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The efFect of s-d hybridization on the phase stabilities of calcium and strontium is studied as a
function of temperature and pressure within the context of the generalized pseudopotential theory. The
inclusion of hybridization is found to favor the fcc structure at all pressures and, in particular, is
necessary to explain the observed fcc structure in these metals at zero temperature and pressure. Phase
bounchmes are calculated by equating the free energy of the fcc structure to that of the bcc structure.
Temperature-induced phase transitions are predicted to occur at SSS'K in calcium and 62S'K in
strontium, as compared with the experimentally observed values of 721 and 830 K, respectively. The
transition temperature T, is found to increase with pressure P for both metals. The predicted
d T, /d P is qualitatively correct but quantitatively too large for calcium, while of the wrong sign for
strontium. However, in the simple-metal limit of no hybridization, dT, /dP is calculated to be negative
in both cases. This suggests that the experimental behavior at nonzero pressures can be explained by an
appropriate balance of pseudopotential and hybridization contributions to the free energy.

I. INTRODUCTION

In an earlier paper~ (hereafter referred to as
Paper I), we made a detailed application of the gen-
eralized pseudopotential theory ' to the alkaline-
earth metals calcium, strontium, and barium. The
motivation for that work was to investigate the in-
fluence, through hybridization, of the empty d band
above the Fermi level uyon the properties of these
metals. One of the more interesting findings of
that work was that the hybridization plays an im-
portant role in stabilizing the (observed) fcc struc-
ture at zero temperatuxe and yressure in both cal-
cium and strontium. In this payer we shall pursue
this matter further and consider the phase stabili-
ties of these metals as a function of both tempera-
ture and pressure.

Experimentally, 4 both calcium and strontium un-
dergo a temperature-induced transition from the
fcc to the bcc structure at zero pressure. This
occurs at 721 and 830'K, respectively. In calcium
the transition temperature T', increases with pres-
sure, while in strontium T, decreases with pres-
sure and goes to zero at about 85 kbar.

From a theoretical point of view, the fcc-bcc
phase transitions in calcium and strontium were in-
vestigated by Animalu' in the context of the second-
order simple-metal pseudopotential theory. Using
a local approximation to evaluate the energy-wave-
number characteristic and taking the effective va-
lence equal to the true valence, he calculated and
compared free energies of the fcc and bcc struc-
tures for two model yseudoyotentials. His model
A pseudopotential was taken to be the Heine-
Abarenkov model potential, referred to as HAA-II
in Payer I; his model 8 yseudopotential was con-
structed from model A by an ad hoe adjustment in
the model-yotential parameters designed to pro-

duce a more realistic phonon spectrum and free en-
ergy. With both models he found the bcc phase of
calcium to be always more stable than the fcc
phase. For strontium, on the other hand, his mod-
el B yseudopotential led to a qualitatively correct
pressure-temperature phase diagram.

One might suspect the inadequacy of the simple-
metal theory for calcium and strontium, however,
simply by examining the experimental trend in the
stable structures of the alkaline-earth metals at
zero temperature and pressure. Both beryllium
and magnesium are stable in the hcp structure with
axial ratios near the ideal value, but there is an
abrupt change to a stable fcc structure in calcium.
The second-order simple-metal theory correctly
predicts the hcy structures of beryllium and mag-
nesium, but as our calculations show, it also pre-
dicts this trend to continue in calcium and stron-
tium. The obvious physical feature which sets cal-
cium and strontium ayart is the hybridization of the
otherwise free-electron-like bands with the empty
d band above the Fermi level in these metals. This
hybridization, of course, is missed by the second-
order simple-metal theory.

In the generalized pseudoyotential theory of cal-
cium and strontium, an enlarged basis set consist-
ing of plane waves and localized d states is used to
calculate the total energy of the electron system.
The result is a more rapidly convergent expansion
in which both pseudopotential and s-d (i.e. , plane-
wave d) hybridization terms enter directly. Be-
cause the hybridization matrix elements are smaQ
in comparison to E~ —EF (the position of the d band
minus the Fermi energy) for calcium and strontium,
it is possible to order the hybridization terms and
combine them with pseudopotential terms of the
same magnitude. '3 The final total energy expres-
sion thus retains much of the mathematical sim-
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plicity of the simple-metal result, while at the
same time, it takes direct account of the s-d hy-
bridization.

We proceed with the phase-stability calculation
in much the same spirit as did Animalu. The free
energy of the metal is determined from its effec-
tive valence and its energy-wave-number charac-
teristic, where the latter is now a function of both
a pseudopotential and a hybridization potential. In
the simple-metal limit of no hybridization our cal-
culation of the free energy parallels that of Animalu,
although, unlike Animalu, we always compute the
effective valence and energy-wave-number charac-
teristic rigorously from first principles. After
briefly reviewing the relevant formalism in Sec. II,
we consider the phase stabilities of calcium and
strontium both with and without hybridization in-
cluded in Sec. III.

H. THEORETICAL APPROACH

At a fixed temperature T and pressure P, the
most stable phase of a metal is that which has the
lowest Gibbs free energy

G =F+PQ,

where 0 is the volume of the metal and F is the
Helmholtz free energy

included in E„. Both this free-energy term and
E„depend only on the volume 0 and not on the con-
figuration of the ions. As a consequence, these
terms will make essentially no contribution to &G.
As demonstrated in Paper I, the overlap energy can
be made vanishingly small by a proper choice of d
basis functions and may also be dropped in the pres-
ent analysis. If 0 is taken to be the atomic volume
of the metal, then the remaining band-structure en-
ergy and electrostatic energy per ion can be written

E( = —Q (4((Z*~/q(~) Q) F„(q(&) (5)
Qp

E„=—& Z" /R(N((,

where Z* is the usual effective valence of the met-
al, F& is the normalized energy-wave-number
characteristic, and R» is the Wigner-Seitz radius
(Q =II-((R(sNS). The sum in E(l. (5) runs over all re-
ciprocal-lattice vectors qp, excluding the qp = 0
vector. The geometrical constant a„ is 1.79186
for the bcc structure and 1.79175 for the fcc struc-
ture.

The phonon system is treated in the harmonic ap-
proximation, in which the Helmholtz free energy
per ion is given by the well-known expression

F=E —TS . (2) F~„=(keT/N) gin[2 sinh(5u, /2k((T)], (7)

The quantities E and S are, respectively, the total
internal energy and the entropy. At the phase
boundary separating the bcc and fcc phases of a
metal, therefore, one must have

AG = 4F+PAQ = 0,
where 4X=X~,-X„,for any (luantity X. For &G
&0 the bcc structure is stable, while for &G&0 the
fcc structure is stable.

In order to calculate &G for a metal, we employ
the adiabatic principle to uncouple the electron and
phonon systems. To second order in the pseudo-
potential, the hybridization potential squared, and
(keT/E~), the Helmholtz free energy per ion of the
electron system can be written

Fel = Ege+ E~+Ee, + E(&q —ZEz (2w) (ksT/E~)
(4)

where 2 is the valence of the metal, E& is the free-
electron Fermi energy, and k~ is the Boltzmann
constant. The first four quantities on the right-
hand side of E(l. (4) are, respectively, the free-
electron energy, the band-structure energy, the
electrostatic (or Ewald) energy, and the overlap
energy. These terms make up the familiar inter-
nal energy at T = 0, which was discussed in Paper
I. The final term in E(l. (4) is the Helmholtz free
energy of the free-electron gas minus the zero-
temperature kinetic energy, which has already been

where N is the number of ions in the metal, 8 is
Planck's constant, and ~, is the phonon frequency
for wave vector (l. The sum in E(l. (7) runs only
over the first Brillouin zone. At zero temperature
F» reduces to the familiar zero-point vibrational
energy:

F h=Eh

= (1/2N) Qk(d, (8)

where the terms on the right-hand side of this
equation are to be evaluated at constant volume A.

In the harmonic approximation the ~, are inde-
pendent of the temperature and depend only on the
atomic volume and crystal structure of the metal.
The (d, may be calculated entirely within the pseu-
dopotential framework once Z* and F((((q) are. spec-
ified.

One may use E(ls. (8), (4), and (7) to obtain an
explicit formula for &G. First note that the vol-
ume change accompanying the fcc-bcc phase trans-
formation is very slight; typically, EQ/Q is 1/o or
less. If one expands the Helmholtz free energy for
the bcc structure in powers of &0, then &F can be
written

dE=(F, —F„,( +( "') 40+0((aA)'(,
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TABLE I. Atomic volumes and associated quantities
for calcium and strontium used in the present calculations.
Both Q and ~ are in a. u. while P is in kbar.

TABLE II. Zero-point vibrational energies (10+ Ry)
as a function of volume for calcium.

Quantity

0
Res
Pa

0
Rws
P

1.10

319,0
4. 239

411.0
4. 612

1.00

290. 0
4. 10G

0

373. 6
4. 4GH

0

0/&0
0. 90

Calcium

261.0
3. 964

20

Strontium
336.3

4. 314
1

0. 80

232. 0
:).812

50

298. 9
4. 148

35

0. 70

203. 0
3.G46

100

261 5
3. 967

70

Structure

fcc
bcc

fcc
bcc

1.10 1.00
Q/Qp
0. 90 0. 80 0. 70

With hybridization
14.9 16.9 19.1 21.8
14.2 16.2 18.5 21.2

25. 1
24. 5

Without hybridization
14.5 16.4 18.6 21.3 24. 6
13.8 15.9 18.2 21.0 24. 4

~Values taken from the experimental pressure-volume
curves of F, P. Bundy and H. M. Strong, in Solid State
Physics, edited by F. Seitz, D. Turnbull, and H. Ehren-
reich (Academic, New York, 1963), Vol. 13, p. 116.

By the first law of thermodynand. cs, the second
term on the right-hand side of Eq. (9) is (to lowest
order) —P&A, which cancels the PnA term in Eq.
(3). Thus to first order in &A/A, one has

b,Q = dig~ y 4g (10)

where again the terms on the right-hand side in
this equation are to be evaluated at constant vol-
ume. At zero temperature, the leading correction
term to n G is ,'AB(&A/A—)~, where B is the bulk

modulus. For nA/A =0.01 this term is of the or-
der of 10"' Ry (and negligible) for both calcium and

strontium.
We have now reduced the task of calculating &G

at temperature T and pressure P to that of deter-
mining Z* and F„(q) at the appropriate volume A

and then evaluating the right-hand sides of Eqs.
(5)-(7) and (10). Utilizing the formalism of Pa-
per I, we have calculated Z" and F„(q) for calcium
and strontium both with and without hybridization

4 t Ioo] [IIO] tllll

0
4 — [ IOO]

I

[III] --[IIO]

0
0 0.5 I.O 0.5 0.5

FIG. 1. Phonon frequencies for calcium along princi-
pal symmetry directions for 0/Qp = 1.00: (a) fcc struc-
ture, (b) bcc structure.

at volumes ranging from A/AD=1. 10 to 0.70, where
~& is the normal atomic volume at zero pressure.
The precise values of 0 used in these calculations
are listed in Table I. The localization potential
used to construct the d basis states was taken to be
a square well of radius R» and depth 100Z/R„a for
each volume A. This procedure is essentially
equivalent to requiring that the d state vanish at
R~s and beyond, and provides a consistent method
of calculating the hybridization at each atomic vol-
ume.

The formulas for calculating the phonon frequen-
cies &o, from Z* and FN(q) can be found in a number
of places, including Animalu's paper. ' With each
set of Z~ and F~(q), we have computed &o, along
the three principal symmetry directions for both
the fcc and bcc structures. Figure 1 shows the
phonon spectra obtained for calcium at A/Ao =1.00
when hybridization is included. In general, the
qualitative features of these curves are preserved
as the volume is varied and also in the simple-
metal limit of no hybridization. One qualitative
difference which does occur is that the transverse
branch of the bcc spectrum does not cross above
the longitudinal branch for A/Ao ~ 0. 80 nor in the
simple-metal limit for any volume. This behav-
ior, however, does not have any noticeable effect
on &I"~h.

Quantitatively, the phonon spectrum may be char-
acterized by the zero-point vibrational energy E,„,
which is a measure of the average value of ur, . In
Table II we have listed the E» that we calculated
here for calcium. Note that E» always increases
when either 0 is decreased or hybridization is in-
cluded at a fixed volume. Also note that ~» is
always negative, which means that the average bcc
frequency is lower than the average fcc frequency.
In the simple-metal limit 14Zy„l approaches zero
as 0 decreases, while it remains almost constant
when hybridization is included.

The same over-all qualitative picture emerges
for strontium, and in Table III we have listed our
calculated E,„for this metal. We point out, how-
ever, that some of the transverse bcc phonon fre-
quencies become imaginary for A/AD=0. 70 when
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TABLE III. Zero-point vibrational energies (10+ Ry)

as a function of volume for strontium.

0/&p
Structure 1.10 1.00 0. 90 0.80 0.70

fcc
bcc

fcc
bcc

Without hybridization
9.1 10.2 11.6 13.3
8. 7 10.0 11.4 13.1

With hybridization
9. 5 10.7 12.1 13.7
8. 9 10.1 11.5 13.1

15.3
15.2

15.8
~ ~ ~ a

Some phonon frequencies were calculated to be imag-
inary.

hybridization is included. This means that the bcc
structure cannot be stable at this volume. We also
comment that our simple-metal values for E» of
10.2&&10 Ry for the fcc phase and 10.Ox10 Ry
for the bcc phase of strontium compare favorably
with Animalu's (model B) values of 10.5x 10 4 and
10.2&10 Ry, respectively.

In calculating the above quantities two approxi-
mate numerical procedures have been used. The
first of these concerns the evaluation of sums over
reciprocal-lattice vectors which occur in the for-
mulas for both the band-structure energy and the
phonon frequencies. In all cases, we have per-
formed such sums out to a sphere of radius 8.15q~,
where qD is the Debye wave number. Within this
sphere there are 536 reciprocal-lattice vectors for
the fcc structure and 554 for the bcc structure.
This procedure seems to provide more than ade-
quate convergence. In a test case, increasing the
sphere radius from 7. 15qD to 8. 15qD, which in-
creases the number of reciprocal-lattice vectors
summed over by about 50%, changed &E~, &Eo„,
and 4G by about 6%, 0. 1%, and 6%, respectively.

The second procedure concerns the integration
over the first Brillouin zone required in Eqs. (V)
and (6). To perform such integrations, we have
replaced the first zone by the Debye sphere and
have used the so-called three-direction Houston's
method, as described by Animalu. ' This was done
as a matter of convenience rather than strict ne-
cessity. Any small quantitative error this approxi-
mation may introduce into mph or +Fph will not af-
fect our final conclusions.

III. PHASE STABILITY CALCULATIONS

A. Pressure-Induced Transitions

We first consider the phase stabilities of calcium
and strontium in the limit of zero temperature. In
that limit Eq. (10) reduces to

&G = &Eh, + &E„+hE p„ (11)

Both &E» and &E„give predictable contributions
to &G. As noted above, &E» is always negative

and thus this contribution always favors the bcc
structure over the fcc structure, although only
slightly. From Tables II and III it can be seen that
I ~E» I has a maximum value of 0.7 &10 ' Ry for
calcium and 0.6 x 10 Ry for strontium at Q/Qo
= 1.10. The electrostatic-energy contribution
&E„is also always negative, as can be inferred
from Eq. (6). The quantities Z~ and (R») ~, and
hence I&E„I, increase as the volume is decreased.
The effective valence Z* also increases slightly
upon the inclusion of hybridization at a given vol-
ume. The approximate upper and lower limits on
Z* over the volume range under consideration here
are, respectively, 2. 55 and 2. 33 for calcium and
2. 69 and 2. 40 for strontium. Over this volume
range, 1.4~1~ 1~2.0 (10 Ry) for both cal-
cium and strontium. In contrast to 4E» and 4E
the band-structure energy contribution 4Eb, will
depend in detail on the form of the energy-wave-
number characteristic.

We have calculated band-structure and electro-
static energies for nine different crystal structures
as a function of ~. In addition to the fcc and bcc
structures, we have considered seven hcp struc-
tures with axial ratios ranging from 1.5 to 2.0.
In all cases, it was found that the ideal axial ratio
(1.63) minimizes the hcp energy. Apart from the
zero-point vibrational energy, Fig. 2(a) shows the
zero-temperature Gibbs free energy of the bcc and
ideal hcp structures relative to that of the fcc
structure for calcium as a function of volume in the
simple-metal limit of no hybridization. Figure
2(b) shows the corresponding result for strontium.
Note that for both metals the ideal hcp structure is
stable at Q/Qo = 1.00, while at a sufficiently com-
pressed volume the bcc structure becomes stable.
In general, these findings are not consistent with
experimental observation, although our simple-
metal model does permit the observed pressure-in-
duced transition from fcc to bcc in strontium. We
should also point out that the negative slope of the
bcc curve in Figs. 2(a) and 2(b) is in qualitative
agreement with Animalu's calculations. ' However,
only in strontium (with model B) did he find the fcc
energy to be lower than the bcc energy at Q/Qo
= 1.00.

In Figs. 3(a) and 3(b) we have plotted the re-
sults of the above calculations repeated with hy-
bridization included. Note that the fcc structure is
now stable at Q/Qo = 1.00 for both metals, and that
it becomes more stable as the volume is decreased.
This latter behavior is qualitatively correct for
calcium, but not for strontium.

B. Temperature-Induced Transitions

We next consider the case of zero pressure and
finite temperature. Because &E~ and AE~ are
now constant, the sign of &G can only be changed
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&G =0 are, respectively, 555 and 245'K. These
values are to be compared with the experimental
transition temperature of 721'K. Also note that
the slopes of the two &G curves in Fig. 4 are al-
most identical. This means that hybridization has
had virtually no effect on &F».

Figure 5 shows the corresponding results for
strontium. The predicted values of T, are 625 and
260 K, with and without hybridization, respective-
ly, as compared with Animalu's 150 K value' and
the experimental value of 830 'K. Also, note that
hybridization has steepened the (negative) slope of
&G somewhat.

C. Phase Diagrams

The calculation of T, at nonzero pressure again
proceeds by requiring that &G = 0 at the appropriate

IO

(b)
I I

K Strontium

o
bcc ~

fcc
0

lm
tP
C

LLI

hcp

I

0.80
-5

I.IO
I I

I.OO 0.90 0.70
9/Qo

FIG. 2. Band-structure energy plus electrostatic
energy of the bcc and ideal hcp structures relative to that
of the fcc structure as a function of volume in the simple-
metal limit of no hybridization: (a) calcium, (b) strontium.
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I
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I
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a/co

I

0.80 0.70

by the phonon contribution to the free energy ~».
As indicated above, &F» is small and negative at
T =0. As the temperature is increased, the sign
of &F» must remain negative because the phonon
frequencies are not altered. The magnitude of
&F» will increase, however, as can be inferred
from Eq. (7). Thus if &G is positive at T=O,
there will be some temperature T, where &G=0
and an fcc-bcc phase transition is possible. In
contrast, no fcc-hcp transition is expected because
the ideal hcp structure, being close-packed like the
fcc structure, should have a zero-point vibrational
energy above that of the bcc structure by an amount
comparable to I &E,„l.

In Fig. 4 we have plotted &G for calcium calcu-
lated both with and without hybridization. The val-
ues of T, determined (to + 5 'K) from the condition

CJ
CJ

O 20—

~~
U

IO—4)

4l
C

Llj
0 fcc

hcp

I.IO
I

I.OO

I

0.90
I

0.80 0.70
9/Qo

FIG. 3. Band-structure energy plus electrostatic
energy of the bcc and ideal hcp structures relative to that
of the fcc structure as a function of volume with hybrid-
izationincluded: (a) calcium, (b) strontium.
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IO Calcium

0/9 = I.OO
800—

hC
0

l-
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(b)

CP

O
0

C9
CI

600
0

I

IO
500

20 0
P(kbor )

I

Io 20

FIG. 6. Pressure-temperature phase diagram for cal-
cium: (a) experimental from Ref. 4, (b) present calcu-
lation with hybridization included.

-IO
0

I

200
I I

400 600

T( K)
800 IOOO

l5

IO

FIG. 4. bcc-fcc difference in free energy vs tempera-
ture for calcium as calculated from Eq. (10) at 0/Qp
=1.00. The solid line refers to the calculation done with
hybridization and the dashed line to that done without
hybridization.

atomic volume. The values so determined for cal-
cium are listed in Table IV and those for strontium
in Table V. It is interesting and important to note
that the trends in T, could have been inferred from
our earlier results. In the simple-metal limit, T,
decreases as the volume is decreased, in accord
with Fig. 2. When hybridization is included, T,
increases as the volume is decreased, as one
would expect from Fig. 3.

We may use the experimental pressure-volume
relationships (Table I) and the values of T, given
in Tables IV and V to calculate pressure-tempera-
ture phase diagrams. In Figs. 6 and 7 we have
plotted both the experimental phase diagram and
our result with hybridization included for calcium
and strontium, respectively. The agreement for
calcium is satisfactory, although clearly the theo-
retical slope dTJ'dP is too large. For strontium
our calculated dT,/dP has the wrong sign.

IV. DISCUSSION

O

C9
CI

Several clear trends have emerged from our cal-
culations. There is first the strong tendency for
the hybridization to stabilize the fcc structure in
the alkaline-earth metals at all pressures. The
positive dTJ'dP slopes that we have calculated re-
flect the increase in the strength of the hybridiza-
tion as the atomic volume is decreased. The pseu-

-5 900
(a)

-lo

I

200
I I

400 600
T( K)

l

800 OOOO

FIG. 5. bcc-fcc difference in free energy vs tempera-
ture for strontium as calculated from Eq. (10) at 0/Qp
= 1.00. The solid line refers to the calculation done with.
hybridization and the dashed line to that done without hy-
bridization.

—coo
hC
0

700

600
0

I

IQ 20 0
P(kbor )

lO 20

FIG. 7. Pressure-temperature phase diagram for
strontium: (a) experimental from Ref. 4, (b) present
calculation with hybridization included.
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TABLE IV. fcc-bcc transition temperatures T~ ('K)
predicted from Eq. (10) for calcium.

TABLE VI. Quantities associated with the hybridization
for calcium in Ry.

1.10 1.00
Q/Qp
0. 90 0. 80 0. 70 Quantity 1.10 1.00

Q/Qp
0. 90 0.80 0. 70

235

420

Without hybridization
245 160 0 (R

With hybridization
555 740 1070

0(L

1635

E
E
E~ -EJ-
M~

0. 325
0. 593
0.268
0.0816

0.347
0. 640
0.293
0. 0907

0. 372
0.688
0.316
0. 1021

0.402
0.741
0. 338
0. 1184

0.440
0. 805
0.365
0. 1393

bcc structure already has a lower free energy at T= 0.

dopotential contribution, on the other hand, tends
to favor the bcc structure at high pressures, as is
evidenced by the negative values of dT,/dP we have
found in the limit of no hybridization. Further-
more, the hybridization is operative primarily
through the band-structure energy and not the
phonon Helmholtz free energy. The strong influ-
ence of the hybridization on E~ can be traced to
the local maximum in E„(q) which consistently oc-
curs near q=2kz. (See Fig. 6 of Paper l. ) For
2 =2 the fcc structure has six reciprocal-lattice
vectors at 2. 03 k~, and, hence, the magnitude of
E~ tends to be maximized for this structure.

The strength of the hybridization is governed
primarily by two quantities: the mean position of
the empty d band, E~, and the hybridization matrix
element (R I 4 I p~). [Note that & here refers to the
hybridization potential and is not to be confused
with the symbol defined in Eg. (2). j The effective
strength of the hybridization can be roughly char-
acterized by the function

M„= ((k~ 4~ p, )„)'/(E —E ) (l2)

where the average is over the free-electron Fermi
sphere. In Tables VI and VII, respectively, we
have listed our values of E&, E~, E~-E&, and

Mhyb for calcium and strontium as a function of vo 1—

ume. Note that a11 four quantities increase as 0
decreases, although E~/Er remains almost con-
stant for both metals. The behavior of E„and E„-E& is in qualitative agreement with the band-

TABLE V. fcc-bcc transition temperatures T~ ( K)
predicted from Eq. (10) for strontium.

structure results of Kmetko on calcium and stron-
tium.

A significant omission in our calculational tech-
nique, however, is a realistic volume dependence
for the ion-core potential, from which E„, the d
basis states, and the pseudopotential itself are
directly obtained. In a formal sense, our core po-
tential is constructed in the infinite volume limit.
(See Paper I. ) The smaller the volume ratio 0/Qo
and the greater the amount of core, the larger the
error one expects to make in calculating both the
pseudopotential and the hybridization terms. It is
not surprising, therefore, that our calculated re-
sults show the best over-all agreement with experi-
ment at zero pressure and the worst agreement in
the case of strontium at high pressures. It seems
clear that the experimental behavior in strontium
at pressures greater than zero could be explained,
at least within the context of the generalized pseu-
dopotential theory, if an appropriate admixture of
pseudopotential and hybridization contributions to
the energy-wave-number characteristic were
achieved. In particular, a decrease in the effec-
tive strength of the hybridization potential and/or
an increase in the effective strength of the pseudo-
potential could change the sign of dT,/dP.

Another possible complication in the phase sta-
bility calculation is the effect of (neglected) higher-
order terms in the band-structure energy. At the
present time, it is not possible for us to make a
meaningful evaluation of such terms. However,
we have attempted here to optimize the conver-
gence of our total energy expansion both through
the use of a fully nonlocal pseudopotential and the
use of an expanded basis set. The significance of
the choice of pseudopotential to the validity of ne-

1.10 1.00
Q/Qp
0. 90 0. 80 0.70

TABLE VII. Quantities associated with the hybridization
for strontium, in Ry.

250
Without hybridization

260 235 150 50 Quantity 1.10 1.00
Q/Qp

0. 90 0.80 0.70

445
With hybridization

625 840 1145 ~ ~ ~

~No transition temperature. Some phonon frequencies
for the bcc structure were calculated to be i~.ginary.

E
E
E„-E
Mh„b

0.275
0.613
0. 338
0.0982

0.293
0. 653
0.360
0. 1089

0. 314
0. 702
0. 388
0. 1228

0.340
0.760
0.420
0.1400

0. 372
0.829
0.457
0. 1637
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glecting terms beyond second order can be illus-
trated by the following example. The phonon spec-
trum and the stable structure of the alkaline-earth
metal magnesium can be successfully described in
two distinct ways: first by the second-order opti-
mized nonlocal model potential theory of Shaw'9
and second, by the third-order local empirical
pseudopotential theory of Brovman et al. ' A com-
parison between the two treatments shows that the
quantitative effect of including full nonlocality in
second order is nearly the same as that of includ-
ing local third-order terms. Our nonlocal pseudo-
potential, of course, is the orthogonalized-plane-
wave (OPW) analog of Shaw's model potential.

The importance of the d states in optimizing the
convergence of the total energy expansion is also
quite clear. When hybridization is included direct-
ly, 4E~ is typically 10-15/p of E~, as compared
with only 2-3% when it is omitted. Thus unless
the contribution to &E~ from higher-order terms
is the same order of magnitude as their contribu-
tion to E~ itself, we expect these terms to be of
secondary importance. Moreover, the degree of
convergence, at least at Q/Qo = 1.00, is not highly
sensitive to small changes in the d states, and
hence, to the exact choice of the localization po-

tential. Using the d states from models D and E
of Paper I, for example, we obtain transition tem-
peratures of 575 and 515 'K for calcium and 605
and 555 'K for strontium, respectively.

It remains to be seen whether or not improve-
ments in calculating pseudopotential and hybridiza-
tion contributions to the band-structure energy will
have a significant impact on the theoretical phase
diagrams of calcium and strontium. In the high-
pressure region, at least, this is certainly con-
ceivable and we do expect that some improvement
can be made there. We do not wish to speculate
beyond this point, however, as a good deal of ad-
ditional work will be necessary to clarify the situ-
ation further. But regardless of what future de-
velopments may bring, it is now clear that a care-
ful account of s-d hybridization will be an essential
ingredient to any complete theoretical description
of the structures and phase transitions in the heavy
alkaline-earth metals.
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