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The scattering intensities of the 14.4-Keir y rays from Co" were measured at the I 333) and t444I
reflections of Al crystals in the temperature range 295-800'K. The elastic and inelastic components of
the scattered intensities were separated by means of the Mossbauer effect. The temperature dependences
of'the integrated intensities of the elastic peaks give evidence of non-Gaussian anharmonic contributions
to the Debye-Wailer factors. Comparison is also made between experimental and calculated temperature
dependences of the inelastic intensities. Some of the discrepancies found at the (444 j reflection are
explained by admitting a non-neglectable contribution of non-Gaussian terms in the correlation part of
the formula for the intensity of the thermal diffuse scattering.

I. INTRODUCTION

As is known, the thermal motion of the atoms in
a crystal lattice causes a weakening of the Bragg
diffraction lines and an increase in the total amount
of the thermal diffuse scattering (TDS). Thus, in
principle, x-ray-diffraction experiments can give
information about the dynamics of the lattice. For
example, the mean-square vibration amplitude of
the atoms can be obtained from the temperature
dependence of the integrated intensities of Bragg
peaks, whereas by measuring the TDS intensity at
different sites in the Brillouin zone one can obtain
the dispersion curves of the lattice phonons. The
greatest part of experimental research in this field
is mainly related to the atomic motion as described
in the harmonic approximation.

The suggestion that diffraction experiments
would also be useful to give evidence of anharmonic

effects was first given by%aller. Since then a lot
of theoretical and experimental investigations have
been performed, especially regarding the anhar-
monic contributions to the Debye-%aller factor.
However, in order to separate anharmonic effects
it is often necessary to make experiments at high-
order reflections and at elevated temperatures. In
these experimental conditions the intensity scat-
tered at a reciprocal-lattice node is quite appre-

.ciably made up of those x-ray photons which suffer
inelastic scattering by the thermal vibrations of the
lattice. Both elastic and inelastic scatterings are
affected by anharmonic interactions. However, it
is necessary to separate them in order to obtain
substantiated information on the amount of anhar-
monic contributions.

The only way to accurately separate the TDS
from the crystalline reflections is to use the high-
energy resolution of the Mossbauer effect. This
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method was described and discussed in two pre-
vious papers, ' where the 14.4-keV (X = 0. 8602 L)
Mossbauer radiation emitted by the Fe nuclide
was used to investigate the intensity of TDS at the
Bragg peaks as a function of temperature and of the
order of reflection in Si crystals. We found that
the angular and temperature dependence of the TDS
intensity was that of the one-phonon scattering
term. The higher-order terms did not give any
appreciable contribution because of the high Debye
temperature (543 'K) of Si. Subsequently~ we ap-
plied the Mossbauer effect to study the temperature
dependence of TDS at the (800) and (1000) Bragg
reflections of KC1. Owing to the high order of the
above reflections and the relatively low value of the
Debye temperature of KCl (230 'K), we were able
to show at high temperatures important contribu-
tions to the TDS by multiphonon scattering pro-
cesses. Anharmonic effects were found to be quite
negligible in Si, whereas in KC1 it was enough to
account for the effect of thermal expansion on the
lattice frequencies in order to fit the experimental
temperature dependences of both elastic and in-
elastic intensities with the calculated ones.

In this paper we describe the observation of large
anharmonic contributions to the Debye-Wailer fac-
tor and to the TDS intensity in aluminum crystals
at elevated temperatures. These observations
were made by using the Mossbauer effect to mea-
sure the temperature dependence of both elastic
and inelastic intensities at the (333) and f444) Bragg
reflections. The observed anharmonic contribu-
tions are shown to be much larger than those pre-
dicted by taking account only of the thermal expan-
sion of the lattice and the result is shown to be
made up appreciably by non-Gaussian terms.

II. THEORY

The theory of the effect of thermal vibrations on
x-ray scattering, when anharmonic effects are
taken into account, has been approached by a num-
ber of authors. " In this section, those general
features which are directly related to the present
experiment are briefly summarized.

The intensity of scattering of x-rays from a
crystal of identical atoms with scattering factor f
is given in electron units by

f(Q) f2$ (Q (it&-lt( ~ & (&((&~ (I(-u( ~ &)

rr'

where @ is the scattering vector, that is, the dif-
ference between the wave vectors k and Q of scat-
tered and incident x rays, respectively. R, and u,
are vectors indicating the equilibrium position and
the displacement of atom l, respectively. The
brackets denote thermal average.

Elastic Scattering

The Debye-Wailer factor is related to the inten-
sity for Bragg scattering and is given by those
terms in (1) which are independent of both l and l'.
Thus, the effect of the thermal motion on the elas-
tic intensity is equivalent to multiplying the scat-
tering factor of each atom by the temperature fac-
tor

(s(0 I( ) (2)

If the equilibrium position of the atoms is centro-
symmetric and if the displacements u, are small
or if they follow a Gaussian distribution, we have
exactly'

(&(4 ul )="s (4'1(&~&~2= e Q~ + &~2 (3)

where urz is the component of atomic displacement
along the direction of the scattering vector g.

When the atomic displacements deviate from a
Gaussian distribution, the result is '

(e"")=exp(-—,'((Q u, )') + ~&

[((q u, )') —3((g u, )')']+0(q')) . (4)

In the harmonic approximation the displacements
u, are small and have a Gaussian distribution. By
assuming the Debye model for the lattice frequen-
cies, we have from formula (3), in the high-tem-
perature limit,

38 Q'T
2mZ, G~ ' (5)

Inelastic Scattering

For a Gaussian distribution of atomic displace-
ments the function l(Q), which gives the intensity

where 8 is the Debye temperature, m is the mass
of the atom, and 8 and K~ are the Planck constant
divided by 2& and the Boltzmann constant, respec-
tively. Formula (5) is useful since it permits one
to summarize the results of experiments on the
Debye-Wailer factor by means of the value of O.

When anharmonic interactions do not cause the
atomic displacements to deviate appreciably from
a Gaussian distribution, M contains additional
terms which are proportional to T (for example,
the thermal expansion corrections), but it is still
proportional to Q . Therefore expression (5) can
still be applied to summarize experimental results
by assuming that the Debye temperature 0 is a
suitable function of the temperature of the crystal.
For non-Gaussian distributions, however, this
last procedure can no longer be applied, owing to
the presence of the so-called anomalous term in
Q in the expression of M; this implies that differ-
ent functions 8=9(T) should be assumed for differ-
ent Q in order to fit experimental data by means of
expression (5).
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with e "denoted by expression (3). The first sum-
mation, which differs from zero only when Q co-
incides with a reciprocal-lattice vector, gives
Bragg scattering; the second one is related to the
thermal diffuse scattering and can be written as

IT&&a (Q)= Nf (1 —e }+f e a"
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where N is the total number of atoms in the crys-
tal. For the model of independent vibrations the
average (rggo rgg. o& vanishes if l kl'. Therefore,
the two terms in expression (V) are called the Ein-
stein and correlation terms, respectively. The
f' t term I is a smooth function of the scatter-xrs erm E„

t theing angle, whereas I„gives broad peaks a e
Bragg angles.

For non-Gaussian distributions one readily ob-
tains

(Q) Nf a(1 AN)+fae-as Q erq'rggg-fig ~ &

x( o rlrgo sgeo&+o 5' ]} (8)

where now e s is given by expression (4}, and

S =h [3&s'gosi o& 4& 'gogr-o& 3«~io&-(sg'o&

@gorrg'o&@go&+2(rrro"r'o& H (9)

where terms in O(Qa) are neglected.
It must be rememebered that the TDS intensity

m egrt grated over an entire Brillouin zone BZ does
not depend on the choice of the model for the la-
tice vibrations; in fact, the integral of the total
scattered intensity (Bragg plus diffuse scattering)
over a lsBZ is not affected by the displacements of
the atoms from their equilibrium position.
lows that the integral over a BZ of both correlation
terms appearing in (7) and (8) is zero. This re-
sult suggests that the correlation terms give posi-
tive and negative contributions as Q is made to vary
inside a BZ so that the TDS intensity is peaked at
reciprocal-lattice nodes.

III. EXPERIMENTAL METHOD

The separation of the p rays which are elastically
scattered by the crystal from those which undergo
~eas c el ti scattering was done by using the same
procedure described in previous papers. '

10

I I I I

316 318 320 322 324 326
ANGt E OF THE CRYSTAL Ideg)

FIG. 1. Scattered intensities vs the glancing aagle
between incident beam aad the surface bf an Al crystal,
(444}reflection, Bragg geometry, at room temperature.
Closed circles and open triaagles are experimental points
and correspond to the curve of I„aad I (M5ssbauer ab-
sorber out of and in resonance, respectively). Open crr-
cles were obtained from the two above sets of experi-
mental data and correspond to the curve (dashed) of the

lastic intensity. The straight line under the curve isine as ic i
the hard y and cosmic background. The dashed straxg
line is the calculated Compton scattering.

mCi Co ~ source diffused in a chromium matrix
(10 mm high x 5 mm wide) was used together with

a 310-stainless-steel absorber 98% enriched in
2Fe'7, with a thickness equal to 1 mg/cm of Fe'g.

The Al crystals were rectangular lamellas
(15x15 mm ), about 2 mm thick, with faces paral-
lel to the (111)planes within a 3'. The lamellas
were chemically polished after being cut by spark
machining from bigger crystals with a purity better
than 99.99'%%up.

The elastic and inelastic intensities at the peaks
of the {333)and (444) reflections were measured by
using the reflection (Bragg) geometry in the tem-
perature range 295-850 'K. At the scattering an-
gles used in the experiment the crystal samples in-
tercepted all of the incident beam which had a hor-
izontal divergence of 4 . In some cases, the scat-
tered intensities were measured as a function of
the angle between the incident beam and the crystal,
which was rotated around the goniometer axis. The
source and the counter were set at the scattering

le 28 equal to twice the Bragg angle for the re-
flection of interest. In many cases, however, e
measurements were done only at the maximum of
the Bragg peak. Figure 1 illustrates the curves
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FIG. 2. Temperature dependence of the logarithm of
the integrated intensity of the elastic diffraction peak
for the {333)reflection. Closed circles, open circles,
small triangles, and crosses are experimental points
and correspond to measurements taken during different
temperature cycles or in different Al samples. The solid
line gives the graphical best fit of experimental points.
The dashed line gives the temperature dependence in the
quasiharmonic approximation which was calculated by
taking 8=395 'K at room temperature, as explained in
the text.

The absolute values of the integrated intensities
of Bragg peaks at room temperature were mea-

of the scattered intensities versus the angle between
the incident beam and the crystal for the (444) re-
flection at room temperature. The top curve is
the intensity I„measured with the source and the
absorber out of resonance; the middle one is the
intensity I„, which was measured at resonance.
The dashed curve, which has a peak at the Bragg
angle, is the intensity of the inelastic scattering
and was derived from I„and I„by applying the for-
mulas (1) of Ref. 4. The base line corresponds to
the background of hard y and cosmic radiations and
the straight dashed line corresponds to the 14.4-
keV Cornpton scattering, which was calculated by
using a previously reported formula with the val-
ues of the incoherent scattering function for A1
given by Freeman.

The absolute values of the integrated intensities
of the elastic diffraction peaks were obtained by
subtracting the area under the inelastic curve from
the area under the curve of the total intensity I„
and by measuring the intensity of the incident beam
attenuated by calibrated Al filters.

The sample was heated by means of a small elec-
tric furnace as described in Ref. 5. In order to
avoid errors due to incidental bendings of the sam-
ple during temperature cycling, the shape of the
Bragg peaks was checked and found to be regular
at the various temperatures of the experiment.

IV. RESULTS AND DISCUSSION
Elastic Scattering

sured previously and are summarized by Table II
of Ref. 4. They were compared with those calcu-
lated for both perfect and mosaic crystals. We
used the Debye temperature 8= 395 'K, which is
the experimental value for 0 at room temperature
as given by Nicklow and Young. ' The resulting
experimental values were very close to those of
the mosaic crystal for all reflections investigated
((222), (400), (333j, (600]; and(444)). Since the
above specimens were used in this work, we may
assume the integrated intensities of elastic peaks
to be proportional to e ", neglecting extinction
effects.

The temperature dependences of the logarithm
of the integrated intensities are given in Figs. 2
and 3 for (333) and (444) reflections, respectively.
The dashed lines in both figures give the tempera-
ture dependences calculated by assuming 0= 395 'K
at room temperature and by taking account of the
thermal expansion of the lattice as explained by
Paskin. ' In this way, the apparent Debye temper-
ature varies with temperature according to the for-
mula

1 )r
8ss, 1+3P(T —295) Il

(10)

U)—100
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FIG. 3. Temperature dependence of the logarithm of
the integrated intensity of the elastic diffraction peak
for the (444) reflection. Explanation is as for Fig. 2.

700300

where P is the linear expansion coefficient and y is
the Gruneisen constant. M was calculated by
means of formula, (5) corrected by the factor 4 (8/T)
+-,'(8/T), by taking r=2. 06, and by taking into ac-
count the temperature dependence of P. Both these
data were obtained experimentally and are reported
in Ref. 16. The above procedure to calculate the
temperature dependence of the Debye-Wailer fac-
tor may reasonably be called the quasiharmonic
approximation and was found to agree with the
Nickow- Young experiment' in the temperature
range V8-300 K. However, as may be seen from
both Figs. 2 and 3, the disagreement is evident at
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elevated temperatures, suggesting that the amount
of anharmonic contributions to the Debye-%'al)er
factor becomes quite considerable with increasing
temperature. For example, at 800'K, at the (444)
reflection, the value of 2M obtained from experi-
mental data was 4. 81, whereas in the quasihar-
monic approximation (dashed line) one gets 2M
= 3.V2. From the experimental data on Figs. 2
and 3, by taking 8= 395 'K at room temperature,
we obtained two different temperature dependences
of 8 for (333}and (444}reflections T.hese data

are reported in Fig. 4togetherwith those by Nick-
low aad Young be?ow room temperature, those
reported by Chipman'~ from powder-diffraction ex-
periments, and by Dingle and Medlin. As ex-
plained in Sec. II, different temperature depen-
dences of 8 for different reflections suggest that
the thermal displacements of the lattice atoms do
not follow exactly a Gaussian distribution. More
precisely, neglecting non-Gaussian terms, it fol-
lows from formula (4) that 2M/Qs is independent of
the scattering vector Q, so that the expression

I {T)-2M

(11)

is a measure of non-Gaussian anharmonic contri-
butions to the Debye-Wailer factor, as was pointed
out in Ref. 19. In formula (11), Te is a reference
temperature and H and H' mean two different re-
flections H -=(hM) and H' =-(It'it'I $. This argument
clarifies the reason why Chipman's data for the
{422] reflection and those by Dingle and Medlin for
the (511]reflection seem to agree better with those
obtained from the (333] reflection than from the
{444}one. In fact, Qsi4«i is 100% higher than
Q i4tsi, whereas piss@ is only 12. 5% higher, and
flIlRlly Q (gg q = Q &333)

For mosaic crystals one gets

{i'tlti't} tyye their treatment gives

d{&a'o& —3&a'o&') 3Z 1 @""'(r)
dT' ' 3072 [e""(r,)]'

[@«cc){r)]3
4005 [@(f4){r)]5

expressed in terms of the derivatives of the po-
tential energy of interaction 4&{re) between nearest
neighbors. The 70 value is related to the equilib-
rium value ro of the nearest-neighbor separation
at temperature T by

1 HR( &O)T(12)
q'„, R„.{T)

Thus information about the amount of non-Gaussian
terms can be obtained by measuring the tempera-
ture deyendences of the integrated intensity R(T)
for two different reflections H and H'. Now the
non-Gaussian or "anomalous" term

0'(&a'o& —3 & 'o&')

is proportional to T3, as was shown in a general
way by Maradudin and Flinn. Thus a plot of ex-
pression (12) versus T —Te should be linear. This
is shown in Fig. 5, where a((444}, {333)& To, T)
multiplied by 4vs/a (a is the lattice parameter)
was reported by taking To= 295 'K. From the slope
of the straight line we obtained

&f{&a&o&—3&a'o&') 44 4 ~ ~cm

%e may compare this result with that calculated
by using the expression given by Maradudin and
Flinn for a fcc lattice using a nearest-neighbor
central-force model. From reflections of the

where E is the linear expansivity of the lattice.
@{re)is assumed to be a Morse-type potential in

o~+0

o

wp n
hooo j444j Presentwork

+++
j 333 j Pre se nt work

non Chipman j422j ref. l l71
e ~ e Nickiow and Young. ref. il4l
ooo Oingle and Medlinj Sltjref. il8i

0 200 400 600 800
TEMPERATURE I K)

FIG. 4. Different temperature dependences of the x-
ray Debye temperature 8 as obtained in the present work
and by other authors. The solid line gives the quasihar-
monic behavior as calculated by using the Paskin for-
mula 0.0). Dashed lines shower the two different depen-
dences for Ihe {333}and {444}reflections.
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order to obtain its fourth derivative

[4, (III)(& )]s
g @(II)(y )

and use is made of the expressions of e in the high-
temperature limit and of the bulk modulus B:

C, (III)(y }
rC, (II)(& )~2 ~

4 4, (II)(& )B-

By combining all the above formulas, it follows
that

d((u o& 8(u ) } 1 il 8 10s&cP

= 3.33 x 10 cm 'K,
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FIG. 6. Temperature dependence of the intensity of
the inelastic scattering (TDS plus Compton scattering) at
the (333) Bragg peak. The continuous line gives the cal-
culated dependence as explained in the text.

which is 4. 8X10 times lower than the experimen-
tal value. However, this disagreement is not
surprising since, as was pointed out by Wolfe and
Goodman, "the method given by Maradudin and
Flinn underestimates the contribution of the non-
Gaussian term by several orders of magnitude.
The two latter authors had to evaluate complicated
lattice sums in the reciprocal space, and in order
to do that, they made several assumptions, which
may have led to fortuitous cancellations between
the two terms appea. ring in expression (13). More-
over, the nearest-neighbor central-force model
is not indicated for aluminum, where interactions
between the origin atom and atoms in the 8th to
15th shells must be taken into account in order to
describe the phonon dispersion curves. By using
direct-space sums, Wolfe and Goodman found that
the non-Gaussian term in copper was about 10

times higher than that calculated by Maradudin and
Flinn. Moreover, their method seems to be suit-
able whatever the interaction-force model one may
assume. Thus, it is possible that a better agree-
ment could be achieved between calculated and ex-
perimental data also in the case of aluminum crys-
tals.

Inelastic Scattering

The temperature dependences of the intensities
of the inelastic scattering at the peaks of the (333)
and (444) reflections are plotted in Figs. 6 and 7,
respectively. In order to compare these results
with the calculated temperature dependences of the
TDS intensity, it would be necessary to evaluate
expression (8) as a function of T and to integrate
it over a reciprocal-lattice volume v determined by
the scattering geometry (source and slit sizes and
distances; scattering and crystal angles). This

O

6
I-

C9

4

3

2

1

0
50&00 20 30

lT —Toj(10 )

FIG. 3. Plotof u((333}, {444), To, T) multiplied by
4~ /a as a function of T —To (TO=295 K). The quantity
in the ordinate scale is a measure of the non-Gaussian
anharmonic contributions to the Debye-Wailer factor
(see text).
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FIG. 7. Explanation is the same as for Fig. 6 except
that the experimental point and the calculated curve refer
to the inelastic intensity at the (444) reflection.
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TABLE I. Contributions (in%) of the first-, second-,
and higher-order TDS terms and of the Compton scatter-
ing to the total inelastic intensity at the {333)and {444)
reflections of Al. Different contributions are calculated
as explained in the text and in Refs. 4 and 5.

T First Second
{kkl) ('K) order order

Higher
orders

Compton
scattering

300 88.02
400 84.92
500 81.22
600 77.03
700 72.43
800 68.03

300 78.2
400 72.64

{4~) 500 65.80
600 57.67
700 48.08
800 36.41

8.81
12.00
15.37
18.78
22. 06
25.62

13.93
18.25
22. 14
25.00
26.04
24.39

0.24
0.46
0.84
1.47
2.31
4.08

0.84
1.70
3.24
5.89

10.17
16.87

2.93
2.62
2.57
2.72
3.07
3.75

6.99
7.41
8.8l

11.43
15.71
22.32

procedure is difficult to perform, so we tried to
calculate the TDS temperature dependence as fol-
lows.

The arguments reported in Sec. II suggest that
the TDS intensity for a given crystal integrated
over v may be written as

R, = e s"f,(Q, T).
In the harmonic approximation the function f,(T, Q)
is a sum of several terms: the one-phonon, three-
phonon terms, etc. , which are proportional, re-
spectively, to T, T, T, etc. Each of them may
be evaluated as a function of the lattice frequencies
of the crystal. In order to evaluate R, we used the
experimental value of e ~" as derived from the
measure of the temperature dependence of the
elastic intensities, and for f,(T, Q) we used the ex-
pression which applies in the harmonic approxima-
tion corrected by introducing the temperature de-
pendences of the lattice vibration frequencies.

The procedure which we used to calculate the
contribution of the one-phonon term is fully de-
scribed in Ref. 4, and for the high-order terms
we used the approximate methods described in Ref.
5.

The two-phonon contribution was calculated by
integrating over ~ the expression given by Paskin
and by Boric, and the contribution of higher than
second-order terms was evaluated by assuming
that these terms are constant inside the Brillouin
zone. First- and second-order TDS terms were
given in Ref s. 4 and 5 as a function of the mean
velocities v, and v, of longitudinal and transverse
waves in a polycrystalline sample. Their room-
temperature values were taken as v, = 6.422&&10

cm/sec and o, = 3. 110x10 cm/sec, ~ and their
temperature dependences were assumed to be those

80-

70

~60

z50

~40

30
MI-
Z 20
0
O 10

~3 a—g 3~s~a

316 318 320 322 324 326
ANGLE OF THE CRYSTAL ~ deg )

FIG. 8. Scattered intensities vs the glancing angle for
the {444)reflection at 700 'K. Explanation is as for Fig.
1.

derived from the phonon dispersion curves in the
[310]direction, measured in the range 393-793 'K
by means of cold neutron scattering technique.
The whole contribution of higher-order terms was
expressed as a function of 2M, whose experimen-
tal values are known. Table I summarizes the
percentage contribution of first-, second-, and
higher-order TDS and of the Compton scattering
at various temperatures for both the (333}and {444}
reflections. It can be seen that the amount of first-
and second-order terms is considerable also at
elevated temperature, so that the TDS peak at the
{444}Bragg reflection is still well pronounced at
700 K as is shown in Fig. 8. Previously reported
room-temperature measurements of the TDS in-
tensity at several reflections in Al were found to
have a dependence on sin8/X in agreement with
that of the one-phonon term. However, this does
not contradict the present work since it is found
that the correction for the multiphonon terms does
not alter considerably the sin8/1. dependence ln
Al. For example, the ratio of the TDS intensities
at the {333}and {444}reflections is changed by
about 6%, so that the precision of the measure-
ments reported in Fig. 8 of Ref. 4 makes it irn-
possible to evidence the effect of the multiphonon
correction.

The calculated dependences of the inelastic scat-
tering intensities (TDS plus Compton scattering)
are given by the continuous lines in Figs. 6 and 7.
The agreement with experimental data is good for
the {333}reflection, whereas the calculated tem-
perature dependence is appreciably faster than the
experimental one in the case of the {444}reflec-
tion. The argument that this discrepancy may be
due to an erroneous evaluation of the amount of the
Compton scattering is scarcely reliable. In fact,
the Compton intensity should be increased by a
factor 5. 6 in order to fit the experimental data of
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the {444}reflection. This factor is considerably
higher than the uncertainty derived by using the
formula reported in Ref. 3 (for example, the
evaluation of the reciprocal-lattice volume r);
moreover, the arbitrary assumption of a factor
5. 8 would cause a 10% discrepancy between the
calculated and experimental temperature depen-
dence for the {333}reflection. It is also worth-
while to remember here that the entire above-
mentioned method for calculating the several-order
TDS contributions and the Compton scattering re-
sulted in good agreement with experiment both for
Si and for KCl crystals, where the one-phonon term
and the high-order terms predominate, respectively.
For the KCl crystals there was evidence that the
harmonic or the quasiharmonic approximation was
sufficient to explain the temperature dependence of
the Debye-Wailer factor. Since for aluminum the
contrary happens, we advance the hypothesis that
the observed deviations in the temperature depen-
dence of the inelastic intensity at the {444}Bragg
peak are due to anharmonic contributions to the
TDS intensity. By introducing in the above cal-
culation the experimental values of 2M and the tem-
perature dependence of the lattice frequencies these
contributions are not taken into account.

Comparing formulas (7) and (8) of Sec. II and
having in mind the standard procedure for calculat-
ing the TDS intensity, ' we observe that the function

f,(Q, T) can be written by means of a sum of increas-
ing-order TDS terms only if non-Gaussian contri-
butions are unimportant. But the presence of the
term Q S in the argument of the exponential in
formula (8) introduces additional complications
which should become more and more important with
increasing Q. For example, if the presence of the
term Q P becomes important at about 550 'K at the
{444}reflection (see Fig. 7), the corresponding
temperature for the {333}reflection would be 810
or 980 'K if 5 is proportional to T or T, respec-
tively. Now, F will be a sum of terms proportion-
al to T and T3. The fact that we observe a dis-

agreement for the {444}and not for the {333}re-
flection is not surprising, if we consider that the
explored temperature range extends only to about
800 'K.

V. CONCLUSIONS

The Mossbauer effect was used to separate the
elastic and inelastic parts of the scattered inten-
sities at the {333}and {444}Bragg reflections in Al
crystals in the temperature range 29S-800 'K. The
most significant results are the following.

(a) The temperature dependences of the integrated
intensities of elastic peaks show large anharmonic
contributions to the Debye-Wailer factors. By
analyzing these results in light of the existing theory
of the effect of anharmonic interactions on the x-
ray-scattered intensities, it was proved that effects
coming from deviations from a Gaussian distri-
bution of the thermal displacements of the atoms
@re detectable in aluminum. The non-Gaussian
contribution to the Debye-Wailer factor was found
to be about 103 times larger than that estimated by
means of the approximated method of Maradudin
gnd Flinn for a nearest-neighbor central-force
model. More sophisticated methods like those
used by Wolfe and Goodman" should give more
correct results.

(b) Some discrepancies between experimental
and calculated temperature dependences of the in-
elastic intensity at the {444}reflection were ob-
served. By comparing this result with previous re-
sults on Si and KCl crystals, the above discrepan-
cies were interpreted as due to anharmonic con-
tributions to the TDS intensity. Such contributions
are over and above those due to the introduction in
the calculations of the experimental values of the
Debye-Wailer factor and the temperature depen-
dence of the lattice frequencies.

Finally, we advance the hypothesis that the role
of non-Gaussian terms in the correlation part of
the TDS intensity may be important.
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The evolution with x of the monoclinic-to-tetragonal transition temperature and of the

room-temperature monoclinic structures of the system V, „Cr„O, have been reexamined and extended

to cover the entire solid-solution range 0 & x & 0.20. The space group of the room-temperature

monoclinic phase changes from P2, /c at x = 0 to C2/m for 0.005 & x & 0.065 and P2/m for

0.07 & x & 0.20. The monoclinic P2/m structure is determined for the first time. The distortion from

tetragonal symmetry is accomplished by a contraction of the V-0 bonds in the tetragonal (110)„planes
and an expansion in the (110)„planes. The structures and the conductivity changes are interpreted in

terms of two overlapping bands that change their relative stabilities with x. The substitutional Cr'+

ions, which have a localized-electron d' configuration, also perturb the electron potential sufficiently to

induce, at larger x, a 3d -electron localization on the vanadium ions.

INTRODUCTION

Stoichiometric VO~ exhibits a first-order semi-
conductor-to-metal transition at T, = 340 K. The
metallic high-temperature phase has the tetragonal
(P4z jmnm) structure of rutile, and the low-temper-
ature phase is monoclinic (P2q/c). The relation-
ship of these two phases to one another is illustrat-
ed in Fig. 1. In the rutile structure, V~-occupied
octahedra form edge-shared strings parallel to the
tetragonal c„axis. In the low- temperature phase,
these strings are broken up into V-V pairs, the
uniform cation separation of 2. 88 A within a string
disproportionating into 2. 62 A within a V-V pair
and 3.16 A between pairs. In addition, the axis
of each pair is tilted away from the c„axis to make
a shortest V-0 separation of 1.76 A. The bridging
anions of a pair have V-0 separations of 1.86 and

1.89 A. There is no magnetic order in the low-

temperature phase.
The low-temperature structure is suggestive of

homopolar V-V bonding, as was already pointed
out by Magneli, ' and Goodenough4 anticipated the
lack of magnetic order by pointing out that homo-
polar bonding could also account for the semi-
conductor- to- metal transition.

From the symmetry constraints of the structures
and known trends in the physical properties of
transition-metal oxides, it is also possible to
identify the essential features of the energy dia-
grams for these two phases. ' In vanadium oxides,
the Fermi energy E~ falls above the top of the 0
2p band and below the vanadium 4s band. There-

fore, formal valences can be used to designate the
number of d-like electrons present per vanadium
ion. Orthorhombic crystalline fields split the d'
energies at the Visions into two unstable 0-bonding
orbitals, two quasidegenerate m-bonding orbitals,
and a stable d„orbital'oriented along the c„axis of
the tetragonal cell. A critical V4'-V4' separation
R, = 2. 94 A has been estimated for the transition
from itinerant to localized behavior of the 3d' man-
ifold in oxides containing a V~-ion subarray. '
Therefore, the 3d orbitals parallel to the c„axis
should form a narrow d„band in tetragonal VO2
(see Fig. 2). From data for the transition-metal
oxides with perovskite structure, it is known that
covalent mixing between oxygen 2p, both p, and

p„and the V '-ion 3d orbitals is strong enough to
create itinerant-electron d-like orbitals. ' There-
fore, the two o-bonding d orbitals per V~' ion form
unstable 0* bands and the two m-bonding d orbitals
form quasidegenerate m* bands via V"-O' -V
interactions. Observation' of a nearly isotropic
conductivity in single-crystal VO2 was interpreted
to indicate that the w* bands overlap the Fermi
energy Ey,

In the monoclinic phase, V-V pairing along the
c„axis splits in two the narrow d}, band (which may
already be split in the tetragonal phase by electron
correlations). The semiconducting character of
the monoclinic phase requires that the m* bands
be raised above E~ and that the formation of V- V
pairs stabilize V-V homopolar-bond orbitals below

E~, as shown in Fig. 3. Since 2. 62 A &R, and
3. 16 A&R„ it follows that in the monoclinic phase


