-muffin-tin potential but require a
large basis set when there are several atoms per
unit cell. The LCMTQ method, ' however, has
the advantage of being able to treat the non-muffin-
tin potential with a small basis set, thus making it
convenient for complex systems such as NiS.

In addition, the LCMTQ has the added advan-
tage, not found with KKR and APW, that the secu-
lar equation need not be calculated as a function of
the energy E, which serves as a nonlinear varia-


