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It is shown that the magnetic field dependence of the thermal conductivity of yttrium iron garnet (YIG)
can be accounted for if the coupled magnon-phonon modes are employed in calculating the conductivity. On
the other hand, the use of independent magnon and phonon modes does not lead to satisfactory agreement
between theory and experiment. Experimental results are presented for the magnetic field dependence of the
thermal conductivity of YIG in the range of 0.23—1 K.

I. INTRODUCTION

Previous thermal-conduction measurements on
yttrium iron garnet s (YIG) indicate that in the
neighborhood of 1.0 K magnon conduction is as im-
portant as phonon conduction. The observed de-
crease in conductivity upon the application of a mag-
netic field is evidence that the magnon conductivity
is appreciable in YIG at low temperatures. How-
ever, as pointed out by Douglass and Friedberg
and Harris the simple noninteracting theory does
not agree very weQ with the field dependence ob-
served.

The present measurements represent an exten-
sion of the above work to lower temperatures and
higher magnetic fields. As mill be pointed out in
Sec. D, the analysis of the data is much simplified
by applying a magnetic field of sufficient strength to
completely attenuate the magnon part of the conduc-
tivity.

It has been found that it is impossible to fit the
data we have obtained if the magnon-phonon inter-
action is ignored. On the other hand, if the inter-
action is included in the sense that the coupled mag-
non-phonon modes are employed for the normal
modes of the system, we will show that good agree-
ment between calculated and measured conductivi-
ties may be achieved.

Measurements were made in fields up to 40 kOe
over the temperature range 0. 23-1.0 K. Over
this entire temperature range the conductivity
reached its minimum value for fields well below the
maximum field.

We can argue, therefore, that the high-field con-
ductivity is due only to phonon conduction. The
magnon states have been driven to sufficiently high
energies so that they are no longer thermally ex-
cited, and hence do not contribute to the conduc-
tivity. Thus the phonon conductivity can be sub-
tracted out in a direct way.

If one assumes no magnon-phonon interaction

then the total conductivity is just

where K» is the phonon conductivity and E is the
magnon conductivity. If H, is the value of the mag-
netic field, above which the magnons are complete-
ly attenuated, then

K„=K(H, )

K„(H,) = K(Hg) K(H, ) . -
The magnon conductivity can be calculated separate-
ly and compared to current theories of magnon con-
ductivity.

If, on the other hand, the magnon-phonon inter-
action is not zero, then one obtains coupled magne-
toelastic modes which will affect the total conduc-
tivity. In this case, the high-field conductivity is
still the pure-phonon conductivity; however, Eqs.
(1) and (3) are no longer valid, and the separation
at intermediate fields is no longer possible. It is
expected that the effect of the interaction is to re-
duce the magnitude of the conductivity at intermedi-
ate fields. That this is indeed the case in YIG will
be demonstrated.

II. THERMAL CONDUCTION IN FERROMAGNETIC
INSULATORS

A. Noninteracting Theory

In this case Eq. (1) ls valid and one has only to
use an appropriate form for E,& and Em. %'e may
start with the expression fox the thermal conduc-
tivity obtained from a Boltzmann equation

K=XV(k)l (k)k(o (k)

where V(k) is the group velocity, H(k) is the distri-
bution function for the carriers, and I(k) is the
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mean free path of carriers of wave vector k. If
&g(k) is independent of temperature then Iur(k)SN(k)/
&T is just the specific heat.

Transforming this sum to an integral, assuming
isotropy, and averaging over all angles between k
and the heat-flow direction, Eq. (4) becomes

h(o s
-- l(k)k ((o ) d&u . (5)

fll Qiv( )

aQ

The form of Eq. (5) is obtained by using V(k) = Sap/

Sk and d~k=k2(dk/d&o) d&u dQ. Thus in the present
form the equation is valid for both phonons and mag-
nons. It will be particularly useful in this form
later when, because of the magnon-phonon interac-
tion, the dispersion relations cannot be expressed
in simple analytic form.

In the present case of zero coupling (5) can be
yut in a much simpler form for both phonons and
magnons: below 1.0 K in YIG the mean free path
for both phonons and magnons will be boundary lim-
ited in a sufficiently perfect crystal, since the in-
trinsic phonon-phonon, as mell as the magnon-mag-
non mean free paths are many times the dimen-
sions of the crystal.

For phonons in the acoustic limit, + = Ck, where
k is the phonon wave vector, and C the velocity of
sound,

If we assume that C is an average over the trans-
verse and longitudinal modes, we obtain

Kyh~ T' f, x' csch'(-,'x)r, „{x)dx, (6)

where x =K&u/k&T and r(x) = l(x)/C is the total relax-
ation time for momentum destroying processes.
The upper limit of integration is actually ez/T but
since T «OD, in the present case, no serious error
occurs from extending the integration to infinity.

For ferromagnetic magnons in zero field, if one
assumes Sro = nk, Eq. (5) reduces to

K„~T' f, x' csch'(-,'x)I (x) dx . (I)

If the internal field is H& then Sw=-ek +gp, &H& and
Eq. (V) is modified. We have

k2(~)= (Iiv gpsH, )/~ =(k-sT/, a)(x —h),

where h= gpss/ksT. Referring to Eq. (5) we must
replace l(k) by I(x —h) and the lower limit of inte-
gration becomes g p,&H&/kBT. Thus,

K (H, )~ T' f„(x-h)x2 cschm( —,'x) l„(x—h) dx . '(9)

In this expression the scattering has been left in
terms of the mean free path in order to eliminate
the group velocity which is a complicated function
of x, for magnons.

In a sufficiently high-quality crystal if T«8» T„
one would expect that the dominant scattering pro-
cesses are those due to the boundary and point de-

fects. Thus,

v,', {x)= rg + vn' (x) (10a)

(10b)

l„(x—h)=I '[1+b(T)(x —h)2] for H, e0. (12b)

Using Eqs. (11), (12a), and (12b) we can write Eqs.
(6), (7), and (9) as

~pT3 x csch (zx) dx
(13)1+a(T)x440

1

(O) HtT2 l

x csch (&x) dx
1+b(T)x

(14)

)
. . .

" x'(x-h) csch'(-,'x)„(5)1+b(T)(x —h)~

The leading term in the integrand of Eq. (15) for
x & 1 is e, hence K (H&) should decrease approxi-
mately exponentially with field. In Sec. VI, where
the experimental results are compared with the
noninteracting theory outlined above, it is shown
that Eq. (15) predicts a somewhat slower decrease
in K with field than is observed. It will be shown
below that it may be possible to explain this behav-
ior if the effects of magnon-phonon interactions are
taken into account.

B. Magnon-Phonon Interaction

The magnetoelastic coupling of magnons and pho-
nons in a ferromagnetic dielectric was treated by
Kittel' using a classical fieM approach. In the li."1 "

where 7& is the inverse relaxation time for bound-

ary scattering and v& is the inverse relaxation fox
point-defect scattering. Point-defect scattering of
phonons has been treated by several authors (see,
for instance, Carruthers~) and can be expressed as
Tg (k)=d'k'=dT4x4 where d=d'(ks/hC)4 if a simple
Rayleigh law is assumed. Thus Eq. (10a) becomes

v, '„(x)= C/I, + dT'x' = (C/I )[1+a(T)x'], (l l

where a(T) = (I,d/C)T'. In the above equation we
have put v&'= C/I where I is the Casimir length,
which is of the order of the smallest dimension of
the crystal.

Callaway and Callaway and Boyd have treated
the case of scattering of magnons by magnetic de-
fects. If resonance scattering is neglected they
find that In'=g'k =gT x~, where g=g'(k /se) . If
the internal field is not zero then Ig =gT2(x —h)2.
Thus Eq. (10b) becomes

l„'(x)=I '+gT x
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it of long wavelengths the results of the classical
treatment should be identical to a quantum theory if
the intex'action is due primarily to magnetostric-
tion. This theory ignox es higher-ordex interactions
which have been eonsidex'ed by Kittel and Abrahams. 8

These may be important, but constitute a refine-
ment that will not be considered here.

The dispersion relations obtained by Kittel are
in the form of a cubic equation for ~ in terms of the
wave vector A".

((g —(u')((o~p —Cek )+(o,k (Bp/M, ,) =0, (16)

(g'=H)+ (RyA/M~)k, a)~=yM~,

and where y is the gyromagnetic ratio, M, is the
saturation magnetization, and Q is the magneto-
elastic coupling constant. From Eq. (16) it is seen
that when B~= 0, one obtains the usual uncoupled
phonon and magnon dispersion curves.

Yttrium Iron Garnet (YIG)

In recent years there has been a rather exhaus-
tive investigation of the magnetic properties of a
class of ferromagnetic materials known as the rare-
earth garnets. They form compounds of general
formula 5Fe+~ ~ 3M~Os, where M is a trivalent
rare-earth ion, or the nonmagnetic ion Y '. An ex-
cellent review of the early work on the rare-earth
garnets xs gmen by Neel et ul. '

In yttrium iron garnet, since the ion is nonmag-
netic, the magnetic properties are entirely due to
the Fes' ions. The unit cell has cubic symmetry"
and contains four formula units of garnet whose
positive ions occupy three types of sites. The Fe~
ions occupy the 16 e sites at the center of a tetrahe-
dron of oxygen ions and the 24 d sites at the center
of an octahedron of oxygen ions. The M3' ions oc-
cupy the 24 c sites at the center of a distorted cube
of oxygen ions. There is a strong antiferromagnet-
ic coupling between the ions on the c sites and the
d sites.

The equilibrium thermal and magnetic properties
of YIG have been reported by a number of au-
thors. The complete spin-wave spectrum has
been calculated by Harris. At low temperatures
only the acoustic mode will be populated and for
long wavelengths neglecting demagnetizing effects
and anisotropy, the dispersion relation is given by
Aced = ~k~. Thus the acoustic spin-wave modes are
identical to ferromagnetic modes.

It is of interest to note that Eq. (16) predicts, for
H= 0, that the main deviation of the coupled modes
from the unperturbed yhonon and magnon modes oc-
curs near the cx'ossover frequencies. For YIG
there are two in zero field but only the upper one at
Co= C I /a is important here. For YIG this is
equivalent to approximately 9 K. Hence, below 1

K it is expected that the thermal conductivity in
zero fieM will not be appreciably affected by the
magnetoelastic coupling. The total conductivity,
for H= 0 at T & 1 K is just Kr = K»+K'„, where K»
and K„are calculated using Eqs. (6) and (&).

This of course ignores the possible effect of
higher-order interactions such as one-phonon-two-
magnon interactions. It is obvious that these exist,
otherwise it mould be impossible for heat to enter
the magnon system from the phonon system at M= 0
and T- j. K. Nevertheless it is not necessarily in-
consistent to ignore the damping due to this inter-
action since it ean be shown that the mean free
path for magnon-phonon interaction, such that suffi-
cient heat will flow into the magnon system, is of the
order of the length of the crystal.

For nonzero fields the unperturbed modes cross
at two points, one at c& —-—p.II and one at E~=—cp. As
the field is increased c& increases while a2 de-
creases, until for some field Cz = c2. Above this
fieM the magnon mode no longer intersects the yho-
non mode. Equation (16)gives the behavior of the cou-
pled modes in the presence of external fields ac-
cording to the classical theory of Kittel. ~

The thermal conductivity in the presence of an
external field can be calculated by solving Eq. (16)
for the two coupled modes and using these solutions
in an integral of the form of Eq. (5).

IH. EXPERIMENTAL METHODS

The sample used in these studies was obtained
from Dr. Van Uitert of Bell Laboratories. It was
cut into rectangular shape 5.0 mm by 3.9 mm about
20 mm long.

The present measurements were carried out in a
modification of the Hes cryostat described earlier
by %alton. Temperatures between 0.2 and 1.0 K
were obtained by evaporation of liquid He~. The
sample, which was thermally attached to the He'
refrigerator was situated in the center of a 40-kOe
superconducting solenoid.

Absolute temperatures were determined by mea-
suring the vapor pressure of liquid He (1958 He~

scale) contained in a separate bulb thermally at-
tached to the Hes refrigerator. A Texas Instrument
quartz pressure gauge was used to determine the
vapor pressure. Speer, nominally 470 0, carbon
resistors were used as secondary thermometers to
measure the temperature and temperature gradi-
ents along the sample.

The calibration of the carbon resistors below 0.6
K was achieved by comparison with the magnetic
susceptibility of a cerium manganese nitrate (CMN)
salt pill. The thermal conductivity was determined
by a standard steady-state technique. One end of
the sample is thermally attached to the He' refrig-
erator by a phosphor-bronze clamp. A heater is
similarly attached to the lower end of the sample.
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The temperature dependence of the thermal con-
ductivity in zero external field, as well as at 40
kOe, is shown in Fig. 1. On the assumption that
the magnon and the phonon contributions to the con-
ductivity are additive at zero field, the 40-kOe re-
sults have been subtracted from the zero-field re-
sults to yield the zero-field values of the magnon
conductivity. These have also been displayed in
Fig. 1.

Both the phonon and the magnon conductivities are
seen from Fig. 1 to increase with temperature,
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FIG. 1. Thermal conductivity of YIG as a function of
temperature.

Two carbon resistors are attached at intermediate
points along the sample. To avoid large magneto-
resistance corrections for the resistors, they are
placed well out of the solenoid region, but thermal-
ly connected to the clamps by large copper wires.

The resistance wap determined by a dc potentio-
metric technique. With a constant, equal current
in both resistors, the potential across one resistor
was measured as well as the difference in potential
across the two resistors. The former measure-
ment served to monitor the absolute temperature at
that point on the sample. The latter measurement
then determined the temperature gradient. Thus
simultaneous measurements of the temperature and
the gradient were made. At all temperatures the
resistor current was adjusted to produce negligible
self -heating.

IV. RESULTS AND COMPARISON WITH THEORY

within the temperature range indicated, roughly as
T", where n =—1.5. It is clear, therefore, that nei-
ther the magnon nor the phonon mean free paths are
boundary limited, since one would expect n= 2.0
and 3.0, respectively, if the main scattering was
with the boundaries.

When magnetic defect scattering was included, a
reasonable fit to the magnon conductivity was ob-
tained with Eq. (14), i.e. ,

K (0)= B'T
0

x' csch2( —', x) dx
1+ b(T)x'

where

1/r„- T'(.)'/((o' —(u,')', (17)

as first suggested by Pohl. 3 With the addition of
Eq. (17) to the inverse relaxation time in the de-
nominator of Eq. (13) the phonon conductivity could
be satisfactorily fitted by the relation

x'csch'(g x) dx
„1+a(T)x4+C x'/(x' 2P-(18)

where

A=0. 98 mW cm ' K, a=1.45X10 T,
C =40, coo=2. 61x10 ' Hz .

It should be emphasized that we attach no signifi-
cance whatsoever to the resonance term. It is sim-
ply a device to reproduce the phonon-thermal-con-
ductivity data. Our main interest is in the varia-
tion of the conductivity with magnetic field, and
thus the phonon conductivity simply contributes a
field-independent background.

With the zero-field temperature dependence of
the phonon and magnon conauctivity apparently ac-
counted for, an attempt to understand the field de-
pendence of the data was made. If the magnon-pho-
non interaction is neglected, the total conductivity
at a field H is just the sum of Eqs. (15) and (18),
where the constants in Eq. (15) are those found
from the fit to the zero-field magnon conductivity.
A comparison with the experimental results at
three different temperatures is shown in Figs. 2(a),
2(b), and 2(c). The calculated conductivities are
shown as the solid lines.

B'= 1.54 mW cm ~ K ~, b(T) = 0.30T~.

An attempt to fit the high-field phonon conductiv-
ity over the entire temperature range of the exper-
iment was not very successful with the form given
by Eq. (13), which includes only boundary plus
point-defect scattering. It was found that a reason-
able fit could be obtained if the effect of resonance
scattering was included. The best fit was obtained
by assuming the inverse relaxation time for reso-
nance scattering could be expressed as
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FIG. 2. Change in conductivity with magnetic field at
three different temperatures. The solid line was calcu.-
lated ignoring the interaction bebveen the magnon and
phonon mode. The dashed line was calculated using cou-
pled magnetoelastic modes.
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The data presented in these, as well as previous
figures, have been approximately corrected for de-
magnetizing effects using the method of Joseph and
Schlomann which is applicable to nonelliysoidal
bodies. The field parameter in all these cases is
then apyroyriately the internal field. At intermedi-
ate fields it is seen that the experimental points lie
below the predicted values. This is just the ex-
pected result, since the magnon-phonon interaction,
if important, will interfere with both the magnon
and the phonon transport, and thus reduce the total
conductivity. It is clear therefore, that the effects
of the magnon-phonon interaction must be taken into
consideration, and the coupled modes must be used.

If the interaction is included directly in the Ham-
iltonian describing the system, the noninteracting
phonon and magnon modes are distorted producing
elastomagnon modes. The modes of the coupled
system have dispersion relations which are given

by Eq. (16). These coupled modes differ signifi-
cantly from the noninteracting modes only in the
neighborhood of the region where the energy and
wave vector of the phonons and magnons are equal.
The lower mode is phononlike for energies below
the distorted region, and magnonlike above the dis-
torted region. The reverse is true for the upper
mode. There is another distorted region at higher
energies, with another reversal of character of
each mode.

Since there is no simple analytic form for the
dispersion relations of the coupled system, it is
necessary to return to Eq. (5) in order to calculate
the thermal conductivity. The contributions from
each of the two elastomagnon modes are summed
to give the total conductivity. There is, however,
the problem of what to use for the mean free path
l(k) in Eq. (5). Approximate expressions for both
the phonon and the magnon scattering were previ-
ously detex"mined by fitting the temperature depen-
dence of the data. Thus in the magnonlike regions
those found from Eq. (14) were used, and in the
phononlike region those found from Eq. (20) were
used.

Using this technique the field dependence of the
conductivity was again calculated with the x esults
displayed by the dashed line in Figs. 2.

The magnetoelastic coupling constants for YIG
are temperature dependent. Using a parallel-
pumping technique Nilsen, Comstock, and %'alker
have measured B~ at 4.2 K and obtain a value of
4X10~ erg/cm~. A higher value of 10S erg/cms
gives a better fit to our data and was used to obtain
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FIG. 3. Dispersion relation for coupled magnon-
phonon mode calculated with &2 =10 erg/cm (a) for H&

=0, (b) for &&=5 kOe, (c) for H;=40 kOe.

action is not restricted to modes of the same ener-
gy and wave vector. Inclusion of this interaction
would tend to diminish the magnitude of B& neces-
sary to obtain agreement between the calculated and
measured curves.

V. SUMMARY

0
0

l0 k (cm-l )

the results shownin Fig. 2. The value of B2= 4&&10

erg/cm~ would yield a correction to the uncoupled
theory about —,

' as large as the one we show. The
difference between our value and that obtained by
Nilsen et al. could reflect not only the effect of the
lower temperature employed but also that of static
strains to which the thermal conductivity would be
much more sensitive than parallel pumping. Dis-
persion relations for the coupled modes calculated
with this value of B2 are shown in Fig. 3.

Higher-order magnon-phonon interactions have
not been taken into account. The most important
term in the Hamiltonian leading to these effects is
linear in the phonon, but quadratic in the magnon
operators. Thus it leads to a phonon scattering
process in which one phonon interacts with two mag-
nons, and is nonresonant in nature; i.e. , the inter-

It has been shown that the thermal conductivity of
YIG at low temperatures, calculated under the as-
sumption of noninteracting magnon and phonon

modes, does not agree with the experimental data
at intermediate fields. However, comparison with
the noninteracting theory does point to several im-
portant aspects of the data.

Comparison with the theory was done by first as-
suming that the high-field conductivity was due to
phonons only, and then normalizing the magnitude
of the magnon conductivity at zero field. The fact
that the qualitative behavior of the conductivity,
and particularly the field at which the conductivity
saturates is correctly predicted by the theory, is
strong evidence that direct conduction by the mag-
nons is observed. However quantitative agreement
with experiment is lacking.

The fact that the observed conductivity decreases
faster with increasing field in the intermediate re-
gion of field, suggests that a mutual damping of
phonons and magnons due to a phonon-magnon inter-
action is important. The effect of the interaction is
primarily to produce coupled modes. When these
were included, using the semiclassical theory of
Kittel they accounted for this behavior within ex-
perimental error.
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Effect of Pressure on the Kondo Temperature of Cu:Fe=Existence of a Universal Resistivity
Curve

James S. Schilling~ and W. B. Holzapfel
Physik Department der Technischen Universitat Mu'nchen, 8046 Garching, Germany

and Max-Planck-Institut fur Festkorperforschung, 700 Stuttgart, Germany
(Received 22 January 1973)

The electrical resistivity of Cu-110-ppm Fe has been measured for temperatures from 1.3-40 K at
pressures to 82 kbar. The Kondo temperature T~ is observed to increase with pressure, having doubled in
value by 82 kbar. When plotted versus T/1~, the spin-resistivity curves are found to accurately overlap for
all measured pressures, thus confirming tfie existence of a universal resistivity curve p = p(T/T~) for
Cu:Fe. Within the experimental uncertainty of 1.7%, the saturation value of the resistivity p(T = 0 K) does
not change with pressure. This indicates that to this accuracy the spin S and the potential scattering at the
magnetic impurity remain constant. From the pressure dependence of T~ one obtains the volume
dependence of the effective exchange parameter J,tr. Approximately the same volume dependence is found
for a series of CuAu:Fe alloys using their known average atomic volume. The Cu:Fe high pressure and the
CuAu:Fe-alloy data are discussed within the context of a simple Fermi-gas model based on the
Schrieffer-Wolff transformation. The pressure dependence of the resistivity of pure copper, p„h,„,„,has also been
studied and can be understood using the Bloch-Griineisen formula with known values of the compressibility
and the Griineisen parameter. A method for experimentally determining deviations 5 from Matthiessen's
rule in Kondo alloys is also presented. Such deviations can be very large; in fact, for T & 30 K, we find
that 6 = 1.3pp„,„,„.

I. INTRODUCTION

Because of its importance to the general problem
of magnetism in metals, the problem of localized
magnetic states in a metallic environment has for
many years been an object of considerable study.
Investigations on dilute magnetic alloys have been
pursued with particular intensity following Kondo's
success in 1964 in explaining the resistance mini-
mum anomaly. Kondo postulated an s-d exchange
interaction X, „=—J,«s ~ S between conduction elec-

trons with spin s and magnetic impurities with spin
S and calculated the scattering to third order in
perturbation theory. For antiferromagnetic (nega-
tive) values of the effective exchange parameter
J',«, the resultant resistivity is found to increase
logarithmically with decreasing temperature. This
is in approximate agreement with measurements
on a large number of dilute magnetic alloys. ~'3

Such a logarithmic divergence is, of course, not
possible for arbitrarily low temperatures, as the
resistivity at T= 0 K cannot exceed the unite, ry lim-


