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A mean-field theory of phase separation in liquid-metal alloys is described. The method satisfactorily

accounts for the variation of critical concentration in alloys of simple metals, and also gives critical

temperatures in reasonably good agreement with experiment. It predicts that under pressure the critical
temperature should rise proportionally to the ionic number density. The theory leads to typical mean-field

divergences in the x-ray scattering intensity, specific heat, and temperature derivative of the resistivity. The
relation between the instability that causes such divergences and the "freezing instability" described by
Schneider et aL is discussed.

I. INTRODUCTION AND CONCLUSIONS

The properties of binary liquid-metal alloys with
a miscibility gap have recently been the subject of
much experimental interest. ~-6 The main concern
of such studies has been fluctuation effects above
the critical point for phase separation. Anomalies
have been reported in the x-ray~ and neutrons scat-
tering intensities, specific heat, and electrical
resistivitys-~ near the critical point.

By contrast, theoretical studies~ 8 have been con-
fined to attempted calculations of the phase-sepa-
ration curve itself, and the models used thus far
cannot account for fluctuation effects. The model
of Ref. 7 (hereafter referred to as I), for example,
leads to a calculated phase-separation curve in
rather good agreement with experiment. The curve
is determined there by means of a common-tangent
construction applied to the free-energy isotherms
(see Fig. 1). The free energy is obtained varia-
tionally, using hard-sphere structure factors to
evaluate the ion-ion interaction energy and the en-
tropy. This approach can never lead to divergent
concentration fluctuations because, as is well
known, hard-sphere structure factors, at least in
the Percus- Yevick approximation, exhibit no di-
vergences at any concentration and temperature. ~o

Indeed, phase separation occurs at all, in the model
of I, only because the free energy, unlike the struc-
ture factors, does differ from that of a simple mix-
ture of hard spheres.

It is the purpose of this paper to present a sim-
ple mean-field model for phase separation in liquid-
metal alloys. The critical point will be determined
within this model as the maximum temperature T„
and corresponding concentration g, , at which con-
centration fluctuations diverge. This choice, un-
like the approach of I, automatically ensures that
a number of experimental quantities directly de-
pendent on such fluctuations will also diverge at
T, . Thus the present study- x epresents the first
microscopic theory of phase separation in liquid-
metal alloys that is also capable of describing,

albeit very crudely, fluctuati. ons above the critical
point.

To calculate the structure factors, it will be
assumed that, under the action of an infinitesimal
external field, each ion responds like a f~ee par
ticfe to the mean field acting on it. The mean field
consists of the external field plus the self-consis-
tently determined field due to the induced charge
densities of the other ions. The response functions
thus obtained are related to the structure factors
by the fluctuation-dissipation theorem.

It is rather surprising that this crude model is
capable of producing a critical point for phase
separation, as well as several fluctuation effects
above T, . Yet the critical temperatures, and,
especially, the critical concentrations calculated
by this approach for a number of alloys, are in

FIG. 1. Schematic of behavior of Helmholtz-free-
energy isotherm E(g, T) in an alloy vrith a miscibility gap.
For T& T„82'/8x &0 at all concentrations. For T&T~,
the limits of solubility are given by the intersection of
the isotherm with a common tangent (dashed line). This
is the method used in Ref. 7 to find the phase boundary
in Li+ai~.
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good agreement with experiment, even though ob-
tained without benefit of any free parameters. In-
deed, the theory appears to account completely for
the systematic variation of x, from one alloy sys-
tem to another. It is found that x, is determined
primarily by valence differences between the alloy
constituents, or, in isovalent alloys, by differences
in atomic volume and effective ionic radius. The
critical exponents yielded by the theory are, of
course, mean field. Thus, for example, the x-ray
scattering intensity I(q, T) at scattering vector q
varies as [a(T- T, )+ bq~] ~, the specific heat C»

„

at constant volume and concentration diverges as
(T- T,) 't, and the first temperature derivative
of the resistivity diverges as ln(T- T,). Although
a more elaborate theory, such as an approach us-
ing as a zeroth approximation a hard-sphere liquid
rather than a gas of free particles, might lead to
different, and more accurate, coefficients for
these divergences, it mould invariably give the
same exponents.

As a by-product of this investigation, it is pos-
sible to suggest a connection between the instabil-
ity that leads to phase separation and the "freez-
ing instability" discussed by Schneider et af. ~~

The critical point for phase separation is deter-
mined in the present approach by the condition that
a, certain functionD (q, T, x)=0 at q=0 and ~=~, .
For any q and x, D(q, T, x) happens to be quadratic
in T. The solution corresponding to phase separa-
tion is readily isolated. The other solution ap-
pears to be related to the freezing instability. In
the present crude model, the freezing-instability
temperatures are all negative. For a more elab-
orate model, they are probably positive at certain
values of q, thus leaving open the possibility that
the mixture might be unstable below some temper-
ature against the formation of a finite-wavelength
density fluctuation. This tendency may possibly
be competing with the instability against an in-
finite-wavelength concentration fluctuation which
leads to phase separation.

The results of this work eall attention to a, para-
dox implicit in the method. Using free-energy
isotherms obtained from the present mean-field
theory, we can find the phase-separation line by
the common-tangent construction illustrated in
Fig. 1. The critical point so determined does
not coincide with that found by the criterion of di-
vergent concentration fluctuations. In an exact
theory, of course, the two must be identical. The
discrepancy is inevitable in approximate ap-
proaches. In the present approach, the free energy
is highly inaccurate, being based on structure

factors that do not exhibit any peaks. Thus it is
far preferable to find the critical point in this case
from the fluctuation condition, rather than from
the common-tangent construction.

%e turn now to the body of the paper. Section II
describes the mean-field method of calculating the
structure factors, and Sec. III applies the method
to liquid-metal alloys with a miscibility gap.

II. MEAN-FIELD THEORY

Consider a liquid-metal alloy A„Bz„.If the alloy
has volume 0, the three structure factors
S„„(q),S~s(q), and Sss(q) are defined by

s„(q)

N N -1/2
ega ~

(R~-I~) N N 1/85

Rg, Qg

mhere N, is the number density of the ith compo-
nent, 8, is a position vector of an ion of type i,
and the brackets denote an ensemble average.

It is convenient to find an expression for the
structure factors in the long-wavelength limit via
the corresponding susceptibilities y, ~(q, (()). These
are most easily defined in terms of an infinitesimal
external perturbation

&'=f1 '[n~(-q)~~~*'(q(o)

+ns(-q)bVs*'(q(o)]e ' '

n, (q) = fe"'"n, (r)dr

is the (number) density of the ith ionic species, and
b V;*'(q&u)e '"' is the Fourier component of the ex-
ternal potential acting on the zth species at time t.
Since H' is infinitesimal, it induces ionic densities
bn, (qt) = bn, (q(o)e '~ linear in the 6V,'s. The sus-
ceptibilities y,z(qv) are then defined by the rela-
tions

bn, (q(o) =Z y„(q(u)5 V;.*'(q(o), (3)

where the indices i and j take on the values A and
B.

The mean-field approximation consists of the
assumption that each ion responds like a free par-
ticle to the mean field acting on it. Thus

b., (q )-~,'(q )«;"(q ), (4)

where 1(,'(q~) is the free-particle susceptibility of
the ith species, and QVP'(q&u) is the mean field
acting on the ith species. If the interaction between
the ions is adequately described by local pair po-
tentials W, ~(r), then
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I'
=

~ 5V, '(q(d) +ZW„(q)en~(q(d)) e '"', (5)

where

W„(q)= fe«'W„(r)d.r.
Substituting (5) into (4), solving for 5n„and 5nB,

and comparing coefficients with the definitions (3),
we obtain

XAA (1 XB WBB)XA/D )

XBB ——(1 —
XA WAA) XB/D,

XAB XBA ~ABXAXB/ D y

0 0 I

D = (1 —
XA WAA) (1 —XBWBB) XAXB WAB t

where we have suppressed indices q and &.
The structure factors S,~(q) are related to the

corresponding susceptibilities by the fluctuation-
dissipation theorem:

dtt(d): (Njttt) ttt f toth—'dh Imttt (d )d, (7)

where P= (kBT) t. In the classical limit (R-O),
Eq. (7) reduces by application of the Kramers-
Kronig relations to the well-known expression~2

S,~(q)= —(N, N;) t k BT )X;( 0q) . (8)

Substituting (6) into (8), and using X~B(q, 0) = —PN„
we find

S„„(q)= [1+Py WBB(q)]/D(q, P, x),
S (q) = [1+Px W (q)]/D(q, P, x), (9)

S„B(q)= SBA(q) = —P[x(1 —«)) WAB(q)/D(q, P, x),
with

D(q, p, x)= [1+px W (q)] [1+py W (q)]

- P'xy WA'B(q) . (10)

Here y= 1 —x, and Wq~(q) =NW, ~(q) has dimensions
of energy, N=N„+NB being the total number of
ions per unit volume.

Equations (9) and (10) are merely the two-com-
ponent generalization of the mean-field structure
factors S(q) = [1+PNW(q)]

~ for a single-component
fluid. As such, they share the defects of the lat-
ter approximation, namely, (a) they fail to predict
the first peak in the structure factors of liquid
metals; (b) they are inapplicable to systems de-
scribed by Lennard-Jones pair potentials, whose
Fourier transforms do not exist. Both short-
comings arise from a failure to take proper ac-
count of the short-range correlations in the liquid.
Equations (9) and (10) involve the Fourier trans-
forms of the pair potential W,~(r) over the entire
range of ionic separation. Yet the quantitative
behavior of the pair potential can have no physical
significance for separations less than some effec-

tive hard-core diameter d„„withinwhich the po-
tential is never actually sampled. In a more ac-
curate approach, one might expect that W,~(q)
would be replaced by a quantity like

W„(q)= fe"'g, ;(r)W„(r)dr,
where go(r) is a hard-. core pair correlation func-
tion. Such an approach will give well-behaved
functions W,~(q) even for a Lennard-Jones poten-
tial, and in addition correctly predicts the first
peak in the structure factor.

In a system undergoing phase separation, the
phase transition is accompanied by correlations
extending over an anomalously long range, and not
necessarily by anomalous behavior in the short-
range correlations responsible for the first peak
in the structure factor. It is therefore plausible
that the present mean-field approach, though it
fails to account for the first peak, will give a rea-
sonable qualitative description of some aspects of
the phase transition.

Before turning to the subject of phase separation,
we note that the Helmholtz free energy can be ex-
plicitly evaluated within the mean-field approxi-
mation, via the well-known coupling-constant' in-
tegral for the free energy

F-F,= f, '&V)„dX. (II)
Here F is the free energy per ion, F0 the free
energy of a system of noninteracting ions (i.e. ,
all terms in the free energy which do not depend
on ionic configuration), and (V), is the expectation
value of the ion-ion interaction, calculated using
structure factors S",~(q) appropriate to a system
with pair potentials Xw, ~(r). Thus

(V) = 'NZ( W „(q)[S— (q) —1]
qA)

+ 2[x(1-x)]'"W„,(q)S„',(q)

+(I - x) W„(q)[SB"B(q) - I]), (12)

where the structure factors S,"~(q) are given by
Eqs. (9) and (10), with all factors W,~(q) replaced
by XW(~(q). The term q=0 is included in F(). Sub-
stituting Eqs. (9), (10), and (12) into (11), and

carrying out the coupling-constant integration,
we find

F —FB= —Z [kB TlnD(q, P, x) —xW„„(q)
2 q80

—(1 —x) WBB(q)] (13)

Note that this expression is the generalization of
the one-component mean-field result
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F —Fe =—Z (ks T In[1+ PNW(q}] —W(q) }, (14)
1

2 pe
which is obtained, for example, in the random-
phase-approximation (RPA) theory of the Ising
and Heisenberg ferromagnets. ~4

III. PHASE SEPARATION

D(q, P„x)=0 (16)

where P, = I/ksT, . Since D(q, P, x) is a quadratic
in P (or T), Eq. (16) has two solutions for each
concentration and wave vector, T,(q, x) and

T&(q, x). Clearly, the solution T,(q, x) correspond-
ing to phase separation must tend to zero at q = 0 in
the low-concentration limit x- 0 or x- 1, and in
the "virtual monocomponent" limit W»(q) = W„s(q)
= W»(q}, since the mixture in these limits is
stable against separation at all temperatures.
T&(q, x), the other solution, may tentatively be iden-
tified as a prototype of the "freezing-instability
line" described by Schneider et al. ~~ We may iso-
late this latter solution by examining D(q, P, x) in
either the low-concentration or the virtual mono-
component limit. Then Eq. (16) becomes

D(q, P, x)- 1+PW(q) = 0

for x- 0 or W» = W„s= Wss = W . (17)
For a liquid metal, W(q) is positive for all q, and
the solutions Tz(q) to Eq. (17) are negative for all
q. T&(q, x) proves to be negative in the alloy also.
It was shown in Ref. 11 that for a more refined
model T&(q) is positive for q's in the vicinity of
the first reciprocal-lattice vector in the corre-
sponding crystal, and thus may possibly be ap-
proached by supercooling the liquid phase.

In a liquid-metal alloy of critical concentration,
as in other binary mixtures, the onset of phase
separation is signaled by concentration fluctua-
tions that diverge as T approaches the critical
temperature T, from above. This effect is mir-
rored in the three partial structure factors S»,
S», and S», which satisfy

S, (0)- as T- T, .
Equation (15) actually defines a line of critical
temperatures T,(x), one for each alloy concen-
tration. Only the highest critical temperature
T, = T, (x,), corresponding to the critical concen-
tration x„is attainable physically. At other con-
centrations, the critical line is masked by the
phase boundary. The latter is determined by a
common-tangent construction applied to the free-
energy isotherms (see Fig. 1), and lies at temper-
atures higher than the critical line, except at
X X ~g 0

In the present mean-field approach, condition
(15) is seen from Eqs. (9) and (10) to be equivalent
to the requirement that at q= 0

f(y) = + (1 —y )ln——1 1 p 1+y
2 4y 1-y

g=(1+0.026r, ) ~,

y=k/2k» .

(2o)

Here, kr is the Fermi wave vector, and f farl = Az/Z
is the volume per valence electron. So chosen,
e(y) satisfies~~ the compressibility sum rule
lim[ymc(y)] = Ko/K as y- 0, where Ko and K are the
compressibilities of the noninteracting and inter-
acting electron gas, the latter being calculated

Equation (16) is readily solved for T,(q, x) if a
realistic model can be found. for the pair poten-
tials. For an alloy of nearly-free-electron metals,
as is well known, such potentials are available
analytically in q space in terms of the electron-ion
pseudopotentials

W„()=' ' '+ q V()V()i
q' 4vss '~(q)

(18)
Here Z, e is the charge of the ith species of ion,
V, (q) is the unscreened pseudopotential of the ith
species of ion (assumed local and energy inde-
pendent} and e(q) is the dielectric function for
the free interacting electron gas. The first term
in (18) represents the direct (Coulomb) interaction
between the iona, while the second corresponds to
an indirect interaction through polarizati. on of the
electron gas. If the pseudopotenti. al is not small,
it will be necessary to take into account terms of
third or higher order in the pseudopotentials.
These are thought to correspond to three-body or
multibody interactions between the ions, and will
not be considered here.

Since the solutions T,(q, x) are of particular in-
terest in the region q-0, it is imperative that the
pair potentials W,~(q) be accurate in this long-
wavelength limit. In the present calculations, the
pseudopotential has been chosen to be of the empty-
core variety,

V, (q) = —(4vZ, e /q ) cosqr,', (»)
with the single parameter r,' fitted to the zero-
pressure zero-temperature density of a pure solid
of species z, a quantity very sensitive to the long-
wavelength limit of the pseudopotential. The fit-
ting procedure is described in the Appendix. The
resulting r, 's are listed in Table I, where they are
compared with the same parameters as fitted to
the zeros of Heine-Abarenkov ~ pseudopotentials.
e(q) has been taken to be of the modified Hubbard
form~~'

~(y) =1+ (O. 166rJ'y')f(y),
f(y)

1 —0. 166r f(y)/(2y +g) '
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Element

Li
Na
Zn

Hg
Ga
Bi

c ~a. u. )

1.332 [1.73]
1.728 Q..81]
1.245 [1.11]
1.363 [1.24]
1.199 [1.10]
1.104 [1.12]

from the Nozieres-Pines20 approximation for the
correlation energy of the electron gas.

Table II lists the critical temperatures T, and
critical concentrations x„ascalculated from Eq.
(16), for four liquid alloys. Atomic volumes have

TABLE I. Core radii yc as used to calculate the criti-
cal points. The quantities in brackets are the core radii
determined by fitting the first zero of the Heine-Abarenkov
pseudopotential to the model pseudopotential (19).

been assumed to vary linearly with x. Experi-
mental quantities are in parentheses. Agreement
with experiment is remarkably good, especially
considering that the calculations involve no free
parameters. The discrepancies in the critical
temperatures of Ga„Biq . and Zn, Biq „may cer-
tainly be accounted for in part by the peculiarities
of Bi, which is nearly a semimetal in the solid
phase and therefore may not adequately be de-
scribed by the present second-order-perturbation
scheme in the liquid phase. More significantly,
the calculated critical temperatures are extremely
sensitive to small changes in the pseudopotential,
a 1% change in rB', for example, leading to a
change of about one-half in the critical tempera-
ture of Ga„Bi& . The critical concentrations, by
contrast, are insensitive to such discrepancies.

These results can be better understood in the
limit

&I -«)
I W'B(0) - WAA«) WBB(0}I

« I«WAA(0)+(I - «) WBB«)I, (21)

which holds well for the present applications. Then,
from (10) and (16), the critical line T,(x) is given
approximately by the expression

T («) (1 )N
+AB( } WAA( )WBB(

«WAA(o) + (1 —x)W„(0)
' (22)

The critical concentration g, corresponds to the
maximum temperature T, = T,(«, ) on the critical
line. The concentration dependence of T,(x) is
contained in the prefactor x(1 —x)N and in the de-
nominator, the "average pair potential":

W, (0) = xWA„(0)+ (1 —x)WBB (0) .
From (18)-(20), it is found that

W (O)=4eZeee((e')ee
Ki (23)

c 4k2F Ko)
'

As a rule, the first term in the large parentheses of
(23)proves to be considerably larger than the second.
From (23), W„(0)is evidently insensitive to small
changes in r, and r, . On the other hand, T„which
is proportional to W„B(0)—W»(0) W»(0), varies
approximately as [(r, )B —(r, )BP and thus depends
critically on such changes.

In the absence of concentration dependence in N
and W„(0),expression (22) leads to a symmetric
critical line T,(x) zc x(1 —x), with a maximum at
«=0. 5= x, . If N and W„(0)depend significantly on
concentration, the critical line will tend to be
skewed towards concentrations where N is larger
or where W (0) is smaller. If the alloy constit-
uents have different valences, the curve, from
Eq. (23), tends to be skewed towards the side of

TABLE II. Calculated critical concentrations gc and
temperatures Tc for four liquid alloys. Experimental
values are in brackets. Discrepancies in the critical
temperatures of the Bi-based alloys result principally
from the extreme sensitivity of Tc to very small changes
in the parameters characterizing the pseudopotentials
(see text).

Alloy

Li+ai-x
Gag Hg~

GaP4-x
ZnJ3i~~

0. 62 [0.65a]
0 44 [0 50 ]
0. 62 [0.70 ]
0. 75 [0.83 ]

Tc

65O [58O ]
4O6 [475']
157 [535c]
438 [878 ]

Reference 5. Reference 6. Quoted in Ref. 2.

lower electron-to-atom ratio. In Ga+i~ „and
Zn„Bi&, this is very much the dominant effect in
controlling the skewness. In an isovalent alloy,
the curve is skewed towards larger N or smaller
r, . In LiPlaq „,these effects reinforce one another
and the calculated critical concentration is 62-at. %
Li (versus an experimental value of 65 at %). .

Equation (22} also predicts a, simple behavior of
T, and z, under applied pressure, namely, if the
pair potentials W, &(0) do not depend on density,

T,(N}~ N, «, (N) -const. (24)

Such behavior does not depend on approximation
(21), but follows from the general solutions to Eq.
(16). In fact, the pair potentials W,~(q) are N de-
pendent through the N dependence of c(q), but at
small q this dependence is much weaker than lin-
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800 I

one melt

I I

Pure 20 40 60 80 Pure

Na(at. i)

ear, and so (24) should remain approximately
valid.

Figure 2 displays the critical line T,{x)for
LiPlaq „,as calculated from Eq. (16). For com-
parison, the experimental phase-separation curve
has also been plotted, as has a schematic of the
phase-separation curve corx esponding to a system
having the calculated critical line. The construc-
tion of Fig. 1, applied to the free energy (12),
would actually lead to a phase boundary with a dif-
ferent critical point (see Sec. I). Note that near
the critical concentration, the mean-field critical

I

FIG. 2. Solid line: critical line for phase separation
in liquid Ligula~„„,as calculated from mean-field theory.
Dashed line: schematic of phase boundary of a system
having such a critical line. Dot-dashed line: experimental
phase boundary, as listed in Ref. 7.

line varies like T,(x,) —T,(x) = const. && I x- x, l I~,

with p = 0. 5. Experimentally, ~ p = 0.30-0.35; the
discrepancy is characteristic of mean-field theo-
ries.

The critical temperatures T,(q, x) and Tt(q, x)
for Li+ai, as obtained from Eq. (16), are plot-
ted versus q in Fig. 3. As expected, the maximum
T, occurs at q = 0. Thus it is the long-wavelength
concentration fluctuations which diverge at T„as
indeed must be the case if T, is to represent the
critical temperature for the usual kind of phase
separation. If the maximum occurred at finite q,
the critical point would evidently correspond to an
instability with respect to some kind of short-
wavelength concentration fluctuation. Such an in-
stability has apparently never been observed. Fig-
ure 2 also shows that within the mean-field model
the hypothetical "freezing-instabiiityline" T&(q, x, )
is always negative. The dashed curve is a sche-
matic illustration of the same curve as it might
appear in a more elaborate theory, such as a two-
component generalization of the approach of Ref.
ll, the maximum (at a positive temperature) pos-
sibly attainable by supercooling.

%e turn now to the various static critical effects
associated with the divergent concentration fluc-
tuations above T, . It may be shown from Eqs. (16)
and (10) that near the critical point and at small q

D (q, P, x) = a(T- T, )+ b(x x,)'+ c-q', (25)

where a, b, and e are positive constants. Equation
(25) has several direct consequences. For exam-
ple, the small-angle x-ray scattering intensity I(q)
from the alloys is given by

I{q)= xf„'(q)S»(q)+2[»(1—x)]'~'fg(q)f, (q)S~s(q) + (1 —x)fs(q)See(q) ~ [a(T- T )+&(»- x )'+ cq'] '

where f„(q)and fe(q) are the appropriate atomic
form factors. At q=o and x=x„f~(T- T,) '.
Such divergences have been seen in liquid Li+a~
The exponent has not been tested experimentally
in liquid metals, though the mean-field result is
certainly not correct. Also from Eqs. (25) and
(12), the divergent part- of the specific heat at con-
stant volume and concentration, 4g~ „,is
4c~ „=—T ~ (E —Eo) ~ [a(T- T,) + b(x —x,)~] 0'.

(2V)

Experimentally, ' 4'„„~(T- T,) 0's~. &cv,„,,
should exhibit the same behavior. Thus, the ex-
ponent in (2V) is in typical mean-field disagreement
with experiment. Finally, the compressibility at
constant temperature and concentration,

Xr, ~ =(N4T)

s„„(o)s„(o)—s„',(o)

»S„(O)+(1-x)S„„(O)-2[x(1-«)]'"S„,(O)
' {26

is found from Eqs. (25) and (9) to be finite at the
critical point, because divergences in the numer-
ator and denominator cancel. It is not surprising
that g~ „remains finite, because it corresponds to
long-wavelength density fluctuations, while it is
long-wavelength concentration fluctuations that are
divergent at T,.

A quantity of considerable interest is the tem-
perature derivative of the resistivity (Spjs T)„„
near the critical point. For a liquid-metal alloy,
the resistivity is given to second order in the pseu-
dopotentials~9 by

p= C f dqq'(»V„'(q)S»(q)

+2[x(1 —x}]'"V„(q)V,(q)S„,(q)
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2.0

APPENDIX: PROCEDURE FOR FITTING r,

The single parameter r, specifying the electron-
ion psuedopotential (19) for a given species of ion
may be determined by requiring that the zero-
pressure zero-temperature density of the solid
phase be correctly reproduced. Thus r, is chosen
so that at A=GO

t'8 E&

]x=0
(Al)

FIG. 3. Ts(q) and T~(q) for liquid Lio, 62Na(), 38, The
dashed curve is a schematic of T&(q) as it might be in a
more elaborate theory, such as that of Ref. 11. Note
differences of scale between the curves.

+ (1 «) V (q)$ (q)j, (29)

hpr, («„T)~In(T-T,) (T& T,),
~p,', (x, T,) I ~x-x.(. (31)

The experimental divergences are stronger than
logarithmic in Li+a~„.~ In Ga,Hgq divergences
have been sought but not found. Fisher and Lang-
er ' predict on general grounds a divergence pro-
portional to the divergences in the specific heat.
For liquid-metal alloys, no microscopic model
exists which leads to this prediction. A logarith-
mic divergence is probably built into any mean-
field theory, even one more refined than the pres-
ent model. These experimental anomalies thus
remain basically unexplained.

where V, (q}= V, (q)/e(q) is the (screened) pseudo-
potential form factor for an ion of species i, and
C is a constant depending weakly on the concentra-
tion. Substituting (9), (10), and (25) into (29), we
find that the divergent part of the temperature de-
rivative, which we will write 4p» „(x,T}
= sap(x, T)/sT ~&,„,satisfies

4pr „(x,T) ~ in[a(T - T,) + b(x - x,) ] (T & T,),
so that (30)

where E is the energy per ion in the solid phase
at 0 K, 0 is the volume per ion, and Ao the correct
zero-pressure volume per ion.

To second order in the pseudopotential,

E-E + Ew+ E»+ Eo (A2)

Eo(A) = lim + V(q)
4me 2we 'v

qa Q 0 (A3)

Convenient expressions for the other three terms
in (A2) have been given, for example, by Ashcroft
and Langreth. E», of course, depends on the
pseudopotential also, but only for q-2k~, k„being
the Fermi wave vector. Since the calculations of
Sec. III depend on V(q) only in the long-wavelength
limit, it is sufficient for their purposes to deter-
mine E» using a standard pseudopotential. In the
present paper, E» has been calculated from the
empty-core pseudopotential (19), with r, fitted to
the first zero of the Heine-Abarenkov form fac-
tors. ~7 To simplify the computation, the fitting
has been done in all cases for an assumed fcc
crystal structure. Since the binding energies do
not vary much with crystal structure, this approx-
imation should lead to little error. The prescrip-
tion is then sufficient to determine E(Q). Equation
(A2) is then readily solved for r„with results as
tabulated in Sec. III.

where E„is the electron-gas energy (including
kinetic, exchange, and correlation energy), E„is
the Madelung energy, E» i.s the electron-ion energy,
and Eo is the "Hartree" energy. The latter is the
sum of the q= 0 Fourier components of the (bare)
ion-ion, electron-electron, and electron-ion inter-
actions. For pseudopotential (18},
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The scattering intensities of the 14.4-Keir y rays from Co" were measured at the I 333) and t444I
reflections of Al crystals in the temperature range 295-800'K. The elastic and inelastic components of
the scattered intensities were separated by means of the Mossbauer effect. The temperature dependences
of'the integrated intensities of the elastic peaks give evidence of non-Gaussian anharmonic contributions
to the Debye-Wailer factors. Comparison is also made between experimental and calculated temperature
dependences of the inelastic intensities. Some of the discrepancies found at the (444 j reflection are
explained by admitting a non-neglectable contribution of non-Gaussian terms in the correlation part of
the formula for the intensity of the thermal diffuse scattering.

I. INTRODUCTION

As is known, the thermal motion of the atoms in
a crystal lattice causes a weakening of the Bragg
diffraction lines and an increase in the total amount
of the thermal diffuse scattering (TDS). Thus, in
principle, x-ray-diffraction experiments can give
information about the dynamics of the lattice. For
example, the mean-square vibration amplitude of
the atoms can be obtained from the temperature
dependence of the integrated intensities of Bragg
peaks, whereas by measuring the TDS intensity at
different sites in the Brillouin zone one can obtain
the dispersion curves of the lattice phonons. The
greatest part of experimental research in this field
is mainly related to the atomic motion as described
in the harmonic approximation.

The suggestion that diffraction experiments
would also be useful to give evidence of anharmonic

effects was first given by%aller. Since then a lot
of theoretical and experimental investigations have
been performed, especially regarding the anhar-
monic contributions to the Debye-%aller factor.
However, in order to separate anharmonic effects
it is often necessary to make experiments at high-
order reflections and at elevated temperatures. In
these experimental conditions the intensity scat-
tered at a reciprocal-lattice node is quite appre-

.ciably made up of those x-ray photons which suffer
inelastic scattering by the thermal vibrations of the
lattice. Both elastic and inelastic scatterings are
affected by anharmonic interactions. However, it
is necessary to separate them in order to obtain
substantiated information on the amount of anhar-
monic contributions.

The only way to accurately separate the TDS
from the crystalline reflections is to use the high-
energy resolution of the Mossbauer effect. This


