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The relationship 2 —g = m is derived for the Ising model with a potential of the large-r form

p(r)cc —r ",when m/d & 1/2 [and for continuum fluids with such a v(r) when m/d & 1/3j,
where g has its usual meaning as a critical exponent and m = min[cr, 2]. On the basis of this result,

it is argued that the numerical estimates of Nagle and Bonner indicate a breakdown of strong scaling

in the Ising chain with long-range potential.

This paper has three main objectives. The first
is to give the formally exact result

2 7l-m

which we find for the Ising model (i.e. , the lattice
gas) if m/d& ~ and the pair potential is of the form

v(r)--A r~ ' for r (2)

Here A &0, d is dimensionality, 0&0, x= I r ~, m
= min [2, o], and ri has its usual meaning as a crit-
ical exponent. For continuum fluids we show that
a sufficient condition for (1) is m/d& 3. The weak-
er m /d& ~ appears to be sufficient for fluids, too,
but we defer discussion of this point until a later
publication. Our results here extend our own pre-
vious discussion' of (1), based on simple homo-
geneity assumptions, as well as a more recent
derivation' of (1}for the case of a special spin sys-
tem especially tailored to a renormalization-group3
and Feynman-diagrammatic ' approach. (That

system is Ising-like when n = 1, where n is the spin
dimensionality. )

A second purpose is to point out in passing an
alternative to the functional-integral form of the
partition function as a starting point for any such
diagrammatic analysis. It is a cluster-integral
formalism developed earlier' '; its chief advantage
is that it is immediately applicable to continuum
fluids' and to the Ising model' as well as to the
fluidlike or Ising-like models that have been con-
structed to lend themselves to special types of
analyses.

Our third main purpose here is to show that (1),
taken together with the numerical results of Nagle
and Bonner for the Ising chain, yields a relation
that is inconsistent with the usual scaling laws as
given, e.g. , in Kadanoff's scaling theory. This

appears to be strong evidence in favor of the con-
tention —argued by us at length elsewhere from
several different standpoints"' —that for d- P

and fixed o, or for o 0 and fixed d, one would ex-
pect the breakdown of any of the usual scaling laws
explicitly involving d for both the Ising model and
continuum fluids.

We shall denote as F ( r ) the density-density
correlation function [the F (r ) of some of our
earlier references] or the spin-spin correlation
function. The q of (1) can be defined by the as-
sumption

[F(r)],- —r " ", r
where the subscript c refers to a critical value.
Using the cluster-expansion techniques that we
have developed and discussed elsewhere, ~' we
obtain Eq. (1) (independent of any scaling assump-
tions) by comparing the spatial decay as r ~ of
the "chain-graph" contribution 6(r ) with the de-
cay of all the other graphs that contribute to the
e-bond expansion of F (r). For simplicity we con-
sider first the case of the Ising model or lattice
gas in which the hypervertex function" [the F2 of
Ref. 6 and the v2o(1 —2) of Ref. 7] depends upon
temperature T and field H (or density p, in lattice-
gas language) but has no spatial extension and

hence has a Fourier transform v, that is R indepen-
dent. We see that e(r) is longest ranged at a dis-
tinguished value v2 q of v2, at which value e(r)

for r- ~, ' while all other graphs contrib-
uting to F (r } fall off more rapidly than e(r) for
every v2 including v2 „as long as m/d & —,. The
—,
' here arises as follows: It is only where m/d
& —,

' that one can be sure that for v2= v2 ~ none of the
other 8-bond v -hypervertex graphs contributing
to F (r ) will dominate the single e-bond graph.
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All such graphs with v unlabeled vertices and 5
bonds satisfy the relation 2(b+ 1)—2v, and there
will be among them ones that give rise to terms-
for example, v

"" ~ '"" terms-that will dominate
6(r) unless m/d&-, '. The dominance of 8(r) as
r ~ causes critical-point behavior of F(r) at
v, ~ [at which the transform F (k) is ~ for k=0],
which identifies v, ~ as the critical v, ,

The analysis for the continuum fluid is identical
in all fundamental respects. The main differences
are that in Fourier space the hypervertex functions
v„((k,)) (the F„' of Ref. 6) are no longer K, -inde-
pendent functions of p and T, that are even or odd
in p —p, as n ip even, or odd. Instead they will go
as v„((k;})= v„,+~v;;v„; &k;k&+. . . , and graphs
containing at least one odd-ordered v„are no
longer guaranteed to vanish when p= p„as they
are in the simple lattice-gas case. For m/d

however, the 8(r) is still guaranteed to dom-
inate all other graphs contributing to F (r ) for all
va „ including the particular v2 0 at which E(0)

regardless of whether the v„, for odd n turn
out to vanish at the critical point or not. (This is
because b+1~2v for all the graphs whether p= p,
or, not. ) The behavior of the fluid v„({kP)at
v2 0, would require further study in order to weak-
en the sufficiency condition m/d& 3 to m/d& & us-
ing this approach.

A comparison of the graphs introduced in Refs.
6 and 7 with those recently used by various authors
to gain information concerning critical behavior
of certain special systems via diagrammatic analy-
sis shows that such analysis can be made directly
for the Ising model via the former graphs. The
renormalized" x of Ref. 5 relates directly to

the v2 of Ref. 7 or I"&' of Ref. 5, the u0 of
Ref. 5 corresponds to the v4 of Ref. 7 or I'4' of
Ref. 6, etc. For the Ising-like (n=1) systems
of Refs. 2—5, our 6-bond v„-hypervertex repre-
sentation reduces to the diagrammatic expansion
used there; the chief difference between the dia-
grams for the Ising-like systems and the Ising-
model graphs of Ref. 7 is the presence of hyper-
vertices of arbitrarily high order in the Ising
case. The chief difference between diagrams
for the Ising-like systems and a continuum fluid
has already been noted here: The hypervertices
in the latter case carry a k dependence, and
odd-order hypervertices do not vanish at the
critical point, Thus, a diagrammatic evaluation
as per Ref. 5 will permit a precise and explicit
assessment of the effects, if any, of the absence
of hole-particle symmetry in the fluid case on

TABLE I. Evaluation of the z of Eq. (S) and the p

of Eq. (7) by means of the Nagle-Bonner estimates of

y and P.

0 0.20
z from (8) 0.40

sm 0.40
2 —q from (7) 0.50

0.30 0.40
0.59 0 ' 74
0.60 0.80
0.51 0.54

0 ~ 50
0.85
1.00
0.59

0.60 0.70
0.94 0.98
1.00 1.00
0.64 0.71

0.80 0.90
0.99 1.00
1.00 1.00
0.81 0, 90

the numerical values of the critical indices.
It is convenient to discuss the way the status of

the scaling laws hinges upon the validity of (1) in

the context of our weak-scaling relations, "which
are the same relations given by previous scaling
theories" but with d replaced by a new exponent
z, where z ~ d. Relations that do not explicitly
involve d are unchanged. Thus we retain, for
example,

1=v(2 n) . —

On the other hand, we have

y+2P= vz

instead of

(4)

y+2P= vd .
Here we use the customary notation of Fisher.

Combining (8) and (4) we have

s =(v —2P) (2 —&)/&

instead of the scaling result

d =(r+2P) (2-7))b .

Assuming (1), we find

~ =(1'+2P)o/r .

(6)

(7)

(8)

We give in Table I the right-hand side of (8) eval-
uated by means of the Nagle-Bonner estimates9
of y and P, which were all obtained in the case d
=1. Since they shorn) z41 unambiguously, these
results are incompatible svith (1) and (7) taken to
gether. The resulting z from (8) is much like the
spherical-model z, which was computed in Ref. 11
and is given by 20 if «&d and d if 0) &d. This z
is shown as z, in Table I directly below the z from
(8), and one can see that the two functions behave
in a quite similar fashion, which seems reasonable.
While formally exact, our derivation of Eq. (1)
is obviously lacking in rigor because of the conver-
gence questions raised by our use of the 6-bond
expansion; similar remarks apply to most of the
results of Refs. 1-8.
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As conventionally written, the localized-center portion of the Anderson H~trtt&tonian sufEers from the
defect of lack of rotational invariance in real space {and possibly spin space also) when describing a
center with (21 +1) degenerate spatial orbitals. A simple modification is suggested which restores the
rotational invariance in both spaces. The eigenvalues of this localized-center portion of the H~trtt&tonian

can be determined by inspection, and are consistent with Hund s rule. The modification l~~s to
nontrivial changes in the properties of the Ml Anderson Hamiltonian. Within the context of the
Hartree-Pock approximation, the likelihood of orbital broken symmetry is reduced.

The Anderson Hamiltonian, ' describing the in-
teraction between the conduction electrons of a
metal and a localized magnetic center, can be
written

(2l+ 1) degenerate spatial orbitals associated with
the center. Ho and HM are now augmented by sums
over the magnetic quantum number m,

H = Ho+ Hi+ Hoi+H, a,
Ho=&o& ~. ,

Iform =~ (Vocascms+ Va orna~a~) ~

+Ql = Z (Voc~c + Vo c c }ol.
%ma

Anderson suggested replacing (5}by

H~=oU Q n,n„.. .
mm 's

where

%ms ~ma ~m oi +As ~As As

+-'. (V-g P (1 —(}...)n„,n„., (9)
mm 8

However Caroli. e& +I and Lucas and Mattiss in
dependently pointed out that such an H„ is not
rotationally invariant in spin space, and therefore
suggested replacing (9) by

are the number operators associated with the
localized center and the conduction band, respec-
tively The one.-electron energies eo (for the con-
duction band) and e'o (for the localized center) are
measured with respect to the Fermi level. There
is a single localized spatial orbital (denoted by
m) on the localized center. The electron-electron
interaction Hamiltonian & represents the Coulomb
interaction between two opposite-spin electrons
on the center. Ho+H represents the center by
itself, H, is the conduction band by itself, and Hoi
is the hopping of electrons of either spin between
center and conduction band.

Andex son himself first considered generalizing
this Hamiltonian to the case where there are

H„=-,'U ~ ~,n.„
mm

+o(U'-J} Z (1 —& }n.n s

Although (10) is rotationaiiy invariant in spin
space, it is not rotationally invariant in real space
(a fact not realized by Caroli et al. o). It is the
purpose of this paper to point out that there is a
very simple generalization of (10) that is simul-
taneously invariant to rotations in both real and
spin space. ~

In the case of a (2l+ 1)-fold orbital degeneracy,


